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Amazon forests experienced recent severe droughts in an anomalous short period

induced by different mechanisms and had different length periods and spatial patterns.

Droughts of 2005 and 2010 were attributed to anomalous Sea Surface Temperature

(SST) over the Tropical North Atlantic (TNA) during the dry season, but the 2010 drought

was more severe and remained for a longer period because it was also induced in late

2009 by a moderate to strong El Niño (EN). Drought in 2015 led to unprecedented

warming and extreme soil moisture deficits over some regions, and it was attributed to a

very strong EN. Several studies analyzed these drought events regarding different climatic

factors such as anomalies in SST, vegetation, temperature, precipitation, soil moisture

deficits, solar radiation, etc. However, we have not identified a complete analysis of total

cloud cover (TCC) over Amazonia during these drought events in the context of long-term

trends and past strong EN events. This brief report aims to present a preliminary analysis

of anomalies in TCC over Amazon using reanalysis data with a focus on the last recent

drought events into a long-term context. Results show a significant decreasing trend (p<

0.05) for TCC over southern Amazonia during the dry season (around −2% per decade),

in contrast to the significant increasing trend found over northern Amazonia during this

season and the significant widespread increasing trend during the wet season (between

+2 and +4% per decade). Correlation analysis between SST and TCC anomalies is also

indicative of the different West-East and North-South patterns linked to EN events or

drought episodes driven by TNA warm anomalies.

Keywords: cloud cover, Amazonia, reanalysis, El Niño, drought, trends

INTRODUCTION

Amazon rainforest ecosystem, which presents typical wet conditions, are experiencing recurrent,
persistent and large-scale rainfall deficit over the last decades. During the early years of the
twenty-first century, a large portion of Amazon rainforest has experienced three of the most severe
droughts in its climate record of the last 100 years (Jiménez-Muñoz et al., 2016; Marengo and
Espinoza, 2016; Panisset et al., 2018). The so-called mega-droughts occurred in 2005, 2010, and
2015 induced by large-scale atmospheric mechanisms associated to the interactions with warm sea
surface temperature (SST) fromAtlantic and Pacific oceans (Coelho et al., 2012). The 2005 and 2010
droughts conditions in western and southern Amazonia are attributed to the Atlantic Multidecadal
Oscillation (AMO) inducing the contraction of the northeast trade winds and moisture flux from
the warming Tropical North Atlantic (TNA) SST (Zeng et al., 2008; Marengo and Espinoza, 2016).
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The 2010 drought was more severe and remained for a more
extended period because it was also induced in late 2009 by a
moderate to strong positive El Niño southern Oscillation (ENSO)
(Marengo et al., 2011). More recently, one of the strongest El-
Niño ever record was responsible for the widespread drought
conditions in eastern and southern Amazonia (Jiménez-Muñoz
et al., 2016; Panisset et al., 2018). This recent EN event occurred
under an underlying global warming trend, resulting in the
highest warming level observed in the last decades (Jimenez et al.,
2018).

Physical climate mechanisms behind the different drought
episodes were different, so the resulting spatial patterns of
drought severity were also different for each event. Warm
SST temperatures over the tropical Pacific (EN events) induce
changes in the atmospheric circulation which are different
to the changes induced by warm SST temperatures over the
tropical Atlantic. Even in the case of EN events, impacts of the
atmospheric circulation are different because warm anomalies
can be focussed in the Central Pacific (CP) or the Eastern
Pacific (EP). Roughly, drought events linked to anomalous warm
SST temperatures over the TNA show a characteristic North-
South gradient, with wet conditions over the northern Amazonia
and dry conditions over southern Amazonia (Marengo et al.,
2008; Lewis et al., 2011). In contrast, drought episodes linked to
EN events show a West-East (or more properly, a Southwest-
Northeast) gradient, with dry conditions over northeastern
Amazonia (Malhi et al., 2008). Combination of warm CP, EP,
and TNA warm anomalies also induce drought over almost
the entire Amazon region. In the case of the last strong
EN event in 2015-16, extreme drought severity focused on
northeastern Amazonia linked to strong warm CP anomalies
(Jiménez-Muñoz et al., 2016; Jimenez et al., 2018).

All these recent studies assessing cause and impacts of the
three mega-droughts over Amazonia have focused on measures
of precipitation, temperature, soil moisture, vegetation, and
radiation. However, they mostly ignored the effects of cloud
cover on drought patterns, although such work is critical to
understand the hydrological cycle and its associated feedbacks.
Accordingly, our current understanding of the coupling between
cloud cover and droughts during the last extreme droughts in
the Amazon rainforest remains lacking, except a recent work
by using remote sensing data (Martins et al., 2018). However,
the study period in that work was limited to 2000–2015, which
jeopardizes a significant trend analysis and the comparison
against previous drought episodes during very strong EN events
in 1982/83 and 1997/98. Spatial patterns and trends in cloud
cover in Amazonia were also analyzed by Butt et al. (2009).
However, the cloud cover dataset used in that study was
limited to 1984–2006 and the recent droughts in 2010 and 2015
were not included, as well as the strong EN event in 1982–
83.

Our work aims to fill this gap by using a reanalysis dataset
to analyze the spatial and temporal patterns of cloud cover
during the last four decades (1980–2016), focusing on twenty-
first century mega-droughts which recently occurred in the
Amazon region and also on strong EN events in 1982–83 and
1997–98.

METHODS

For the study presented in this brief report, we selected the Total
Cloud Cover (TCC) product generated by the ECMWF ERA-
Interim reanalysis (Dee et al., 2011). The performance of this
TCC product is discussed in the Supplementary Material.

Because we are interested in the relative comparison between
drought events, we computed TCC monthly absolute anomalies,
as well as TCC standardized anomalies, for the reference period
1981–2010. Monthly values were averaged for the four quarters
January-February-March (JFM), April-May-June (AMJ), July-
August-September (JAS), and October-November-December
(OND), as well as for the whole year (January to December) to
compute yearly means. Trend analysis was performed through
the Mann-Kendall non-parametric test, using Sen’s method for
the computation of the trend (slope) value. Oceanic indices based
on SST anomalies over EN regions (3, 4, and 3.4) and over the
TNA region were also used for linear correlation analysis between
SST and TCC anomalies. Oceanic indices were extracted from
‘The state of the ocean climate’ initiative (http://stateoftheocean.
osmc.noaa.gov). Linear correlation analysis was applied with a
lag of one season, so that SST anomalies for one season were
correlated to TCC anomalies for the next season. Trend and
correlation analysis was applied to the time period 1980–2016.

The study area (mainly Amazon rainforests) was delimited
by selecting the Evergreen Broadleaf Forest class included in the
MODIS Land Cover Product. The study area was also divided
into four quarters to differentiate between northwestern (NW),
northeastern (NE), southwestern (SW) and southeastern (SE)
Amazonia (see Supplementary Figure 1). The climatological
mean of TCC for each region and season is presented in
Supplementary Figure 2.

RESULTS

Spatial patterns of TCC standardized (STD) anomalies are
presented in Figure 1 for the periods 2004/05, 2009/10, and
2015/16. STD anomaly maps for years 1982/83 and 1997/98
are also included for comparison to the most recent strong EN
events. Results are presented for season OND of the 1 year and
season JFM of the 2 year, where EN event is being developed and
reaches the peak (typically in December or January), as well as
season AMJ of the 2 year, where EN is vanishing, and season
JAS of the 2 year, used in other studies as a reference period
for the dry season. Absolute anomaly maps are not discussed in
this report, but they are provided in Supplementary Figure 3 for
reference. Details on percentage of area affected by TCC declines
are included in Supplementary Figure 4.

Visual inspection of maps presented in Figure 1 indicates that
widespread negative TCC STD anomalies were only observed
during ENs 1982–83 and 1997–98, in particular for JFM and
AMJ seasons in 1983, and for OND season in 1997 and JFM
season in 1998. In contrast, widespread declines in TCC were
not observed in the last recent drought episodes during 2004–
05, 2009–10, and 2015–16. In these cases, negative and significant
TCC STD anomalies were only observed over particular regions
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FIGURE 1 | Total cloud cover standardized anomalies over Amazonia for strong EN events in 1982–83, 1997–98, and 2015–16, as well as for moderate EN events in

2004–05 and 2009–10. For each event, standardized anomalies for the OND season of the first year are presented, and standardized anomalies for seasons JFM,

AMJ and JAS of the second year, are presented. Total cloud cover product was extracted from the ERA-Interim reanalysis resampled at 0.5◦ × 0.5◦. The reference

period to compute the anomalies was 1981–2010. Results are only shown over pixels classified as Evergreen Broadleaf Forest and pixels with standardized anomalies

higher than 1.28, equivalent to a confidence level of 80% (α = 0.2).

for some seasons and years, namely, OND-2004, JAS-2005, JAS-
2010, OND-2015, and JFM-2016. Negative TCC STD anomalies
were focussed on northeastern Amazonia during OND season in
2004 and 2015. The dry season (JAS) in 2005 was characterized

by two regions with TCC declines over northeastern Amazonia
and southwestern Amazonia, whereas during the dry season
in 2010 the TCC decline was observed over southeastern
Amazonia.
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In terms of percentage of area over the entire study region
affected by negative STD anomalies (Supplementary Figure 4)
at 1 sigma level (STDanom < −1), the highest values were
obtained in January both in years 1983 and 1998 (around 70
and 60% of the study area, respectively). The highest extreme
levels of TCC decline were observed in January-1983 (20% of
the study area) and December-1997 (near to 10% of the study
area). TCC declines at 1 sigma level were also evidenced in
August 2005, 2010, and 2016, with values of area of around 35,
35, and 25%, respectively. A peak on the TCC decline was also
observed in December 2015, with an affected area of around
30%. The highest extreme levels of TCC decline during the last
three drought episodes were obtained in 2016 (January and July,
with area values between 5 and 10%). The analysis of results over
the different sub-regions (Supplementary Figure 4) provided the
highest extreme levels of TCC declines over NE Amazon in 2005,
SE Amazon in 2010, and SE Amazon in 2016.

TCC yearly anomalies over Amazonia were examined in
a long-term context (1980–2016) through the temporal series
presented in Figure 2A. The 80s is characterized by predominant
negative TCC anomalies, whereas from 2000 to present TCC
anomalies were mostly positive, leading to an overall increasing
trend. This figure also evidences some differences between sub-
regions, as was observed in the previous analysis of the area
affected by TCC declines.

Spatial patterns of TCC trends are presented in Figure 2B,
which corroborates the overall increasing trend over all
regions and seasons, except the dry season (JAS), where an
increasing trend was observed over northern Amazonia, and
decreasing trend was observed over southeastern Amazonia.
Values of trends at a monthly level for the four sub-regions
are detailed in Supplementary Table 1. The highest positive
(and statistically significant) anomalies were obtained over
the NE region in February and March (around +4% per
decade). NW and SW regions show statistically significant
increasing trends for all the months (between +2 and +4%
per decade), except for August over the SW region, with a
non-statistically significant negative trend. The SE region is
also characterized by a positive TCC trend, but it is the only
region providing a statistically significant negative trend in
August (around −2% per decade). A negative trend was also
observed in July over this region, but it was not statistically
significant.

The correlation analysis presented in Figure 2C illustrates
the different contribution of SST anomalies over EN and TNA
to the spatial patterns of TCC anomalies. EN regions induce a
widespread TCC decline during JFM and AMJ seasons, with a
TCC decline focused over northeastern Amazonia during JAS
and OND seasons, partly extended to southeastern Amazonia
during the OND season. The different contribution of EP (EN3)
and CP (EN4) SST anomalies is observed in the JFM season.
EP anomalies induce widespread TCC declines (northeastern,
central, and southwestern Amazonia), whereas CP anomalies are
linked to TCC declines over northeastern Amazonia. In the case
of the TNA SST anomalies, a significant negative correlation
was only observed during the JAS season over southern
Amazonia.

DISCUSSION AND CONCLUSIONS

TCC anomalies over Amazon forests were analyzed using a
particular reanalysis dataset (ERA-interim) for the period 1980–
2016, with focus on the recent drought events in 2005, 2010, and
2015, and previous strong EN events such as those occurred in
1982–83 and 1997–98.

Spatial patterns of standardized TCC anomalies (Figure 1)
revealed a widespread TCC decline during EN events in 1983
and 1998 (JFM season), with an affected area exceeding 50%
of the entire study region. This widespread TCC decline was
not observed in the last recent drought episodes in 2005,
2010, and 2015, but focused over northeastern Amazonia
in OND-2004, JAS-2005, and OND-2015, over southwestern
Amazonia in JAS-2005, and over southeastern Amazonia in JAS-
2010 and OND-2015. Overall, significant TCC increases were
observed over central Amazonia in JFM-2005 and northern
Amazonia in JAS-2010 and JAS-2016. These spatial patterns
(see also Supplementary Figure 3) roughly evidence three
different dominant patterns: widespread TCC decline over the
entire region, and transitions from North to South or from
Northeastern to Southeastern. This result is consistent with the
different modes of drought over Amazonia reported by Lima and
AghaKouchak (2017).

The analysis of TCC trends (Figures 2A,B, and
Supplementary Table 1) over Amazon forests shows an
enhancement in TCC in the north and a decreasing in the
south during the dry-period (JAS). The TCC during austral
winter (JAS) over the southeastern Amazon from 1981 to 2016,
decreased by −0.6 % per decade, with August providing a
decreasing trend of −2.1 % per decade (p < 0.05). This result
is consistent with previous findings suggesting more (less)
moisture in the north (south) (Gloor et al., 2013). An increase in
TCC seasonality with a decreasing trend during the dry season
and an increasing trend during the wet season was also identified
by a previous study (Butt et al., 2009), although their study
period was limited to 1984–2006.

Southern Amazonia, and particularly southeastern Amazonia,
includes the arc of deforestation, and it is the driest region
along the Amazon Basin, particularly vulnerable to ENSO

and AMO variability (Yoon and Zeng, 2010; Andreoli et al.,
2016) and drought-induced feedbacks (Ribeiro et al., 2018;
Staal et al., 2018). During recent decades, southern Amazon
presents high levels of fire and deforestation activity (Chen
et al., 2013), associated with forest conversion into agriculture
and pasture, selective logging and forest fragmentation (Lapola
et al., 2014; Ometto et al., 2016; Venter et al., 2016). The
observed reduction in cloud cover over the region is probably
correlated with forest loss, and land use changes occurred in
southern Amazon (Bala et al., 2007; Malhi et al., 2008). The
altered land cover may modulate the contribution of southern
Amazon forest as a source of moisture for other regions of
the rainforest, due to the reduction of tree transpiration (Staal
et al., 2018). The present-day dry season over southern Amazonia
is induced by changes in surface roughness due to forest loss
occurred over the last three decades (Khanna et al., 2017).
Furthermore, the deforestation-induced fire biomass burning
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FIGURE 2 | (A) Temporal series of total cloud cover yearly anomalies over Amazonia for the period 1980-2016 over the four regions (NW, NE, SW, SE). Yearly

anomalies for the whole Amazon Basin (Global) are included as gray boxes. Black line indicates the mean value, dark gray the ± 1 σ interval, and light gray the total

range (maximum and minimum values). (B) Spatial patterns of trends (in percentage per decade) in total cloud cover over Amazonia for the four seasons JFM, AMJ,

JAS, and OND. Only pixels with a statistical significance p < 0.05 are displayed. (C) Linear correlation coefficient between sea surface temperature anomalies over El

Niño regions 3 and 4 (EN3, EN4) and Tropical North Atlantic (TNA), and total cloud cover anomalies. Only pixels with p < 0.05 are displayed. Correlation analysis was

applied to seasonal SST and TCC anomalies with a lag of one season (SST anomalies for one particular season and TCC anomalies for the next season).

during the dry-period over the region also impact into aerosol
loading, influencing the formation of cloud, and precipitation
(Gu et al., 2017; Andreae et al., 2018).

Even in the absence of climate-deforestation feedbacks, recent
studies reported that the hydrological cycle in the Amazon
region has been intensified since the 1990s (Gloor et al., 2013).
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Changes in energy and water cycles in the southern and eastern
portions of the Amazon Basin which are probably beyond natural
variability were also suggested (Davidson et al., 2012). The
observed reduction in TCC is in accordance to the increase
in both frequency and intensity of drought events mainly in
the southern Amazon region (Salazar et al., 2007) under a
global warming scenario (Malhi et al., 2008). The cause for
such a dryness is related to the transport of humidity from
the North Atlantic ocean to South America particularly in the
southern Amazon during the dry-season (Marengo et al., 2011).
The correlation analysis presented in Figure 2C evidences the
different impact of warm SST anomalies over the CP (EN4
region), EP (EN3 region), and TNA regions on TCC. EN3
region is linked to widespread TCC declines, whereas the impact
of EN4 region may be limited to the northeastern region
for the JFM season. The impact of both EN regions on the
TCC for the other seasons is similar. TNA is clearly linked to
TCC declines over southern Amazonia during the dry (JAS)
season.

This is a preliminary analysis presented in a brief report style
that requires further research in order to assess the differences in

TCC between other reanalysis datasets and remote sensing based
products, as well to include other indicators (e.g., solar radiation)
to better understand the processes behind the development of
Amazonian droughts.
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