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Abstract.
Background/Aims: Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) exposure to 
myocardial cells mimics ischemia-reperfusion injuries. We studied the potential activity of 
ciliary neurotrophic factor (CNTF) on OGDR-treated myocardial cells. Methods: CNTF and 
CNTFR expression were tested by RT-PCR assay and Western blotting assay. Cell viability and 
death were tested by MTT assay and LDH release assay, respectively. Akt-Nrf2 signalings were 
tested by Western blotting assay and qPCR assay. Results: CNTF and its receptor CNTFR were 
functionally expressed in established H9c2 myocardial cells and primary murine myocardiocytes. 
Pretreatment of CNTF significantly attenuated OGDR-induced viability reduction and death 
in myocardial cells. Further studies show that in the myocardial cells CNTF activated NF-
E2-related factor 2 (Nrf2) signaling to inhibit OGDR-induced reactive oxygen species (ROS) 
production and programmed necrosis, preventing adenine nucleotide translocator 1 (ANT-
1)-p53-cyclophilin D (Cyp-D) mitochondrial association and mitochondrial depolarization. 
Nrf2 silencing or knockout almost abolished CNTF-induced H9c2 cytoprotection against 
OGDR. CNTF activated Akt in H9c2 cells and primary murine myocardiocytes. Conversely, 
Akt blockage by the pharmacological inhibitors not only blocked CNTF-induced Nrf2 Ser-40 
phosphorylation and activation, but also nullified anti-OGDR actions by CNTF in myocardial 
cells. Conclusion: CNTF activates Akt-Nrf2 signaling to protect myocardial cells from OGDR.
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Introduction

Ischemic heart diseases are major threats to human health [1, 2]. Understanding the 
underlying pathological mechanisms and developing possible intervention strategies are 
urgent [1, 2]. Our group [3-5] and others [6-8] are using in vitro oxygen glucose deprivation 
(OGD) model to mimic ischemic myocardial cell injury. Sustained OGD (>1 h) and subsequent 
re-oxygenation (ODGR) exposure disrupts mitochondrial function, leading to profound 
reactive oxygen species (ROS) production, oxidative stress and myocardial cell necrosis (but 
not apoptosis) [6-8].

Ciliary neurotrophic factor (CNTF) is expressed in glial cells within the central and 
peripheral nervous systems [9-11]. CNTF promotes gene expression, cell survival or 
differentiation of sensory, sympathetic, ciliary and motor neurons [9-11]. CNTF binds to 
its receptor CNTFR, enabling the recruitment of glycoprotein 130 and LIFRβ (leukaemia 
inhibitory factor receptor), forming a tripartite receptor complex [9-11]. The complexation 
will lead to tyrosine phosphorylation, providing the docking sites for SH2-containing 
signaling molecules [9-11]. It will lead to activation of signaling cascades, including PI3K-
Akt-mTOR, Erk-MAPK (mitogen-activated protein kinases) and Jak-STAT (signal transducers 
and activators of transcription) pathways [9-11]. CNTF and CNTFR expression and potential 
functions in myocardial cells have not been studied.

The nuclear transcription factor NF-E2-related factor 2 (Nrf2) is essential for the 
transcription and expression of key anti-oxidant enzymes [12, 13]. Nrf2-dependent 
enzymes, including heme oxygenase-1 (HO1), NADPH quinone oxidoreductase 1 (NQO1) and 
glutamate cysteine ligase catalytic subunit (GCLC), can inhibit ROS production and oxidative 
stress [14]. Our previous study has demonstrated that the Akt activator SC79 activated Nrf2 
signaling to protect myocardial cells from OGDR [5]. Further, salidroside-induced myocardial 
cytoprotection against OGDR required Nrf2 signaling activation as well [3]. Here, we will show 
that CNTF prevents OGDR-induced myocardial cell death via activation of Nrf2 signaling.

Materials and Methods

Chemical and reagents
CNTF, LY294002, AZD5363 and MK2206 were purchased from Sigma-Aldrich (St. Louis, Mo). Antibodies 

of cyclophilin D (Cyp-D), adenine nucleotide translocator 1 (ANT-1) and p53, Nrf2, HO1, NQO1 and GCLC were 
provided by Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies for CNTF and CNTFR were obtained from 
Abcam (Shanghai, China). All other antibodies were purchased from Cell Signaling Tech (Beverly, MA). Cell 
culture reagents were obtained from Gibco Bio (Grand Island, NY). The 2′,7′-dichlorofluorescein diacetate 
(DCF-DA) fluorescent dye for ROS assay was provided by Roche Diagnostics (Mannheim, Germany).

H9c2 cell culture
As previously reported [3, 15, 16], the rat embryonic ventricular H9c2 myocardial cells were cultured 

in DMEM medium plus 10% fetal bovine serum (FBS) with necessary antibiotics. DNA fingerprinting 
and profiling were performed to confirm the cell line’s origin every five months. Cells were subjected to 
mycoplasma and microbial contamination examination every month. Population doubling time, colony 
forming efficiency, and morphology were also examined to confirm the phenotype.

Primary culture of murine myocardiocytes
The detailed protocols of isolation and primary culturing of the murine myocardiocytes were 

described previously [3-5, 17]. In short, ventricles of C57BL6 mice (at P1) were minced and digested. The 
cell suspensions of primary myocardiocytes were filtered, cultured in FBS-containing M-199 medium, and 
plated for 30 min. The confluent monolayer with primary spontaneously beating cells was formed [17]. The 
protocols were approved by the Ethics Committee of Nantong University.
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OGD/re-oxygenation
OGD/re-oxygenation (OGDR) protocol was described previously [3]. In short, cells were cultured in a 

pre-warmed glucose-free balanced salt solution [3]. The solution was then bubbled with an anaerobic gas 
mix (95% N2, 5% CO2). Cells were incubated in the solution for 4 h to produce OGD and then re-oxygenated.

MTT viability assay
Cells were seeded onto 96-well tissue-culture plate at a density of 3, 000 cells per well. Cell viability 

was examined by the 3-[4, 5-dimethylthylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) (Sigma, St. 
Louis, MO) assay [3, 16]. The MTT optical density (OD) at 590 nm was recorded.

LDH assay of cell death
As previously discussed [5], cells were initially seeded onto 24-well tissue-culture plate at a density of 

15, 000 cells per well. Following the applied treatment, cell death was determined by lactate dehydrogenase 
(LDH) assay via a commercial available LDH kit (Takara, Tokyo, Japan). LDH release (× 100 %) was calculated 
as follows: LDH in conditional medium/(LDH in conditional medium + LDH in cell lysates).

Western blotting assay
Western blotting assay was performed as described previously [3, 16]. Briefly, total cellular lysates (40 

μg per sample of each lane) were separated by 10% SDS-PAGE gel, which were then transferred to the PVDF 
(polyvinylidene difluoride) blots (Merck Millipore, Darmstadt, Germany). After blocking in 10% non-fat 
milk, the blots were incubated with the applied primary and secondary antibodies. The ECL reagents (Pierce, 
Shanghai, China) were added to visualize the targeted protein bands based on the molecular weights, under 
x-ray films. The band intensity (total gray) was quantified using the the Image J software (from NIH), which 
was always normalized to that of loading control.

Mitochondrial immunoprecipitation (Mito-IP)
Following the treatment, the mitochondria of ten million H9c2 cells (per treatment) were extracted 

using the “Mitochondria Isolation Kit for Cultured Cells” from Thermo Scientific (Hudson, NH). The acquired 
mitochondria were then lysed [3]. Immunoprecipitation (IP) was performed via using the anti-Cyp-D 
antibody (see [18]), and immune complexes were captured with protein G-Sepharose. Afterward, the Cyp-
D-bound IP lysates were subjected to Western blotting assay, p53-Cyp-D-ANT-1 association was detected 
[3, 18].

Real-time PCR
Total cellular RNA extraction by the TRIzol reagents (Biyuntian, Wuxi, China) and reverse transcription 

were performed as described previously [3] . Real-time PCR was performed via using a Bio-Rad IQ5 
multicolor detection system. After amplification, melt curve analysis was performed to analyze product 
melting temperature. GAPDH was tested as internal control, using the 2-ΔΔCT method [19] for mRNA expression 
quantification. The primers for rat HO-1, Nrf2, GAPDH, NQO-1 and GCLC were described previously [3]. The 
primers for murine HO-1, Nrf2, GAPDH, NQO-1 and GCLC were from Dr. Jiang’s group [3, 5, 20, 21]. mRNA 
primers for CNTF and CNTFR were designed and sequence verified by Genepharma (Shanghai, China).

ROS detection
H9c2 cells were seeded onto 6-well plates at 1×105 cells per well. Following the OGDR (or plus CNTF) 

treatment, ROS production was determined by the DCF-DA fluorescent dye assay (Invitrogen) [3]. Briefly, 
cells were stained DCF-DA dye at 5.0 μg/mL for 60 min under the dark. DCF-DA fluorescent intensity was 
recorded on a spectrofluorometer using excitation and emission filters of 488 and 530 nm, respectively [3].

Mitochondrial depolarization assay
H9c2 cells were seeded onto 6-well plates at 1×105 cells per well. Following the OGDR (or plus CNTF) 

treatment, mitochondrial depolarization (“∆Ψ”) was tested by the mito-dye JC-1 (Sigma), which will 
aggregate to form the green monomers following mitochondrial depolarization [22]. Briefly, cells were 
stained with JC-1 (5.0 μg/mL), which were then washed, tested immediately on a spectrofluorometer. JC-1 
fluorescence OD at 550 nm was recorded.

http://dx.doi.org/10.1159%2F000495711
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Nrf2 silencing by shRNA
H9c2 cells were seeded onto 6-well 

plates at 1×105 cells per well. The Nrf2 shRNA-
containing lentivirus (with the sequence 5’ 
CCACATTTTCTTAATGCTTTTGA), as described 
previously [3, 5], was added directly to cultured 
H9c2 cells at 20 μL/mL medium for 24 h. Cells 
were the culture in puromycin (0.25 μg/mL)-
containing medium for another 96 h. Nrf2 
knockdown in the selected stable cells was 
confirmed by Western blotting assay and qPCR 
assay. Control cells were transfected with same 
amount of scramble control shRNA (Santa Cruz).

CRISPR/Cas9-mediated Nrf2 knockout
H9c2 cells were seeded onto 6-well plates 

at 1×105 cells per well. The small guide RNA 
(sgRNA) targeting human Nrf2 (targeted DNA 
sequence, 5’-GGCATCTTGTTTGGGAATGT) was 
inserted into the lentiCRISPR-GFP plasmid. The 
lentiCRISPR-GFP-Nrf2 KO construct, provided 
by Dr. Li [23], was transfected to H9c2 cells 
by using the Lipofectamine 2000 reagent 
(Invitrogen, Shanghai, China). GFP-positive 
cells were thereafter FACS-sorted, and selected 
stable cells were subjected to Nrf2 knockout 
screening.

Statistical analysis
Data presented were mean ± standard 

deviation (SD). Statistical differences were 
analyzed by one-way ANOVA by Dunnett’s Test 
(SPSS 21.0, Chicago, IL). A two-tailed unpaired 
T test was applied to test significance between 
two treatment groups. Values of p <0.05 were 
considered statistically significant.

Results

CNTF protects myocardial cells from 
OGD/re-oxygenation
First, by performing the RT-PCR 

assay, we showed that mRNA expression 
of CNTF and its receptor CNTFR were 
detected in both H9c2 myocardial cells 
and primary murine myocardiocytes 
(Fig. 1A). Further, CNTF and CNTFR proteins were also expressed in the myocardial cells 
(Fig. 1B). Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) is often applied to 
cultured myocardial cells. In line with our previous findings [3-5], OGDR exposure in H9c2 
cells (for 24 h) induced potent viability (MTT OD) reduction (Fig. 1C) and cell death (LDH 
medium release, Fig. 1D). Significantly, pretreatment of CNTF (for 1 h) dose-dependently 
inhibited OGDR-induced cytotoxicity in H9c2 cells (Fig. 1C and D). CNTF at 5-100 ng/mL 
significantly inhibited viability reduction (Fig. 1C) and LDH release (Fig. 1D) by OGDR in 

Fig. 1. CNTF protects myocardial cells from OGD/re-
oxygenation. mRNA (A) and protein (B) expression 
of CNTF and CNTFR in H9c2 myocardial cells and the 
primary murine myocardiocytes were shown. H9c2 
myocardial cells (C and D) or the primary murine 
myocardiocytes (E and F), pretreated with CNTF (1 h 
pretreatment), were maintained under oxygen and 
glucose deprivation (OGD) for 4 h, followed by 24 h of 
re-oxygenation. Afterwards, cell viability was tested by 
MTT assay (C and E); Cell death was examined by the 
LDH release assay (D and F). “Mock” stands for normal 
oxygen and glucose control (Same for all figures). 
“OGDR” stands for OGD/re-oxygenation (Same for all 
figures). Bars indicate mean ± standard deviation (SD, 
n=5). * p<0.05 vs. “Mock” cells. # p<0.05 vs. “OGDR” 
only treatment. Each experiment was repeated five 
times and similar results were obtained.
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H9c2 cells. Notably, treatment with CNTF alone at tested concentrations (1-100 ng/mL) had 
no significant effect on cell viability and cell death (Fig. 1C and D). In the primary murine 
myocardiocytes, pretreatment with CNTF (25 ng/mL) attenuated OGDR-induced viability 
reduction (Fig. 1E) and cell death (Fig. 1F). CNTF single treatment was ineffective (Fig. 1E 
and F). These results show that CNTF protects myocardial cells from OGDR.

Fig. 2. CNTF activates Nrf2 signaling, inhibiting oxidative stress and programmed necrosis in myocardial 
cells. H9c2 myocardial cells (A-C) or primary murine myocardiocytes (G and H) with treated with CNTF 
at applied concentration for indicated time, mRNA and protein expression of listed genes were shown (A, 
B, G and H); The complexation and expression of listed proteins in the mitochondrial lysates were tested 
by mitochondrial immunoprecipitation assay (“Mito-IP” for Cyp-D-associated proteins) and mitochondrial 
immuno-blot assay (“Mito-IB”, as “Input”), respectively (C); H9c2 myocardial cells (D-F) or primary murine 
myocardiocytes (I-K) were pre-treated with CNTF (25 ng/mL) for 1 h, maintained under oxygen and glucose 
deprivation (OGD) for 4 h, followed by 8 h of re-oxygenation; Mitochondrial depolarization, ROS production 
and lipid peroxidation were tested by JC-1 dye assay (D and I), DCF-DA dye assay (E and J) and TBAR activity 
assay (F and K), respectively. For Mito-IP assay, the amount of Cyp-D-bound p53 or ANT-1 was quantified 
(vs. Cyp-D, C). Expression of listed proteins were quantified and normalized to the loading control (B and H). 
Bars indicate standard deviation (SD, n=5). “C” stands for untreated control cells. * p<0.05 vs. group “C” (A 
and G). * p<0.05 vs. “Mock” cells (D-F, I-K). # p<0.05 vs. “OGDR” only treatment (D-F, I-K). Each experiment 
was repeated three times and similar results were obtained.
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CNTF activates Nrf2 
signaling, inhibiting 
oxidative stress and 
programmed necrosis 
in myocardial cells
Our previous studies 

have shown that activation 
of Nrf2 signaling potently 
inhibited OGDR-induced 
ROS production and 
subsequent programmed 
necrosis, thereby inhibiting 
cell death [3-5]. We tested 
whether CNTF could also 
activate Nrf2 signaling 
in myocardial cells. By 
performing the qPCR 
assay, we showed that 
treatment with CNTF 
dose-dependent increased 
mRNA expression of two 
primary Nrf2-dependent 
anti-oxidant genes, 
including HO1 and NQO1. 
Nrf2 mRNA expression 
level was unchanged 
(Fig. 2A), and CNTF dose-
dependently induced Nrf2 
phosphorylation (at Ser-
40, a key site for activation 
[24-26]) and protein 
accumulation in H9c2 cells 
(Fig. 2B). HO1 protein 
expression was increased 
as well in CNTF (5-100 ng/
mL)-treated cells (Fig. 2B). 
These results indicate that CNTF activates Nrf2 signaling in H9c2 cells.

OGDR mainly induces programmed necrosis, but not apoptosis, in myocardial cells 
and other cells [5, 23, 27, 28]. Indeed, OGDR treatment in H9c2 cells induced programmed 
necrosis, which was evidenced by mitochondrial ANT-1-p53-Cyp-D association (Fig. 2C) 
and mitochondrial depolarization (JC-1 intensity increase, Fig. 2D), which was significantly 
inhibited by CNTF (25 ng/mL). The DCF-DA fluorescence dye assay results showed that 
OGDR-induced ROS production was significantly attenuated with pretreatment of CNTF 
(Fig. 2E). TBAR assay results further showed that lipid peroxidation following OGDR was 
alleviated by CNTF pretreatment (Fig. 2F). These results indicate that CNTF inhibits OGDR-
induced programmed necrosis and oxidative stress in H9c2 cells.

In the primary murine myocardiocytes, CNTF (25 ng/mL) increased mRNA expression 
of HO1 and NQQ1 genes (Fig. 2G). Further, CNTF induced Nrf2 Ser-40 phosphorylation and 
protein stabilization as well as HO1 protein expression in the primary myocardiocytes (Fig. 
2H). OGDR-induced mitochondrial depolarization (Fig. 2I), ROS production (Fig. 2J) and lipid 
peroxidation (Fig. 2K) were significantly attenuated by CNTF in the primary cells. Together, 
CNTF activates Nrf2 signaling, inhibiting oxidative stress and programmed necrosis in 
myocardial cells.

Fig. 3. Nrf2 silencing or knockout abolishes CNTF-induced myocardial 
cytoprotection against OGDR. Stable H9c2 cells with the lentiviral Nrf2-
shRNA (“Nrf2-sh”) or the Nrf2-knockout-CRISPR/Cas9 construct (“Nrf2-
KO”), as well as the parental control cells (“Parental”), were treated 
with CNTF (25 ng/mL) for 3 h, mRNA (A) and protein (B) expression of 
listed genes were shown. Cells were pre-treated with CNTF (25 ng/mL) 
for 1 h, maintained under oxygen and glucose deprivation (OGD) for 
4 h, followed by 24 h of re-oxygenation. Afterwards, cell viability was 
tested by MTT assay (C); Cell death was examined by the LDH release 
assay (D). Expression of Nrf2 was quantified and normalized to the 
loading control Tubulin (B). Bars indicate standard deviation (SD, n=5). 
* p<0.05 vs. “Mock” cells. # p<0.05 vs. “Parental” cells. Each experiment 
was repeated three times and similar results were obtained.
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Nrf2 silencing or 
knockout abolishes 
C N T F - i n d u c e d 
m y o c a r d i a l 
c y t o p r o t e c t i o n 
against OGDR
In order to show 

that Nrf2 activation 
is required for CNTF-
induced myocardial 
c y t o p r o t e c t i o n 
against OGDR, 
genetic strategies 
were applied. Nrf2-
shRNA lentivirus was 
added to H9c2 cells. 
Puromycin was then 
added to select stable 
cells. Additionally, 
the Nrf2-knockout-
C R I S P R / C a s 9 
lentiviral construct 
(a gift from Dr [23].) 
was transfected to 
H9c2 cells to establish 
Nrf2-knockout cells. 
By performing the 
qPCR assay, we show 
that Nrf2 mRNA 
was significantly 
downregulated (over 
90%) by Nrf2 shRNA 
(Fig. 3A). Nrf2 mRNA 
was completely 
depleted in Nrf2-
knockout cells (Fig. 3A). Significantly, CNTF-induced mRNA expression of HO1 and NQO1 
genes were blocked in Nrf2-silenced or -knockout cells (Fig. 3A). CNTF-induced Nrf2 protein 
stabilization was reversed by Nrf2 shRNA or knockout as well (Fig. 3B). Importantly, CNTF 
failed to inhibit OGDR-induced viability reduction (Fig. 3C) and cell death (Fig. 3D) in Nrf2-
silenced or -knockout H9c2 cells. These results indicate that activation of Nrf2 is required for 
CNTF-induced cytoprotection against OGDR in H9c2 cells. Notably, in line with our previous 
findings [3, 5], OGDR-induced cytotoxicity was augmented in Nrf2-silenced or -knockout 
H9c2 cells (Fig. 3C and D), further supporting a cytoprotective function of Nrf2 in OGDR-
treated cells.

Akt activation mediates CNTF-induced Nrf2 activation and myocardial cytoprotection 
against OGDR
We studied the potential upstream mechanism of Nrf2 activation by CNTF. Akt could 

be a upstream signaling of Nrf2 via phosphorylating Nrf2 at Ser-40 [21, 23, 26, 29]. Here, 
we found that CNTF dose-dependently induced Akt activation in H9c2 cells (Fig. 4A). 
Phosphorylated-Erk1/2, another major downstream of CNTFR [9, 10], was increased 
following CNTF treatment as well (Fig. 4A). In the primary murine myocardiocytes, CNTF 
(25 ng/mL, 15 min) induced phosphorylations of Akt (at both Ser-473 and Thr-308) and 
Erk1/2 (Fig. 4B). Therefore, CNTF activates Akt and Erk signalings in myocardial cells.

Fig. 4. Akt activation mediates CNTF-induced Nrf2 activation and myocardial 
cytoprotection against OGDR. H9c2 myocardial cells (A) or primary murine 
myocardiocytes (B) with treated with CNTF at applied concentration for 
indicated time, expression of listed proteins in total cell lysates were shown. 
H9c2 cells were pretreated with MK2206 (10 μM), AZD5363 (250 nM) or 
LY294002 (1 μM) for 30 min, followed by CNTF (25 ng/mL) treatment for 
indicate time, expression of listed proteins in total cell lysates were shown 
(C); HO1 and NQO1 mRNA levels were tested as well (D); Cells were also 
maintained under oxygen and glucose deprivation (OGD) for 4 h, followed 
by 24 h of re-oxygenation. Afterwards, cell viability was tested by MTT assay 
(E); Cell death was examined by the LDH release assay (F). “Veh” stands for 
the vehicle control (0.1% DMSO). Bars indicate standard deviation (SD, n=5). 
# p<0.05 vs. “Veh” cells (D-F). Each experiment was repeated five times and 
similar results were obtained.
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To block Akt activation, Akt inhibitors were applied, including MK2206 [30, 31], AZD5363 
[32, 33] and LY294002 [34]. As shown, the Akt inhibitors completely blocked CNTF (25 ng/
mL, 15 min)-induced Akt activation (Fig. 4C). Consequently, Nrf2 Ser-40 phosphorylation by 
CNTF was blocked (Fig. 4C). Erk1/2 phosphorylation was not affected (Fig. 4C). Significantly, 
CNTF (25 ng/mL)-induced HO1 and NQO1 mRNA expression were largely inhibited by the 
Akt inhibitors (Fig. 4D). Functional assays showed that CNTF-induced anti-OGDR actions 
were almost nullified in by Akt inhibitors (Fig. 4E and F). Together, these results indicate 
that Akt activation mediates CNTF-induced Nrf2 Ser-40 activation and activation, protecting 
myocardial cells from OGDR.

Discussion

The cytoprotective function of CNTF in neuronal cells has been well-demonstrated [9-
11]. Intracerebral administration of CNTF or the CNTF analogs protected neurons in rodent 
and primate models of Huntington’s disease [35, 36]. CNTF activates downstream signaling 
cascades, including PI3K-Akt, Erk-MAPK and STAT3, which are essential for mediating its 
cytoprotective function [9-11]. The novel findings of this study are that CNTF and its receptor 
CNTFR are functionally expressed in established H9c2 myocardial cells and primary murine 
myocardiocytes. CNTF treatment in the myocardial cells induced activation of downstream 
signalings: PI3K-Akt and Erk-MAPK. Importantly, pretreatment of CNTF at only ng/mL 
concentrations significantly attenuated OGDR-induced viability reduction and death of 
myocardial cells. Thus, CNTF might be a novel and potent myocardial cytoprotective agent.

Inactivated Nrf2 associates with Keap1, leading to Cul3-dependent Nrf2 ubiquitination 
and proteasomal degradation [12, 13, 37]. Post-transcriptional modifications of Nrf2 are 
essential for its activation [14]. Nrf2 Ser-40 phosphorylation can induce Nrf2-Keap1 departure 
[38], enabling Nrf2 protein stabilization, accumulation, and nuclear translocation [21, 23, 26, 
29]. Our results showed that CNTF activated Akt signaling, serving as a upstream signaling 
for Nrf2 Ser-40 phosphorylation and activation. Akt blockage not only blocked Nrf2 Ser-40 
phosphorylation and activation, but also nullified CNTF-induced myocardial cytoprotection. 
Our results are consistent with recent findings. For example, Lee et al., demonstrated that 
PI3K-Akt mediated sulforaphane-induced Nrf2 activation [39]. Further, the study by Xu et 
al., showed that pyocyanin-induced Nrf2 activation is the downstream of PI3K-Akt [40]. Dr. 
Jiang’s group has shown that Salvianolic acid A (SalA) and 3H-1, 2-dithiole-3-thione (D3T) 
induced Akt-dependent Nrf2 Ser-40 phosphorylation and activation, protecting human 
retinal cells from oxidative stress [20, 21]. We conclude that CNTF activates Akt downstream 
Nrf2 signaling to protect myocardial cells from OGDR.

OGDR mainly activates mitochondrial necrosis pathway (“programmed necrosis”) in 
myocardial cells and other cells [3, 17, 18, 41-43]. OGDR will induce significant intracellular 
ROS production, which promotes p53 translocation to mitochondria, where it forms a 
complex with mitochondrial permeability transition pore components Cyp-D and ANT-1 [3, 
18, 42, 43]. Cyp-D-p53-ANT-1 complexation promotes mitochondrial depolarization, mPTP 
opening, and eventually cell necrosis (but not apoptosis) [3, 17, 18, 41-43]. Here, CNTF 
potently inhibited OGDR-induced ROS production and programmed necrosis, preventing Cyp-
D-p53-ANT-1 mitochondrial complexation and mitochondrial depolarization in myocardial 
cells. The blockage of mitochondrial programmed necrosis pathway by CNTF could explain 
its superior myocardial cytoprotective effect. The detailed mechanisms may warrant further 
studies.
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Conclusion

In summary, CNTF activates Akt-Nrf2 activation to protect myocardial cells from OGDR.
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