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Abstract
Decisions to allocate management resources should be underpinned by estimates of the impacts of bio-
logical invasions that are comparable across species and locations. For the same reason, it is important 
to assess what type of impacts are likely to occur where, and if such patterns can be generalised. In this 
paper, we aim to understand factors shaping patterns in the type and magnitude of impacts of a subset 
of alien grasses. We used the Generic Impact Scoring System (GISS) to review and quantify published 
impact records of 58 grass species that are alien to South Africa and to at least one other biogeographical 
realm. Based on the GISS scores, we investigated how impact magnitudes varied across habitats, regions 
and impact mechanisms using multiple regression. We found impact records for 48 species. Cortaderia 
selloana had the highest overall impact score, although in contrast to five other species (Glyceria maxima, 
Nassella trichotoma, Phalaris aquatica, Polypogon monspeliensis, and Sorghum halepense) it did not score 
the highest possible impact score for any specific impact mechanism. Consistent with other studies, we 
found that the most frequent environmental impact was through competition with native plant species 
(with 75% of cases). Socio-economic impacts were recorded more often and tended to be greater in 
magnitude than environmental impacts, with impacts recorded particularly often on agricultural and 
animal production (57% and 51% of cases respectively). There was variation across different regions and 
habitats in impact magnitude, but the differences were not statistically significant. In conclusion, alien 
grasses present in South Africa have caused a wide range of negative impacts across most habitats and 
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regions of the world. Reviewing impacts from around the world has provided important information for 
the management of alien grasses in South Africa, and, we believe, is an important component of manage-
ment prioritisation processes in general.

Keywords
alien grasses, environmental impact, GISS, impact assessment, impact magnitude, impact mechanism, 
socio-economic impact.

Introduction

Grasses (family Poaceae) are among the most introduced species around the world; 
they occur on every continent and in various habitat types (Linder et al. 2018, van 
Kleunen et al. 2015, Visser et al. 2016). Alien grasses are often introduced for their 
high economic value. They are the source for the most consumed staple foods in the 
world (cereal grains) (Prescott-Allen and Prescott-Allen 1990), pasturage for livestock 
in agriculture (Boval and Dixon 2012), energy through biofuels (Pimentel and Patzek 
2005), and they are used in alcoholic beverages such as beer and whisky (Solange et 
al. 2014). Alien grasses have also, however, been introduced to new areas as transport 
contaminants and stowaways. For example, a study by Whinam et al. (2005) found 
that the major source of alien grass (such as Agrostis stolonifera) introductions into sub-
Antarctic islands was the transport used for ship to shore food transfers.

Whether such introductions were accidental or deliberate, and regardless of the 
many benefits they provide, the introduction of alien grasses can result in invasions 
that cause substantial negative environmental and socio-economic impacts (Early et al. 
2016, D’Antonio and Vitousek 1992, Driscoll et al. 2014). Grasses such as Andropo-
gon gayanus have been reported to increase fire frequencies and intensity in fire-prone 
ecosystems (Rossiter-Rachor et al. 2004, Rossiter-Rachor et al. 2009, Setterfield et 
al. 2010). Arundo donax is known to change community structure, thereby causing 
habitat loss for birds and small mammals in the USA (Bell 1997). And in China, Avena 
fatua is reported to cause economic losses of US$500 million annually by invading 
agricultural land and reducing crop yields (Willenborg et al. 2005).

Less is known about how these impacts vary across different introduced ranges, 
but it has been suggested that some introduced ranges experience fewer recorded im-
pacts from alien grasses due to context-dependent factors (Hulme et al. 2013); e.g. the 
level of grass invasions might track variation in fire regimes, or might be an artifact of 
how well studied invasions are (Visser et al. 2016). Either way, impacts of alien grasses 
are most likely still increasing due to factors such as climate change and propagule 
pressure (Chuine et al. 2012, Fensham et al. 2013). We therefore need to understand 
these impacts and take precautionary measures in order to prevent or reduce them 
(Hulme 2003, 2006, Keller and Perrings 2011). Impact assessments are cost-effective 
tools used to estimate the impacts of alien species and help in the decision-making 
process during the prioritization of limited resources (Jeschke et al. 2014, Kumschick 
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et al. 2012, Kumschick and Richardson 2013). Impact assessments have also been 
used to try to identify factors that predict impacts. Studies have found that traits such 
as a high fecundity, a habitat generalist strategy, a wide native range, a large body size 
and a large clutch size are associated with high environmental impacts for mammals, 
birds, and amphibians (Kumschick et al. 2013, Measey et al. 2016), and traits such as 
height, life form and life history are associated with greater impacts for plant species 
(Pyšek et al. 2012, Rumlerová et al. 2016). However, traits have generally been much 
more successful in predicting invasion success than in predicting impact magnitude. 
Moreover, impact magnitude has been found to be independent of invasion success 
(Ricciardi and Cohen 2007).

Similar to the ‘invasive elsewhere’ strategy of predicting invasion (Gordon et al. 
2010), is the use of records of ‘impact elsewhere’ to quantify the potential impacts of 
alien species (Kumschick et al. 2015, Ricciardi 2003). This approach can be useful in 
predicting the impacts of species such as grasses with biased impact records, i.e. uneven 
research effort across their introduced ranges. This is because it allows species with 
limited information to be assessed, compared against other species, and be included in 
management strategies. Furthermore, the approach also facilitates the search for pat-
terns related to the impact mechanisms and magnitudes, which can ultimately lead to 
a more predictive understanding of invasions.

Here we assess the environmental and socio-economic impacts of selected alien 
grasses occurring in South Africa by consolidating their impact records across their 
introduced ranges (e.g. see Kumschick et al. 2015 for examples of this for alien plants 
and animals in Europe, and Measey et al. 2016 for amphibians). We do this with the 
aim of providing quantitative estimates in order to determine which alien grasses have 
the greatest impacts, and to therefore assist decision makers when prioritising which 
alien grasses to manage. Furthermore, in order to improve our understanding of the 
likely impacts, we assess which factors contribute to an increased magnitude of impact 
in alien grasses by investigating habitats impacted by the species across different re-
gions and determining the mechanisms through which impacts occur.

Methods

Species selection

There are approximately 256 alien grasses introduced into South Africa (Visser et al. 
2017). Of these, we assessed impacts for the 58 species that occur as aliens in at least 
one of the other following regions: Australia, Chile, Europe or the USA. We adopted 
this approach because: (i) there is a limited number of studies of grass impacts in 
South Africa; (ii) these regions have a relatively large literature on alien grasses; and (iii) 
the regions are assumed to be representative of different major biogeographical realms 
across the world (Visser et al. 2016).
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Literature search

We searched for relevant literature on the impacts caused by the selected alien grasses up 
to June 2016 using the Web of Science, Google Scholar, as well as biological invasion 
websites and databases such as Centre for Agriculture and Biosciences International 
(CABI) Invasive Species Compendium (www.cabi.org/isc), Invasive Species Specialist 
Group (ISSG) Global Invasive Species Database (www.iucngisd.org/gisd), Hawaiian 
Ecosystems at Risk project (HEAR) (www.hear.org), California Invasive Plant Council 
Inventory (www.cal-ipc.org). The grass species’ scientific binomial names were used as 
search terms. We used synonyms and previous species names obtained from the Inte-
grated Taxonomic Information System (ITIS) (www.itis.gov) as search terms for spe-
cies with no literature record. We then selected relevant publications from the search 
results based on the titles and abstract content.

We used primary literature when possible, otherwise, we referred to the literature’s 
reference list to acquire the cited literature, and the full reference to the cited literature 
was searched in Google Scholar. If we were still unable to access the primary literature, 
we noted this and recorded the primary literature as it is cited by the secondary source.

A total of 1300 published sources including >100 websites and databases were 
reviewed; 352 published references and 98 websites and databases were considered for 
the impact assessment (Appendix 1).

Impact scoring

Different methods have been developed to quantify the environmental and socio-eco-
nomic impacts of alien species, with recent notable schemes including the Environ-
mental Impact Classification for Alien Taxa (EICAT) (Hawkins et al. 2015) and the 
Socio-Economic Impact Classification for Alien Taxa (SEICAT) (Bacher et al. 2018). 
In this study, however, we chose to use the Generic Impact Scoring System (GISS) 
(Nentwig et al. 2016) (see Hagen and Kumschick 2018 for a comparison of the EI-
CAT, SEICAT, and GISS schemes) as the GISS has been used widely to assess impacts 
of different species, and we wanted to relate our results with other previous assess-
ments. The GISS classifies impacts into two major classes, namely (1) environmental 
and (2) socio-economic, with six impact mechanisms assigned for each impact class: 
(1.1) impacts on native plants or vegetation through mechanisms other than competi-
tion; (1.2) impacts on animals through predation, parasitism, or intoxication; (1.3) 
impacts on native species through competition; (1.4) impacts through transmission 
of diseases or parasites to native species; (1.5) impacts through hybridisation; (1.6) 
impacts on ecosystems (which includes changes in nutrient pools and fluxes, habi-
tat modifications and changes in disturbance regimes); (2.1) impacts on agricultural 
production; (2.2) animal production; (2.3) forestry production; (2.4) human health; 
(2.5) human infrastructure and administration; and (2.6) human social life (Nentwig 
et al. 2016). For each impact mechanism a six-point ranked scale is used, ranging 
from zero (no impact detectable) to five (highest impact possible at a site) (Kumschick 

http://www.cabi.org/isc
http://www.iucngisd.org/gisd
http://www.hear.org
http://www.cal-ipc.org
http://www.itis.gov
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et al. 2015). The GISS contains definitions and descriptions for the impact mecha-
nisms and the impact scores within them. We assigned an impact mechanism and 
score to every recorded impact obtained according to the definitions and descriptions 
of the GISS. Scores can be summed over mechanisms to get a total score per species, 
with a maximum overall impact score of 60 (12 categories * a maximum impact score 
of 5 in each category—see details on the scoring system in Kumschick et al. 2015, 
Nentwig et al. 2016). In this study, we used the maximum impact score recorded per 
mechanism of each species for both environmental and socio-economic impacts to 
rank species (see Table 1). This method of aggregating only the maximum impacts per 
species per mechanism was used by Kumschick et al. (2015); we also adopted it in 
order to make our results comparable.

Because scores are based on published research, species that receive more research at-
tention might be expected to have higher scores (Pyšek et al. 2008). Therefore, we tested 
the relationship between the species’ overall impact scores and the number of published 
papers used per species using a Pearson correlation test (Kumschick et al. 2017). We also 
tested whether there is a correlation between the species’ overall and maximum impact 
score in any one impact mechanism using a Kendall’s tau correlation test.

Impacts across habitat types and regions

For each impact reference, we recorded the habitats where the impacts were said to occur, 
using the habitats classified according to the first level of the International Union for the 
Conservation of Nature (IUCN) Red List Habitat Classification Scheme (Version 3.1) 
(www.iucnredlist.org). In cases where the study was not in a natural habitat (e.g. green-
house or laboratory) or the habitat was not stated, we recorded the habitat as ‘not specified’.

We also noted the country where the impacts occurred for each impact recorded 
and determined whether the grass species was native or alien in that specific country. 
Impact records from the native range were excluded from further analyses. We did, 
however, retain cases where the country was not specified but the grass species was 
referred to as “alien”, “introduced”, or “non-native”. We assigned each record to one of 
eight regions based on the location of the country in which the impacts were recorded. 
We used a Kendall’s tau test to determine the correlation between the maximum im-
pact of alien grasses in South Africa and the maximum impact elsewhere.

Statistical analysis

In contrast to the approach taken above to rank species, when testing the relationship 
between impact and habitats and region, we used the raw data on impact scores (i.e. 
each impact record was considered as a separate datum). The impact scores analysed 
here are therefore ordinal variables in which the scores are ordered (but which closely 
resemble a logarithmic scale). As such, we used a cumulative link mixed-effects model 
in the R package ‘ordinal’ (Christensen 2015) to test whether habitats and regions influ-

http://www.iucnredlist.org
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Table 1. Grasses alien to South Africa and one other region (Chile, Europe, Australia and the USA) 
ranked according to impacts. The numbers under environmental and socio-economic impacts are the 
respective sums of the maximum impact scores per impact mechanism of a species. Species that score a 
maximum of 5 in any one impact mechanism are highlighted in bold. NA indicates no impact found for 
that species, hence not applicable. Total impact represents the overall sum of the environmental and socio-
economic impacts. Species marked with an asterisk* have impacts recorded in South Africa. Literature 
used and detailed maximum scores per mechanism are available in the Supporting Information (Appendix 
S1 and Table S1).

Species name Environmental 
impacts

Socio-economic 
impacts Total impact

Cortaderia selloana* 7 11 18
Arundo donax* 10 7 17
Avena fatua* 10 7 17
Elymus repens* 10 7 17
Festuca arundinacea 8 9 17
Nassella trichotoma* 6 9 15
Sorghum halepense* 6 8 14
Bambusa vulgaris 8 5 13
Bromus tectorum* 7 8 13
Cortaderia jubata 7 8 13
Paspalum notatum 3 10 13
Bromus rubens* 9 3 12
Glyceria maxima* 4 8 12
Brachypodium distachyon 9 2 11
Vulpia myuros 2 9 11
Holcus lanatus 7 3 10
Hordeum murinum* 7 3 10
Paspalum dilatatum 2 8 10
Phalaris aquatica 5 5 10
Agrostis stolonifera* 6 3 9
Arrhenatherum elatius 5 4 9
Bromus rigidus 2 7 9
Dactylis glomerate 3 6 9
Hordeum jubatum 4 5 9
Poa annua* 5 4 9
Polypogon monspeliensis 2 7 9
Vulpia bromoides 5 4 9
Bromus madritensis 5 3 8
Lolium multiflorum 4 4 8
Aira caryophyllea 4 3 7
Avena barbata 6 1 7
Bromus catharticus* 6 1 7
Lolium perenne 2 5 7
Poa pratensis 5 2 7
Briza maxima 6 NA 6
Bromus diandrus NA 6 6
Digitaria sanguinalis 3 3 6
Lolium temulentum 2 4 6
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ence impact magnitude. Since we found multiple studies that assess the same impacts 
for the same species in the same region or habitat, we included species identity, as well 
as mechanism nested in impact type (environmental or socio-economic) as random fac-
tors and impact mechanism, habitat type, and region as fixed effects. We also tested a 
model in which mechanism nested within impact type was included as a fixed effect but 
found this made no difference to the results. We did not investigate interactions among 
predictors because of the limited number of observations. To determine the goodness 
of fit for the model we calculated pseudo R2 by fitting a null model with no predic-
tor variables and compared it against the full model using the ‘nagelkerke’ function 
within the R package ‘rcompanion’ (Mangiafico 2016). We tested the significance of 
fixed effects using analysis of deviance of single-term deletion models tested against the 
full model using a chi-squared distribution from the ‘drop1’ command. We used least-
squares means with P values adjusted using the Tukey method, to determine significant 
differences between the levels of each predictor (mechanism, habitat and region).

All statistical analyses were performed using R version 3.4.4 (R Core Team, 2018).

Results

Grasses ranked by impact

Of the 58 alien grasses selected for impact assessment, we found records of impact 
for 48 species, i.e. 10 species (Suppl. material 1: Table S1) were data deficient with 
no record of impact. The species with the highest overall impact score was Cortaderia 
selloana (impact magnitude = 18), followed by Arundo donax, Avena fatua, Elymus 
repens, and Festuca arundinacea (all with impacts of 17, Table 1). However, a different 
set of species scored the maximum possible impact of five on any one particular impact 
mechanism, namely, Glyceria maxima (animal production), Nassella trichotoma (ani-
mal production), Phalaris aquatica (predation or parasitism or intoxication and animal 
production), Polypogon monspeliensis (animal production), and Sorghum halepense (ag-
ricultural production) (see Suppl. material 1: Table S1).

Species name Environmental 
impacts

Socio-economic 
impacts Total impact

Paspalum urvillei 4 2 6
Pennisetum setaceum* 5 1 6
Cenchrus spinifex 2 2 4
Cynosurus echinatus 4 NA 4
Paspalum quadrifarium* 3 1 4
Avena sterilis NA 3 3
Bromus hordeaceus 3 NA 3
Oryza sativa 2 NA 2
Panicum miliaceum NA 2 2
Pennisetum villosum* 1 1 2
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We used a total of 352 published literature sources; however, the literature was highly 
skewed, ranging from one to 23 publications per species. Some literature sources report-
ed on more than one species. We found a significant positive correlation (tau = 0.48, P = 
0.006) between the overall impact scores per species and the number of publications used 
to score the impacts. However, this potentially only affects the relative rankings of species 
according to impact scores (Table 1), because for the mixed effect model analyses, we did 
not aggregate maximum records of the species and used each paper as a separate record.

Impact magnitudes across mechanisms

We found that three-quarters (36 out of 48) of alien grass species have records of causing 
environmental impacts through competition with native species, and half (24 out of 48) 
of the species have records of causing impacts on ecosystems (Figure 1). We found the 
fewest records and the lowest overall impact through the ‘plants or vegetation’ mecha-
nism, which according to the GISS includes allelopathy or the release of plant exudates 
(Nentwig et al. 2016). Most socio-economic impacts are caused through agricultural 
and animal production, with 29 and 26 cases respectively, while forestry production 
was represented by few species (Figure 1). The maximum impact possible (5), was re-
corded for impacts on animals through predation or parasitism, animal production and 
agricultural production. When comparing scores between impact types, greater impact 
magnitudes of 4 and 5 were obtained for socio-economic than environmental impacts.

The effects of impact mechanisms, impacted regions, and habitat types on im-
pact magnitude

We found that impact mechanism is the only statistically significant predictor of im-
pact magnitude (P < 0.001, Table 2). Results from the model show that alien grasses 
have a lower impact magnitude through the transmission of diseases or parasites to 
native species and greater impacts on native animals through food availability or palat-
ability and intoxication (Figure 2). There is a trend towards greater impact magnitude 
in Antarctica (Suppl. material 1: Figure S1); however, differences across regions are 
not significant (P = 0.057, Table 2). We found nine habitats impacted by alien grasses; 

Table 2. Cumulative link mixed effects model estimating the effect of habitat, region and impact mecha-
nism on overall impact magnitude of the studied alien grasses (m1). The significance of predictor variables 
was determined using single-term (predictor) deletion models tested against the full model. Models were 
run with species identity, and mechanism nested within mechanism type (environmental or socio-eco-
nomic) as random factors. AIC is the Alkaike’s Information Criterion, and P is the chi-squared p-value.

Model Df AIC P
m1 2203.4
Habitats 9 2193.8 0.49
Regions 8 2202.5 0.06
Mechanisms 11 2219.3 < 0.001
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Figure 1. Number of alien grass species per impact mechanism for each impact magnitude. On the x-axis 
are the GISS environmental and socio-economic impact mechanisms, and on the y-axis are the impact 
scores according to GISS. The size of the points represents the number of species which had the corre-
sponding maximum recorded impact score for that mechanism (out of the 48 species with impact records). 
See Suppl. material 1: Table S1 for the full details.

Figure 2. The impact magnitude of the 48 studied alien grasses across different impact mechanisms. On the 
x-axis are the least-squares means of the impact scores as derived from a cumulative link mixed effects model, 
and on the y-axis are the GISS impact mechanisms with the number of species in brackets. The points repre-
sent the impact magnitudes and the error bars represent 95% confidence intervals. Letters on the right side 
of the confidence intervals are level groupings indicating significant differences among the mechanisms (level 
groupings with the same letters are not significantly different, comparisons are Tukey adjusted).
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Figure 3. Comparison between impact magnitude of alien grasses in South Africa and elsewhere in the 
world. The values 1 to 5 on the x- and y-axis represent the GISS impact magnitudes and NA indicates 
no impact record found. The size of the points represents the frequency of species with impacts records.

however,as with "region" as a predictor of impact magnitude, habitat type was also not 
a significant predictor (P = 0.49, Table 2), and differences among habitats were not 
statistically significant (Suppl. material 2: Figure  S2). Including mechanism nested 
within impact type (environmental or socio-economic) as a random effect provided no 
improvement in model fit (Suppl. material 1: Table S2). However, we kept this nested 
random effect in the analysis because it accounts and corrects for non-independence of 
the observations and reflects the actual design of this study.

Impact of alien grasses in South Africa versus elsewhere

We found that only 16 of the 58 alien grasses had recorded impacts in South Africa, 
13 for inland and three for the offshore islands (Table 1). These impacts were mostly 
lower than elsewhere, with the exception of Nassella trichotoma and Hordeum murinum 
(Figure 3). However, there is no correlation (τ = 0.14, P = 0.28) between impacts of 
alien grasses in South Africa and those recorded elsewhere in the world.

Discussion

This study is the first environmental and socio-economic impact assessment to focus 
specifically on alien grasses. Using the GISS we were able to quantify the impacts of 
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alien grasses using information from across the globe. This study, therefore, provides a 
useful overview of the literature on evidence-based impacts of alien grasses and high-
lights potential risks to South Africa. Furthermore, it shows gaps in the available litera-
ture as some species could not be assessed due to a lack of impact studies.

We found that alien grasses generally scored higher for socio-economic than en-
vironmental impacts. Grass impact scores were particularly high for agricultural and 
animal production. This might reflect the large number of agricultural weeds that are 
grasses (Daehler 1998) or their initial introduction for agricultural purposes (Hancock 
2012). Alien grasses scored the lowest for impacts caused via transmission of diseases 
or parasites to native species, with a maximum score of 2, which represents a minor 
impact (Nentwig et al. 2016), while the frequency under this mechanism was larger. 
On the contrary, mechanisms with scarce literature, such as impacts on native animals, 
obtained higher impact scores. This could be because impacts through the transmis-
sion of disease or parasites between plant species are not readily observed in the wild, 
most of the literature under this mechanism is form small-scale laboratory studies 
which do not report impacts on the overall population.

Despite most grasses not having very high overall impact scores compared to other 
species (e.g., Kumschick et al. 2015), many alien grasses scored high across the full 
range of impact mechanisms (i.e. alien grasses can cause a wide range of environmental 
and socio-economic impacts) and so had high total impact scores. For example, Corta-
deria selloana did not have any individual mechanism score over 3 but has the highest 
overall score (Table 1) due to the many different mechanisms through which it causes 
impacts. In contrast, Polypogon monspeliensis and Phalaris aquatica scored the highest 
impact (5) in certain impact mechanisms, but their overall score is lower. This trend is 
not observed in other studies, such as the one conducted on alien aquatics by Laverty 
et al. (2015), where the species with the highest overall score also obtained an impact 
score of 5 for two different mechanisms. Grasses thus provide an interesting case to 
explore whether we should be more concerned with invasive species that cause a range 
of different types of impacts or invasive species that only cause a few types of impacts 
but with greater magnitude.

Grasses are one of the most cosmopolitan plant families in the world and are 
present in almost all terrestrial habitats. They also impact a wide range of habitats, 
as demonstrated in this study. Knowledge about which habitats are most severely 
impacted by alien grasses is essential for their management. Grasses can cause rapid 
and dramatic transformation of non-grassy habitats into grass-dominated communi-
ties. For example, Bromus rubens and B. madritensis have caused widespread trans-
formation of shrubby systems in the Mojave Desert (DeFalco et al. 2007, Jurand et 
al. 2013). With regards to regions, we found that Antarctica (sub-Antarctic islands 
mostly) on average has the highest alien grass impact scores. Grasses such as Agrostis 
stolonifera reduce moss diversity, liverwort populations, and replace the rosaceous 
dwarf shrub (Acaena magellanica) with dense grassland patches on Marion Island 
(Gremmen et al. 1998). It is not clear, however, whether this trend is due to differ-
ences in sampling effort or a greater susceptibility of sub-Antarctic islands to impacts 
than the mainland (Hagen and Kumschick 2018).
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However, neither habitat nor region were found to be significant predictors of im-
pact magnitude. This could suggest that the impacts are the same across habitats and 
regions, but the lack of signal likely also reflects the low sample sizes for most habitat 
types and some regions. Furthermore, it will be interesting to repeat this study based 
on a more representative global sample of species (the bias in this current analysis to-
wards grasses alien to South Africa was simply for applied reasons).

When we compare impacts scores of alien grasses with impact scores of studies that 
assessed other plant taxa (Kumschick et al. 2015, Rumlerová et al. 2016), our results 
also show that the competition with native plant species is the most frequent mecha-
nism through which alien grasses cause impacts. Four species from our list were previ-
ously assessed in those studies (Kumschick et al. 2015, Rumlerová et al. 2016), and our 
results were similar to them for two of the species (Arundo donax and Paspalum dilatat-
um), each with a difference of less than 5 between the overall impact scores. However, 
we obtained higher overall impacts than Kumschick et al. (2015) and Rumlerová et al. 
(2016) for the other two species (Cortaderia selloana and Hordeum jubatum), each with 
a difference of 9 and 8 respectively. These differences can be explained by the broader 
search criteria applied; for example, authors of the above-mentioned studies used key-
words such as ‘‘invas* or exot* or weed*’’ in addition to the species name, while we only 
used the species name as a search term.

Although impacts of alien grasses are poorly studied when compared to other species, 
such as birds and mammals, we were able to find impact records for more than 80% of the 
grass species selected for the assessment, which is higher than for other species, such as am-
phibians (41.3%) (Measey et al. 2016). The average number of papers (5.7) used to score 
impacts of alien grasses across the globe was also higher than the amphibians and other 
species (Kumschick et al. 2015, Measey et al. 2016). Similar to the mammals and other 
plants (Kumschick and Nentwig 2010, Kumschick et al. 2015), alien grasses were also re-
ported to cause impact across all impact mechanisms. This might be because grasses occur 
across a wide range of sectors and habitats, which allows them to exert impact across all 
mechanisms. When prioritising management of all alien species, our list can be compared 
to other assessments conducted for other species, such as birds, amphibians, mammals, and 
aquatic species (Kumschick and Nentwig 2010, Laverty et al. 2015, Measey et al. 2016, 
Nentwig et al. 2010). However, it is important to note that impact assessments of some of 
those species are based on impacts recorded only in Europe and not globally, which may 
cause a bias to the overall impact scores. More impact studies are still needed for alien grass 
species, especially when it comes to species with no impact records across all introduced 
ranges, but with taxonomic characteristics of invaders (such as Bambusa balcooa, Canavan 
et al. 2016). It will be interesting to see if the findings of Canavan et al. (2018a), that bam-
boos have similar impacts in their native and alien ranges are the same for other grasses or 
perhaps only other tall-statured grasses (Canavan et al. 2018b). However, we suspect there 
are qualitative differences between the impacts in the native and alien ranges, for the grasses 
studied here, as the impacts observed are not primarily a response to human disturbance.

Two species were scored as causing very high impacts (4 or 5) outside of South Africa, 
but only low levels of impact (1 or 2) in South Africa. For instance, Glyceria maxima obtained 
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a score of 5 because it is associated with the death of livestock through poisoning in Australia 
(Barton et al. 1983), but such impacts have not (yet) been recorded in South Africa. This 
can flag species that could potentially cause high impacts in South Africa and which should 
therefore be monitored, or preventative measures put in place to limit such impacts occur-
ring in future. In most other cases the impact elsewhere was either the same or slightly higher 
than that recorded in South Afica, except for Agrostis stolonifera, Hordeum murinum, and 
Nassella trichotoma. This included two species (Nassella trichotoma and Hordeum murinum) 
whose impacts in South Africa were one level higher than elsewhere. For example, Nassella 
trichotoma obtained a score of 5 in South Africa and 4 elsewhere (in Australia) for impacts on 
animal production by reducing livestock carrying capacity and pasture production (Klepeis 
et al. 2009). The lack of correlation between impacts found in South Africa and elsewhere 
should, however, be assessed with caution – it is indicative of a research gap. Records of im-
pacts are generally fewer in South Africa (with a maximum of five sources per species and an 
average of 1.9) and even lacking for most species. Alternatively, it could indicate that there is 
an impact debt (Rouget et al. 2016), i.e. species have not reached their full impact potential 
in South Africa (yet), as species with more information in South Africa did not show higher 
similarities in impact magnitudes to elsewhere. Finally, South Africa might be more resilient 
to grass invasions, and impacts are actually lower here (Visser et al. 2017). These hypotheses 
warrant more research and can only be disentangled once more data become available.

In summary, the lack of statistically significant differences in impact magnitudes 
across habitats and regions for alien grasses suggests that impact in this group is not 
habitat or region specific as in other groups (cf. Hulme et al. 2013, Pyšek et al. 2011). As 
such, we recommend that different habitats should be equally considered for alien grass 
impact management. While we recommend that impact scoring schemes, such as the 
one used in this study, should be incorporated in the decision-making processes for alien 
species management, we caution that extrapolations from other invaded regions indicate 
potential and not actual impacts.

Acknowledgements

We acknowledge the financial support from the Department of Environmental Affairs 
through their funding of the South African National Biodiversity Institute. We also ac-
knowledge the DST-NRF Centre of Excellence for Invasion Biology for their support.

References

Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J, Jeschke JM, Jones G, Keller R, Kenis 
M, Kueffer C, Martinou AF, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Richardson DM, 
Roy HE, Saul WC, Scalera R, Vilà M, Wilson JRU, Kumschick S (2018) Socio-economic 
impact classification of alien taxa (SEICAT). Methods in Ecology and Evolution 9: 159–
168. https://doi.org/10.1111/2041-210X.12844

https://doi.org/10.1111/2041-210X.12844


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)32

Barton NJ, McOrist S, McQueen DS, O’Connor PF (1983) Poisoning of cattle by Glyceria maxi-
ma. Australian Veterinary Journal 60: 220–221. https://doi.org/10.1111/j.1751-0813.1983.
tb09591.x

Bell GP (1997) Ecology and management of Arundo donax, and approaches to riparian habitat 
restoration in Southern California. In: Brock J (Ed.) Plant Invasions: Studies from North 
America and Europe. Backhuys, Leiden, 103–113.

Boval M, Dixon RM (2012) The importance of grasslands for animal production and other 
functions: a review on management and methodological progress in the tropics. Animal 6: 
748–762. https://doi.org/10.1017/S1751731112000304

Canavan S, Kumschick S, Le Roux JJ, Richardson D, Wilson JRU (2018a) Does origin mat-
ter for impacts of weedy plants? Not for bamboos. Plants, People, Planet. http://dx.doi.
org/10.1002/ppp3.5

Canavan S, Meyerson LA, Packer JG, Pyšek P, Maurel N, Lozano V, Richardson DM, Brundu 
G, Canavan K, Cicatelli A, Čuda J, Dawson W, Essl F, Guarino F, Guo W-Y, Kleunen M 
v, Kreft H, Lambertini C, Pergl J, Skálová H, Soreng RJ, Visser V, Vorontsova MS, Weigelt 
P, Winter M, Wilson JRU (2018b) Tall-statured grasses: a useful functional group for inva-
sion science. Biological Invasions. https://doi.org/10.1007/s10530-018-1815-z.

Canavan S, Richardson DM, Visser V, Roux JJ Le, Vorontsova MS, Wilson JRU (2016) The 
global distribution of bamboos: assessing correlates of introduction and invasion. AoB 
PLANTS 9(1): plw078. https://doi.org/10.1093/aobpla/plw078

Christensen RHB (2015) Package “ordinal” Title Regression Models for Ordinal Data. Available 
from: https://cran.r-project.org/web/packages/ordinal/ordinal.pdf [accessed October 2, 2016]

Chuine I, Morin X, Sonié L, Collin C, Fabreguettes J, Degueldre D, Salager J-L, Roy J (2012) 
Climate change might increase the invasion potential of the alien C4 grass Setaria parviflo-
ra (Poaceae) in the Mediterranean Basin. Diversity and Distributions 18: 661–672. https://
doi.org/10.1111/j.1472-4642.2011.00880.x

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, 
and global change. Annual Review of Ecology and Systematics 23: 63–87. https://doi.
org/10.1146/annurev.es.23.110192.000431

Daehler CC (1998) The taxonomic distribution of invasive angiosperm plants: Ecological in-
sights and comparison to agricultural weeds. Biological Conservation 84: 167–180. htt-
ps://doi.org/10.1016/S0006-3207(97)00096-7

DeFalco LA, Fernandez GCJ, Nowak RS (2007) Variation in the establishment of a non-native 
annual grass influences competitive interactions with Mojave Desert perennials. Biological 
Invasions 9: 293–307. https://doi.org/10.1007/s10530-006-9033-5

Driscoll DA, Catford JA, Barney JN, Hulme PE, Inderjit, Martin TG, Pauchard A, Pyšek P, 
Richardson DM, Riley S, Visser V (2014) New pasture plants intensify invasive species 
risk. Proceedings of the National Academy of Sciences of the United States of America 111: 
16622–16627. https://doi.org/10.1073/pnas.1409347111

Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz 
ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien 
species in the twenty-first century and national response capacities. Nature Communica-
tions 7: 12485. https://doi.org/10.1038/ncomms12485

https://doi.org/10.1111/j.1751-0813.1983.tb09591.x
https://doi.org/10.1111/j.1751-0813.1983.tb09591.x
https://doi.org/10.1017/S1751731112000304
http://dx.doi.org/10.1002/ppp3.5
http://dx.doi.org/10.1002/ppp3.5
https://doi.org/10.1007/s10530-018-1815-z
https://doi.org/10.1093/aobpla/plw078
https://cran.r-project.org/web/packages/ordinal/ordinal.pdf
https://doi.org/10.1111/j.1472-4642.2011.00880.x
https://doi.org/10.1111/j.1472-4642.2011.00880.x
https://doi.org/10.1146/annurev.es.23.110192.000431
https://doi.org/10.1146/annurev.es.23.110192.000431
https://doi.org/10.1016/S0006-3207(97)00096-7
https://doi.org/10.1016/S0006-3207(97)00096-7
https://doi.org/10.1007/s10530-006-9033-5
https://doi.org/10.1073/pnas.1409347111
https://doi.org/10.1038/ncomms12485


Global environmental and socio-economic impacts of selected alien grasses... 33

Fensham RJ, Donald S, Dwyer JM (2013) Propagule pressure, not fire or cattle grazing, pro-
motes invasion of buffel grass Cenchrus ciliaris Sheppard. Journal of Applied Ecology 50: 
138–146. https://doi.org/10.1111/1365-2664.12009

Gordon DR, Mitterdorfer B, Pheloung PC, Ansari S, Buddenhagen C, Chimera C, Daehler 
CC, Dawson W, Denslow JS, LaRosa AM, Nishida T, Onderdink DA, Panetta FD, 
Pysek P, Randall RP, Richardson MD, Tshidada NJ, Virtue JG, Williams PA (2010) 
Guidance for addressing the Australian weed risk assessment questions. EUROPE 
View project. Plant Production Quarterly 25: 56–74. http://scholar.sun.ac.za/han-
dle/10019.1/46560

Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis 
stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Bio-
logical Conservation 85: 223–231. https://doi.org/10.1016/S0006-3207(97)00178-X

Hagen BL, Kumschick S (2018) The relevance of using various scoring schemes revealed by 
an impact assessment of feral mammals. NeoBiota 38: 35–75. https://doi.org/10.3897/
neobiota.38.23509

Hancock J (2012) Plant evolution and the origin of crop species. 3rd ed. CABI, Nosworthy way, 
Wellingford, Oxfordshire, UK, 244 pp. https://doi.org/10.1079/9781845938017.0000

Hawkins CL, Bacher S, Essl F, Hulme PE, Jeschke JM, Kühn I, Kumschick S, Nentwig W, 
Pergl J, Pyšek P, Rabitsch W, Richardson DM, Vilà M, Wilson JRU, Genovesi P, Black-
burn TM (2015) Framework and guidelines for implementing the proposed IUCN Envi-
ronmental Impact Classification for Alien Taxa (EICAT). Diversity and Distributions 21: 
1360–1363. https://doi.org/10.1111/ddi.12379

Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation 
war? Oryx 37: 178–193. https://doi.org/10.1017/S003060530300036X

Hulme PE (2006) Beyond control: Wider implications for the management of biological 
invasions. Journal of Applied Ecology 43: 835–847. https://doi.org/10.1111/j.1365-
2664.2006.01227.x

Hulme PE, Pyš Ek P, Ch V, Ík J, Pergl J, Schaffner U, Vilà M (2013) Bias and error in under-
standing plant invasion impacts. Trends in Ecology & Evolution 28: 212–218. https://doi.
org/10.1016/j.tree.2012.10.010

Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, 
Kühn I, Mrugała A, Pergl J, Pyšek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, 
Vilà M, Winter M, Kumschick S (2014) Defining the impact of non-native species. Con-
servation Biology 28: 1188–1194. https://doi.org/10.1111/cobi.12299

Jurand BS, Abella SR, Suazo AA (2013) Soil seed bank longevity of the exotic annual grass Bro-
mus rubens in the Mojave Desert, USA. Journal of Arid Environments 94: 68–75. https://
doi.org/10.1016/j.jaridenv.2013.03.006

Keller RP, Perrings C (2011) International Policy Options for Reducing the Environmen-
tal Impacts of Invasive Species. BioScience 61: 1005–1012. https://doi.org/10.1525/
bio.2011.61.12.10

Klepeis P, Gill N, Chisholm L (2009) Emerging amenity landscapes: Invasive weeds and land 
subdivision in rural Australia. Land Use Policy 26: 380–392. https://doi.org/10.1016/j.
landusepol.2008.04.006

https://doi.org/10.1111/1365-2664.12009
http://scholar.sun.ac.za/handle/10019.1/46560
http://scholar.sun.ac.za/handle/10019.1/46560
https://doi.org/10.1016/S0006-3207(97)00178-X
https://doi.org/10.3897/neobiota.38.23509
https://doi.org/10.3897/neobiota.38.23509
https://doi.org/10.1079/9781845938017.0000
https://doi.org/10.1111/ddi.12379
https://doi.org/10.1017/S003060530300036X
https://doi.org/10.1111/j.1365-2664.2006.01227.x
https://doi.org/10.1111/j.1365-2664.2006.01227.x
https://doi.org/10.1016/j.tree.2012.10.010
https://doi.org/10.1016/j.tree.2012.10.010
https://doi.org/10.1111/cobi.12299
https://doi.org/10.1016/j.jaridenv.2013.03.006
https://doi.org/10.1016/j.jaridenv.2013.03.006
https://doi.org/10.1525/bio.2011.61.12.10
https://doi.org/10.1525/bio.2011.61.12.10
https://doi.org/10.1016/j.landusepol.2008.04.006
https://doi.org/10.1016/j.landusepol.2008.04.006


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)34

Kumschick S, Nentwig W (2010) Some alien birds have as severe an impact as the most ef-
fectual alien mammals in Europe. Biological Conservation 143: 2757–2762. https://doi.
org/10.1016/j.biocon.2010.07.023

Kumschick S, Bacher S, Dawson W, Heikkilä J, Sendek A, Pluess T, Robinson T, Kühn I (2012) 
A conceptual framework for prioritization of invasive alien species for management ac-
cording to their impact. NeoBiota 15: 69–100. https://doi.org/10.3897/neobiota.15.3323

Kumschick S, Bacher S, Blackburn TM (2013) What determines the impact of alien birds and 
mammals in Europe? Biological Invasions 15: 785–797 https://doi.org/10.1007/s10530-
012-0326-6

Kumschick S, Richardson DM (2013) Species-based risk assessments for biological inva-
sions: Advances and challenges. Diversity and Distributions 19: 1095–1105. https://doi.
org/10.1111/ddi.12110

Kumschick S, Bacher S, Evans T, Marková Z, Pergl J, Pyšek P, Vaes-Petignat S, van der Veer 
G, Vilà M, Nentwig W (2015) Comparing impacts of alien plants and animals in Europe 
using a standard scoring system. Journal of Applied Ecology 52: 552–561. https://doi.
org/10.1111/1365-2664.12427

Kumschick S, Measey GJ, Vimercati G, de Villiers FA, Mokhatla MM, Davies SJ, Thorp CJ, 
Rebelo AD, Blackburn TM, Kraus F (2017) How repeatable is the Environmental Impact 
Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments 
of amphibians. Ecology and Evolution 7: 2661–2670. https://doi.org/10.1002/ece3.2877

Laverty C, Nentwig W, Dick JTA, Lucy FE (2015) Alien aquatics in Europe: assessing the relative en-
vironmental and socioeconomic impacts of invasive aquatic macroinvertebrates and other taxa. 
Management of Biological Invasions 6: 341–350. https://doi.org/10.3391/mbi.2015.6.4.03

Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM (2018) Global grass 
(Poaceae) success underpinned by traits facilitating colonization, persistence and habitat 
transformation. Biological Reviews 93: 1125–1144. https://doi.org/10.1111/brv.12388

Mangiafico S (2016) Functions to Support Extension Education Program Evaluation [R pack-
age rcompanion version 1.1.3]. Available from: https://cran.r-project.org/web/packages/
rcompanion/index.html

Measey GJ, Vimercati G, de Villiers FA, Mokhatla M, Davies SJ, Thorp CJ, Rebelo AD, Kum-
schick S (2016) A global assessment of alien amphibian impacts in a formal framework. 
Diversity and Distributions 22: 970–981. https://doi.org/10.1111/ddi.12462

Nentwig W, KÜhnel E, Bacher S (2010) A generic impact-scoring system applied to alien 
mammals in Europe: Contributed paper. Conservation Biology 24: 302–311. https://doi.
org/10.1111/j.1523-1739.2009.01289.x

Nentwig W, Bacher S, Pyšek P, Vilà M, Kumschick S (2016) The generic impact scoring system 
(GISS): a standardized tool to quantify the impacts of alien species. Environmental Moni-
toring and Assessment 188: 315. https://doi.org/10.1007/s10661-016-5321-4

Pimentel D, Patzek TW (2005) Ethanol Production Using Corn, Switchgrass, and Wood; Bio-
diesel Production Using Soybean and Sunflower. Natural Resources Research 14: 65–67. 
https://doi.org/10.1007/s11053-005-4679-8

Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conservation 
Biology 4: 365–374. https://doi.org/10.1111/j.1523-1739.1990.tb00310.x

https://doi.org/10.1016/j.biocon.2010.07.023
https://doi.org/10.1016/j.biocon.2010.07.023
https://doi.org/10.3897/neobiota.15.3323
https://doi.org/10.1007/s10530-012-0326-6
https://doi.org/10.1007/s10530-012-0326-6
https://doi.org/10.1111/ddi.12110
https://doi.org/10.1111/ddi.12110
https://doi.org/10.1111/1365-2664.12427
https://doi.org/10.1111/1365-2664.12427
https://doi.org/10.1002/ece3.2877
https://doi.org/10.3391/mbi.2015.6.4.03
https://doi.org/10.1111/brv.12388
https://cran.r-project.org/web/packages/rcompanion/index.html
https://cran.r-project.org/web/packages/rcompanion/index.html
https://doi.org/10.1111/ddi.12462
https://doi.org/10.1111/j.1523-1739.2009.01289.x
https://doi.org/10.1111/j.1523-1739.2009.01289.x
https://doi.org/10.1007/s10661-016-5321-4
https://doi.org/10.1007/s11053-005-4679-8
https://doi.org/10.1111/j.1523-1739.1990.tb00310.x


Global environmental and socio-economic impacts of selected alien grasses... 35

Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxo-
nomic biases in invasion ecology. Trends in Ecology and Evolution 23: 237–244. https://
doi.org/10.1016/j.tree.2008.02.002

Pyšek P, Jarošík V, Pergl J (2011) Alien plants introduced by different pathways differ in inva-
sion success: unintentional introductions as a threat to natural areas. PLoS One 6: e24890. 
https://doi.org/10.1371/journal.pone.0024890

Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global as-
sessment of invasive plant impacts on resident species, communities and ecosystems: the 
interaction of impact measures, invading species’ traits and environment. Global Change 
Biology 18: 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: 
An empirical approach applied to zebra mussel invasions. Freshwater Biology 48: 972–981. 
https://doi.org/10.1046/j.1365-2427.2003.01071.x

Ricciardi A, Cohen J (2007) The invasiveness of an introduced species does not predict its im-
pact. Biological Invasions 9: 309–315. https://doi.org/10.1007/s10530-006-9034-4

Rouget M, Robertson MP, Wilson JRU, Hui C, Essl F, Rentería JL, Richardson DM (2016) 
Invasion debt-quantifying future biological invasions. Diversity and Distributions 22: 
445–456. https://doi.org/10.1111/ddi.12408

Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley L, Cook G (2004) Exotic grass 
invasion in the tropical savanna of northern Australia: ecosystem consequences. In: Sin-
del BM, Johnson SB (Eds) Proceedings of the 14th Australian Weeds Conference: Weed 
Management, Wagga Wagga, NSW, 6–9 September 2004, 168–171.

Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S (2009) 
Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen 
relations in Australian savanna. Ecological Applications 19: 1546–1560. https://doi.
org/10.1890/08-0265.1

Rumlerová Z, Vilà M, Pergl J, Nentwig W, Pyšek P (2016) Scoring environmental and 
socioeconomic impacts of alien plants invasive in Europe. Biological Invasions 18: 3697–
3711. https://doi.org/10.1007/s10530-016-1259-2

Setterfield SA, Rossiter-Rachor NA, Hutley LB, Douglas MM, Williams RJ (2010) Turning 
up the heat: The impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour 
in northern Australian savannas. Diversity and Distributions 16: 854–861. https://doi.
org/10.1111/j.1472-4642.2010.00688.x

Solange A, Georgette K, Gilbert F, Marcellin DK, Bassirou B (2014) Review on African 
traditional cereal beverages. American Journal of Research Communication 2. http://www.
usa-journals.com/wp-content/uploads/2014/04/Solange_Vol25.pdf

van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, 
Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D, Cardenas-Toro J, Castano 
N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, 
Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, 
Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, 
Velayos M, Wieringa JJ, Pysek P (2015) Global exchange and accumulation of non-native 
plants. Nature 525: 100–103. https://doi.org/10.1038/nature14910

https://doi.org/10.1016/j.tree.2008.02.002
https://doi.org/10.1016/j.tree.2008.02.002
https://doi.org/10.1371/journal.pone.0024890
https://doi.org/10.1111/j.1365-2486.2011.02636.x
https://doi.org/10.1046/j.1365-2427.2003.01071.x
https://doi.org/10.1007/s10530-006-9034-4
https://doi.org/10.1111/ddi.12408
https://doi.org/10.1890/08-0265.1
https://doi.org/10.1890/08-0265.1
https://doi.org/10.1007/s10530-016-1259-2
https://doi.org/10.1111/j.1472-4642.2010.00688.x
https://doi.org/10.1111/j.1472-4642.2010.00688.x
http://www.usa-journals.com/wp-content/uploads/2014/04/Solange_Vol25.pdf
http://www.usa-journals.com/wp-content/uploads/2014/04/Solange_Vol25.pdf
https://doi.org/10.1038/nature14910


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)36

Visser V, Wilson JRU, Fish L, Brown C, Cook GD, Richardson DM (2016) Much more give than 
take: South Africa as a major donor but infrequent recipient of invasive non-native grasses. 
Global Ecology and Biogeography 25: 679–692. https://doi.org/10.1111/geb.12445

Visser V, Wilson JRU, Canavan K, Canavan S, Fish L, Le Maitre D, Nänni I, Mashau C, 
O’connor TG, Ivey P, Kumschick S, Richardson DM (2017) Grasses as invasive plants in 
South Africa revisited: Patterns, pathways and management. Bothalia-African Biodiversity 
& Conservation 47: 1–29. https://doi.org/10.4102/abc.v47i2.2169

Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as 
vectors for the introduction of alien organisms. Biological Conservation 121: 207–219. 
https://doi.org/10.1016/J.BIOCON.2004.04.020

Willenborg CJ, May WE, Gulden RH, Lafond GP, Shirtliffe SJ (2005) Influence of wild oat 
(Avena fatua) relative time of emergence and density on cultivated oat yield, wild oat 
seed production, and wild oat contamination. Weed Science 53: 342–352. https://doi.
org/10.1614/WS-04-124R1

Appendix 1

Literature, websites, and databases used to score environmental and socio-economic 
impacts of 58 alien grass species according to the GISS.

1. Abbasi FM, Shah AH, Perveen F, Afzal M, Sajid M, Masood R, Nawaz F (2010) 
Genomic affinity between Oryza sativa and Oryza brachyantha as revealed by in situ hy-
bridization and chromosome pairing. African Journal of Biotechnology 9: 3068–3072.

2. Abella S, Fisichelli NA, Schmid SM, Embrey TM, Hughson D, Cipra J (2015) Status 
and management of non-native plant invasion in three of the largest national parks in 
the United States. Nature Conservation 10: 71–94. https://doi.org/10.3897/naturecon-
servation.10.4407

3. Abella SR, Craig DJ, Chiquoine LP, Prengaman KA, Schmid SM, Embrey TM (2011) 
Relationships of Native Desert Plants with Red brome (Bromus rubens): Toward Identi-
fying Invasion-Reducing Species. Invasive Plant Science and Management 4: 115–124. 
https://doi.org/10.1614/IPSM-D-10-00013.1

4. Acciaresi HA, Guiamet JJ (2010) Below- and above-ground growth and biomass al-
location in maize and Sorghum halepense in response to soil water competition. Weed 
Research 50: 481–492. https://doi.org/10.1111/j.1365-3180.2010.00794.x

5. Actkinson JM, Burson BL (1999) Cytogenetic relationships between Paspalum pubiflo-
rum and three South American Paspalum species. International journal of plant sciences 
160: 775–781.

6. Adkins E, Cordell S, Drake DR (2011) Role of Fire in the Germination Ecology of 
Fountain Grass (Pennisetum setaceum), an Invasive African Bunchgrass in Hawai’i. Pa-
cific Science 65: 17–25. https://doi.org/10.2984/65.1.017

7. Agarkova IV, Vidaver AK, Postnikova EN, Riley IT, Schaad NW (2006) Genetic Char-
acterization and Diversity of Rathayibacter toxicus. Phytopathology 96: 1270–1277. 
https://doi.org/10.1094/PHYTO-96-1270

https://doi.org/10.1111/geb.12445
https://doi.org/10.4102/abc.v47i2.2169
https://doi.org/10.1016/J.BIOCON.2004.04.020
https://doi.org/10.1614/WS-04-124R1
https://doi.org/10.1614/WS-04-124R1
https://doi.org/10.3897/natureconservation.10.4407
https://doi.org/10.3897/natureconservation.10.4407
https://doi.org/10.1614/IPSM-D-10-00013.1
https://doi.org/10.1111/j.1365-3180.2010.00794.x
https://doi.org/10.2984/65.1.017
https://doi.org/10.1094/PHYTO-96-1270


Global environmental and socio-economic impacts of selected alien grasses... 37

8. Aguiar FC, Ferreira MT, Albuquerque A, Bernez I (2005) Invasibility Patterns of Knot-
grass (Paspalum distichum) in Portuguese Riparian Habitats. Weed Science Society of 
America and Allen Press Stable 19: 509–516.

9. Ahmad R, Okada M (2006) Isolation, characterization, and evaluation of microsatel-
lite loci for cultivar identification in the ornamental pampas grass Cortaderia selloana. 
Journal of American Society for Horticultural Science 131: 499–505.

10. Alcantara R, Fernandez P, Smeda RJ, Alves PL, De Prado R (2016) Response of Eleusine 
indica and Paspalum distichum to glyphosate following repeated use in citrus groves 
Crop Protection 79: 1–7. https://doi.org/10.1016/j.cropro.2015.09.027

11. Allcock KG (2002) Effects of phosphorous on growth and competitve interactions of 
native and introduced species found in White Box woodlands. Austral Ecology 27: 
638–646.

12. Allen VG, Segarra E (2001) Anti-quality components in forage: Overview, significance, 
and economic impact. Journal of Range Management 54: 409–412.

13. Almaghrabi OA (2012) Control of wild oat (Avena fatua) using some phenolic com-
pounds I - Germination and some growth parameters. Saudi Journal of Biological Sci-
ences 19: 17–24. https://doi.org/10.1016/j.sjbs.2011.07.005

14. An M, Pratley JE, Haig T (1997). Phytotoxicity of vulpia residues: I. Investigation of 
aqueous extracts. Journal of Chemical Ecology, 23(8), pp. 1979–1995.

15. Anđelković AA, Živković MM, Cvijanović DL, Novković MZ, Marisavljević DP, 
Pavlović DM, Radulović SB (2016) The contemporary records of aquatic plants inva-
sion through the Danubian floodplain corridor in Serbia. Aquatic Invasions 11: 381–
395. https://doi.org/10.3391/ai.2016.11.4.04

16. Anderson SJ, Stone CP, Higashino PK (1992) Distribution and spread of alien plants in 
Kipahulu Valley, Haleakala National Park, Above 2,300 ft elevation. Alien plant inva-
sions in native ecosystems of Hawaii: management and research. University of Hawaii 
Cooperative National Park Resources Studies Unit, Honolulu 31: 300–38.

17. Andrivon D, De Vallavieille-Pope C (1992) Infection attempts of cultivated barley (Hor-
deum vulgare) with isolates of Erysiphe graminis collected from Hordeum murinum in 
southwestern Europe. Mycological Research 96: 1029–1032. https://doi.org/10.1016/
S0953-7562(09)80111-1

18. Andújar D, Ribeiro A, Fernández-Quintanilla C, Dorado J (2013) Herbicide savings 
and economic benefits of several strategies to control Sorghum halepense in maize crops. 
Crop Protection 50: 17–23. https://doi.org/10.1016/j.cropro.2013.04.003

19. Ansari AA, Kihara TK, Marsh DG (1987) Immunochemical studies of Lolium per-
enne (rye grass) pollen allergens, Lol p I, II, and III. The Journal of Immunology 139: 
4034–4041.

20. Antony M, Shukla Y, Janardhanan KK (2003) Potential risk of acute hepatotoxicity of 
kodo poisoning due to exposure to cyclopiazonic acid. Journal of Ethnopharmacology 
87: 211–214. https://doi.org/10.1016/S0378-8741(03)00146-6

21. Anza M, Epelde L, Artetxe U, Becerril JM, Garbisu C (2016) Control of Cortaderia 
selloana with a glyphosate-based herbicide led to a short-term stimulation of soil fun-
gal communities. Environmental Monitoring and Assessment 188: 1–6. https://doi.
org/10.1007/s10661-016-5649-9

https://doi.org/10.1016/j.cropro.2015.09.027
https://doi.org/10.1016/j.sjbs.2011.07.005
https://doi.org/10.3391/ai.2016.11.4.04
https://doi.org/10.1016/S0953-7562(09)80111-1
https://doi.org/10.1016/S0953-7562(09)80111-1
https://doi.org/10.1016/j.cropro.2013.04.003
https://doi.org/10.1016/S0378-8741(03)00146-6
https://doi.org/10.1007/s10661-016-5649-9
https://doi.org/10.1007/s10661-016-5649-9


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)38

22. Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radcliffe DE (1992) Accumu-
lation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water 
and nitrogen fertilizer. Applied and Environmental Microbiology 58: 857–861.

23. Arise RO, Igunnu A, Malomo SO (2011) Effect of administration of aqueous extract of 
Bambusa vulgaris leaves on some biochemical variables of rat liver and serum. Journal of 
Medicinal Plants 5: 1622–1626.

24. Arriola PE, Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poace-
ae): spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, 
and crop sorghum, S. bicolor. American Journal of Botany83: 1153–1159.

25. Asay KH (1992) Breeding potentials in perennial Triticeae grasses. Hereditas 116: 167–
173. https://doi.org/10.1111/j.1601-5223.1992.tb00223.x

26. Aslani MR, Pascoe I, Kowalski M, Michalewicz A, Retallick MAS, Colegate SM (2006) 
In vitro detection of hepatocytotoxic metabolites from Drechslera biseptata: A contrib-
uting factor to acute bovine liver disease? Australian Journal of Experimental Agricul-
ture 46: 599–604. https://doi.org/10.1071/EA05204

27. Assadi AM, Runemark H, Systematics SP, September N (2017) Hybridisation, genomic 
constitution and generic. 194: 189–205.

28. Bacci B, Whiteley PL, Barrow M, Phillips PH, Dalziel J, El-Hage CM (2014) Chronic 
phalaris toxicity in eastern grey kangaroos (Macropus giganteus). Australian Veterinary 
Journal 92: 504–508. https://doi.org/10.1111/avj.12272

29. Bach T, Lam T, Iiyama K, Stone BA (1992) Cinnamic Acid Bridges Wheat and Between 
Cell Wall Polymers in Phalaris Internodes. Phytochemistry 31: 1179–1183. https://doi.
org/10.1016/0031-9422(92)80256-E

30. Badgery WB, Kemp DR, Michalk DL, King WMCG (2005) Competition for nitrogen 
between Australian native grasses and the introduced weed Nassella trichotoma. Annals 
of Botany 96: 799–809. https://doi.org/10.1093/aob/mci230

31. Badgery WB, Kemp DR, Michalk DL, King WMG (2008) Studies of competition 
between Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock) and native pas-
tures. 2. Seedling responses. Australian Journal of Agricultural Research 59: 237–246. 
https://doi.org/10.1071/AR07113

32. Bakker EG, Montgomery B, Nguyen T, Eide K, Chang J, Mockler TC, Liston A, Sea-
bloom EW, Borer ET (2009) Strong population structure characterizes weediness gene 
evolution in the invasive grass species Brachypodium distachyon. Molecular Ecology 18: 
2588–2601. https://doi.org/10.1111/j.1365-294X.2009.04225.x

33. Balch JK, Bradley BA, D’Antonio CM, Gómez-Dans J (2013) Introduced annual grass 
increases regional fire activity across the arid western USA (1980–2009). Global Change 
Biology 19: 173–183. https://doi.org/10.1111/gcb.12046

34. Ball DA, Frost SM, Fandrich L, Tarasoff C, Mallory-Smith C (2008) Biological attrib-
utes of rattail fescue (Vulpia myuros). Weed Science 56: 26–31. https://doi.org/10.1614/
WS-07-048.1

35. Barbosa JD, de Oliveira CMC, Duarte MD, Riet-Correa G, Peixoto PV, Tokarnia CH 
(2006) Poisoning of horses by bamboo, Bambusa vulgaris. Journal of Equine Veterinary 
Science 26: 393–398. https://doi.org/10.1016/j.jevs.2006.07.003

https://doi.org/10.1111/j.1601-5223.1992.tb00223.x
https://doi.org/10.1071/EA05204
https://doi.org/10.1111/avj.12272
https://doi.org/10.1016/0031-9422(92)80256-E
https://doi.org/10.1016/0031-9422(92)80256-E
https://doi.org/10.1093/aob/mci230
https://doi.org/10.1071/AR07113
https://doi.org/10.1111/j.1365-294X.2009.04225.x
https://doi.org/10.1111/gcb.12046
https://doi.org/10.1614/WS-07-048.1
https://doi.org/10.1614/WS-07-048.1
https://doi.org/10.1016/j.jevs.2006.07.003


Global environmental and socio-economic impacts of selected alien grasses... 39

36. Barnes TG, Madison LA, Sole JD, Lacki MJ (1973) An Assessment of Habitat Quality 
for Northern Bobwhite in Tall Fescue-Dominated Fields. Source: Wildlife Society Bul-
letin 23: 231–237.

37. Barratt MG Moore JC (1959) On semisimplicial fibre-bundles. American Journal of 
Mathematics, 81: 639–657.

38. Barton NJ, McOrist S, McQueen DS, O’Connor PF (1983) Poisoning of cat-
tle by Glyceria maxima. Australian Veterinary Journal 60: 220–221. https://doi.
org/10.1111/j.1751-0813.1983.tb09591.x

39. Bastow JL, Preisser EL, Strong DR (2008) Holcus lanatus invasion slows decomposition 
through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biological 
Invasions 10: 191–199. https://doi.org/10.1007/s10530-007-9122-0

40. Beatley JC (1966) Ecological status of introduced brome grasses (Bromus spp.) in desert 
vegetation of southern Nevada. Ecology 47: 548–554.

41. Beckie HJ, Francis A, Hall LM (2012) The Biology of Canadian Weeds. 27. Avena 
fatua L. (updated). Canadian Journal of Plant Science 92: 1329–1357. https://doi.
org/10.4141/cjps2012-005

42. Beckie HJ, Thomas AG, Legere A, Kelner DJ, Acker RCVAN, Meers S (1997) Nature, 
occurrence, and cost of Herbicide-Resistant Wild Oat (Avena fatua) in Small-Grain 
Production Areas. Weed Technology 13: 612–625.

43. Bell G (1997) Ecology and management of Arundo donax, and approaches to riparian 
habitat restoration in Southern California. Plant Invasions: Studies from North America 
and Europe: 103–113.

44. Bella S, D’Urso V (2012) First record in the Mediterranean basin of the alien leafhopper 
Balclutha brevis living on invasive Pennisetum setaceum. Bulletin of Insectology 65: 195–198.

45. Bennett AE, Thomsen M, Strauss SY (2011) Multiple mechanisms enable invasive spe-
cies to suppress native species1. American Journal of Botany 98: 1086–1094. https://
doi.org/10.3732/ajb.1000177

46. Berendse F, Elberse WT, Geerts RHME (1992) Competition and Nitrogen Loss from 
Plants in Grassland Ecosystems. Ecology 73: 46–53. https://doi.org/10.2307/1938719

47. Bertozzi T (2009) Zootaxa, Anguina paludicola sp. n. (Tylenchida: Anguinidae): The 
nematode associated. 46: 5326.

48. Bertozzi T, McKay AC (1995) Incidence on Polypogon Monspeliensis of Clavibacter Toxi-
cus and Anguina sp., the Organisms Associated with ‘Flood Plain staggers’ in South 
Australia. Australian Journal of Experimental Agriculture 35: 567–569. https://doi.
org/10.1071/EA9950567

49. Besr KF, BlurrNc, JD, lr.ro Bowss GG (1978) The biology of Canadian weeds. 3l. Hor-
deum jubatum L. Can. J. plant Sci. 58: 699–708.

50. Beyschlag W, Ryel RJ, Ullman I, Eckstein J (1996) Experimental studies on the com-
petitive balance between two central european roadside grasses with different growth 
forms. Botanica Acta 109: 449–455.

51. Beyschlag W, Ryel RJ, Ullmann I (1992) Experimental and Modelling Studies of 
Competition for Light in Roadside Grasses. Botanica Acta 105: 285–291. https://doi.
org/10.1111/j.1438-8677.1992.tb00300.x

https://doi.org/10.1111/j.1751-0813.1983.tb09591.x
https://doi.org/10.1111/j.1751-0813.1983.tb09591.x
https://doi.org/10.1007/s10530-007-9122-0
https://doi.org/10.4141/cjps2012-005
https://doi.org/10.4141/cjps2012-005
https://doi.org/10.3732/ajb.1000177
https://doi.org/10.3732/ajb.1000177
https://doi.org/10.2307/1938719
https://doi.org/10.1071/EA9950567
https://doi.org/10.1071/EA9950567
https://doi.org/10.1111/j.1438-8677.1992.tb00300.x
https://doi.org/10.1111/j.1438-8677.1992.tb00300.x


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)40

52. Bhowmik PC, O’Toole BM, Andaloro J (1992) Effects of nicosulfuron on quackgrass 
(Elytrigia repens) control in corn (Zea mays). Weed Technology 6: 52–56.

53. Biganzoli F, Larsen C, Rolhauser AG (2013) Range expansion and potential distribu-
tion of the invasive grass Bromus tectorum in southern South America on the base of her-
barium records. Journal of Arid Environments 97: 230–236. https://doi.org/10.1016/j.
jaridenv.2013.07.006

54. Blackshaw RE, Semach G, Li X, Donovan JTO, Harker KN, Blackshaw RE, Semach G, Li 
X, Donovan JTO, Harker KN (2010) An Integrated Weed Management Approach to Man-
aging Foxtail Barley (Hordeum jubatum) in Conservation Tillage Systems1. 13: 347–353.

55. Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive non-
indigenous plants: a hypothesis. Journal of Ecology 83: 887–889.

56. Bodle, M (1998) Arundo the world in (at least) eighty ways. Wildland Weeds Vol. 1, 
Number 3.

57. Boland JM (2006) the Importance of Layering in the Rapid Spread of Arun-
do Donax (Giant Reed). Madroño 53: 303–312. https://doi.org/10.3120/0024-
9637(2006)53[303:TIOLIT]2.0.CO;2

58. Boose, Holt (1999) Environmental effects on asexual reproduction in Arundo donax. 
Weed Research 39: 117–127. https://doi.org/10.1046/j.1365-3180.1999.00129.x

59. Borger CPD, Michael PJ, Mandel R, Hashem A, Bowran D, Renton M (2012) Linking 
field and farmer surveys to determine the most important changes to weed incidence. 
Weed Research 52: 564–574. https://doi.org/10.1111/j.1365-3180.2012.00950.x

60. Boshoff WHP (2002) Establishment, distribution, and pathogenicity of Puccinia strii-
formis f. sp. tritici in South Africa. The American Phytopathological Society 86: 485–
492. https://doi.org/10.1094/PDIS.2002.86.5.485

61. Bourdôt GW, Hurrell GA, Saville DJ (1992) Eradication of nassella tussock (Nassella 
trichotoma), an unlikely outcome of grubbing. New Zealand Journal of Agricultural 
Research 35: 245–252. https://doi.org/10.1080/00288233.1992.10427501

62. Bourdôt GW, Saville DJ (2016) Nassella trichotoma in modified tussock grasslands in 
New Zealand: a case study in landscape-scale invasive plant population monitoring. 
Weed Research 56: 395–406. https://doi.org/10.1111/wre.12221

63. Bourke CA, Colegate SM, Rendell D, Bunker EC, Kuhn RP (2005) Peracute ammonia 
toxicity: A consideration in the pathogenesis of Phalaris aquatica ‘Polioencephalomalacia‐
like sudden death’poisoning of sheep and cattle. Australian veterinary journal 83: 168–171.

64. Bourke CA, Hunt E, Watson R (2009) Fescue-associated oedema of horses grazing on 
endophyte-inoculated tall fescue grass (Festuca arundinacea) pastures. Australian Veteri-
nary Journal 87: 492–498. https://doi.org/10.1111/j.1751-0813.2009.00519.x

65. Bourke CA, Rendell D, Colegate SM (2003) Clinical observations and differentiation 
of the peracute Phalaris aquatica poisoning syndrome in sheep known as Polioencepha-
lo‐malacia‐like sudden death’. Australian veterinary journal 81: 698–700.

66. Bowers JE, Bean TM, Turner RM (2006) Two decades of change in distribution of 
exotic plants at the desert laboratory, Tucson, Arizona. Madroño 53: 252–263. https://
doi.org/10.3120/0024-9637(2006)53[252:TDOCID]2.0.CO;2

https://doi.org/10.1016/j.jaridenv.2013.07.006
https://doi.org/10.1016/j.jaridenv.2013.07.006
https://doi.org/10.3120/0024-9637(2006)53%5B303:TIOLIT%5D2.0.CO;2
https://doi.org/10.3120/0024-9637(2006)53%5B303:TIOLIT%5D2.0.CO;2
https://doi.org/10.1046/j.1365-3180.1999.00129.x
https://doi.org/10.1111/j.1365-3180.2012.00950.x
https://doi.org/10.1094/PDIS.2002.86.5.485
https://doi.org/10.1080/00288233.1992.10427501
https://doi.org/10.1111/wre.12221
https://doi.org/10.1111/j.1751-0813.2009.00519.x
https://doi.org/10.3120/0024-9637(2006)53%5B252:TDOCID%5D2.0.CO;2
https://doi.org/10.3120/0024-9637(2006)53%5B252:TDOCID%5D2.0.CO;2


Global environmental and socio-economic impacts of selected alien grasses... 41

67. Bradshaw, A.D., 1958. Natural Hybridization of Agrostis tenuis Sibth. and A. stolonif-
era L. New Phytologist, 57(1), pp. 66–84.

68. Brandsæter LO, Fogelfors H, Fykse H, Graglia E, Jensen RK, Melander B, Salonen J, 
Vanhala P (2010) Seasonal restrictions of bud growth on roots of Cirsium arvense and 
Sonchus arvensis and rhizomes of Elymus repens. Weed Research 50: 102–109. https://
doi.org/10.1111/j.1365-3180.2009.00756.x

69. Bridges DC, Chandler JM (1987) Influence of johnsongrass (Sorghum halepense) den-
sity and period of competition on cotton yield. Weed Science 35: 63–67.

70. Brosnan JT, Henry GM, Breeden GK, Cooper T, Serensits TJ (2013) Methiozolin Ef-
ficacy for Annual Bluegrass (Poa annua) Control on Sand- and Soil-Based Creeping 
Bentgrass Putting Greens. Weed Technology 27: 310–316. https://doi.org/10.1614/
WT-D-12-00123.1

71. Brown DE Minnich RA (986) Fire and changes in creosote bush scrub of the western 
Sonoran Desert, California. American Midland Naturalist 116: 411–422.

72. Brown HB (1916) Life History and Poisonous Properties of Claviceps Paspali. Journal of 
Agricultural Research 7: 401–407.

73. Campbell MH, Murison RD (1985) Effect of mixtures of tetrapion and 2, 2-DPA on 
the control of serrated tussock (Nassella trichotoma). Australian journal of experimental 
agriculture 25: 672–6.

74. Casto G (2017) Burrowing herbivore, precipitation, and plant community ef-
fects on invasive grass germination). Undergraduate Honors Theses. University of 
Colorado, Boulder. Availbable from: https://scholar.colorado.edu/cgi/viewcontent.
cgi?article=2685&context=honr_theses (January 20, 2018).

75. Cawdell-Smith AJ, Scrivener CJ, Bryden WL (2010) Staggers in horses grazing pas-
palum infected with Claviceps paspali. Australian Veterinary Journal 88: 393–395. htt-
ps://doi.org/10.1111/j.1751-0813.2010.00624.x

76. Cheeke PR (1995) Endogenous toxins and mycotoxins in forage grasses and 
their effects on livestock. Journal of animal science 73: 909–918. https://doi.
org/10.2527/1995.733909x

77. Chown SL, Huiskes AHL, Gremmen NJM, Lee JE, Terauds A, Crosbie K, Frenot Y, 
Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimoto M, Ware C, Van 
de Vijver B, Bergstrom DM (2012) Continent-wide risk assessment for the establish-
ment of nonindigenous species in Antarctica. Proceedings of the National Academy of 
Sciences 109: 4938–4943. https://doi.org/10.1073/pnas.1119787109

78. Coffman GC, Ambrose RF, Rundel PW (2010) Wildfire promotes dominance of inva-
sive giant reed (Arundo donax) in riparian ecosystems. Biological Invasions 12: 2723–
2734. https://doi.org/10.1007/s10530-009-9677-z

79. Colegate SMA (2006) In vitro detection of hepatocytotoxic metabolites from Drechslera 
biseptata: a contributing factor to acute bovine liver disease? Australian Journal of Ex-
perimental Agriculture 46: 599–604.

80. Connor HE (1983) Cortaderia (Gramineae): Interspecific hybrids and the breeding 
system. Heredity, 51(1), pp. 395–403.

https://doi.org/10.1111/j.1365-3180.2009.00756.x
https://doi.org/10.1111/j.1365-3180.2009.00756.x
https://doi.org/10.1614/WT-D-12-00123.1
https://doi.org/10.1614/WT-D-12-00123.1
https://scholar.colorado.edu/cgi/viewcontent.cgi?article=2685&context=honr_theses
https://scholar.colorado.edu/cgi/viewcontent.cgi?article=2685&context=honr_theses
https://doi.org/10.1111/j.1751-0813.2010.00624.x
https://doi.org/10.1111/j.1751-0813.2010.00624.x
https://doi.org/10.2527/1995.733909x
https://doi.org/10.2527/1995.733909x
https://doi.org/10.1073/pnas.1119787109
https://doi.org/10.1007/s10530-009-9677-z


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)42

81. Cordell S, Sandquist DR (2008) The impact of an invasive African bunchgrass (Pen-
nisetum setaceum) on water availability and productivity of canopy trees within a tropi-
cal dry forest in Hawaii. Functional Ecology 22: 1008–1017. https://doi.org/10.1111/
j.1365-2435.2008.01471.x

82. Costas-Lippmann M (1979) Embryogeny of Cortaderia selloana and C. jubata 
(Gramineae). Botanical gazette, 140: 393–397.

83. Cowan TF, Sindel BM, Jessop RS, Browning JE (2007) Mapping the distribution and 
spread of Nassella trichotoma (serrated tussock) with a view to improving detectability, 
containment and eradication. Crop Protection 26: 228–231. https://doi.org/10.1016/j.
cropro.2006.01.018

84. Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, Alva-
rado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T, 
Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, 
Daniel R, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG (2015) Fun-
gal Planet description sheets: 371 – 399. Persoonia: Molecular Phylogeny and Evolution 
of Fungi, 35, 264.

85. Crow W, Luc J, Sekora N, Pang W (2013) Interaction Between Belonolaimus longicauda-
tus and Helicotylenchus pseudorobustus on Bermudagrass and Seashore Paspalum Hosts.

86. Csurhes S, Markula A (2009) Weed risk assessment. Giant Reed Arundo donax. Bris-
bane: Department of Employment, Economic Development and Innovation.

87. Cudney DW, Jordan LS, Hall AE (1991) Effect of wild oat (Avena fatua) infestations on 
light interception and growth rate of wheat (Triticum aestivum). Weed Science 39: 175–179.

88. Cuevas L, Niemeyer HM (1993) Effect of hydroxamic acids from cereals on aphid 
cholinesterases. Phytochemistry 34: 983–985. https://doi.org/10.1016/S0031-
9422(00)90698-8

89. Culvenor RAA, Reed KFMB, Mcdonald SEA (2005) Comparative levels of dimeth-
yltryptamine- and tyramine-related alkaloid toxins in Australian cultivars and some 
wild populations of Phalaris aquatica. Australian Journal of Agricultural Research, 56: 
1395–1403.

90. Curtis CA, Bradley BA (2015) Climate change may alter both establishment and high 
abundance of Red Brome (Bromus rubens) and African Mustard (Brassica tournefortii) 
in the semiarid Southwest United States. Invasive Plant Science and Management 8: 
341–352. https://doi.org/10.1614/IPSM-D-14-00040.1

91. Cutulle MA, Derr JF, McCall D, Horvath B, Nichols AD (2013) Impact of hybrid 
bluegrass and tall fescue seeding combinations on brown patch severity and weed en-
croachment. HortScience 48: 493–500.

92. Daehler CC (2003) Performance comparisons of co-occurring native and alien in-
vasive plants: implications for conservation and restoration. Annual Review of Ecol-
ogy, Evolution, and Systematics, 34: 183–211. https://doi.org/10.1146/annurev.ecol-
sys.34.011802.132403

93. Davies JM (2014) Grass pollen allergens globally: The contribution of subtropical 
grasses to burden of allergic respiratory diseases. Clinical and Experimental Allergy 44: 
790–801. https://doi.org/10.1111/cea.12317

https://doi.org/10.1111/j.1365-2435.2008.01471.x
https://doi.org/10.1111/j.1365-2435.2008.01471.x
https://doi.org/10.1016/j.cropro.2006.01.018
https://doi.org/10.1016/j.cropro.2006.01.018
https://doi.org/10.1016/S0031-9422(00)90698-8
https://doi.org/10.1016/S0031-9422(00)90698-8
https://doi.org/10.1614/IPSM-D-14-00040.1
https://doi.org/10.1146/annurev.ecolsys.34.011802.132403
https://doi.org/10.1146/annurev.ecolsys.34.011802.132403
https://doi.org/10.1111/cea.12317


Global environmental and socio-economic impacts of selected alien grasses... 43

94. Davies JM, Bright ML, Rolland JM, O’Hehir RE (2005) Bahia grass pollen specific IgE 
is common in seasonal rhinitis patients but has limited cross-reactivity with Ryegrass. 
Allergy: European Journal of Allergy and Clinical Immunology 60: 251–255. https://
doi.org/10.1111/j.1398-9995.2005.00663.x

95. Davies JM, Li H, Green M, Towers M, Upham JW (2012) Subtropical grass pollen al-
lergens are important for allergic respiratory diseases in subtropical regions. Clinical and 
Translational Allergy 2: 4. https://doi.org/10.1186/2045-7022-2-4

96. Davies JM, Mittag D, Dang TD, Symons K, Voskamp A, Rolland JM, O’Hehir RE 
(2008) Molecular cloning, expression and immunological characterisation of Pas n 1, 
the major allergen of Bahia grass Paspalum notatum pollen. Molecular Immunology 46: 
286–293. https://doi.org/10.1016/j.molimm.2008.08.267

97. Davies KW, Nafus AM (2013) Exotic annual grass invasion alters fuel amounts, con-
tinuity and moisture content. International Journal of Wildland Fire 22: 353–358. 
https://doi.org/10.1071/WF11161

98. Davies LJ, Cohen D (1992) Phenotypic variation in somaclones of Paspalum dilatatum 
and their seedling offspring. Canadian Journal of Plant Science 72: 773–784. https://
doi.org/10.4141/cjps92-093

99. De Bertoldi C, De Leo M, Ercoli L, Braca A (2012) Chemical profile of Festuca arun-
dinacea extract showing allelochemical activity. Chemoecology 22: 13–21. https://doi.
org/10.1007/s00049-011-0092-4

100. De Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive 
DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. 
Chromosome Research 4: 491–499. https://doi.org/10.1007/BF02261776

101. De Falco LA, Fernandez GCJ, Nowak RS (2007) Variation in the establishment of a 
non-native annual grass influences competitive interactions with Mojave Desert peren-
nials. Biological Invasions 9: 293–307. https://doi.org/10.1007/s10530-006-9033-5

102. De Sousa Moreira PF, Gangl K, De Assis Machado Vieira F, Ynoue LH, Linhart B, 
Flicker S, Fiebig H, Swoboda I, Focke-Tejkl M, Taketomi EA, Valenta R, Niederberger 
V (2015) Allergen microarray indicates Pooideae sensitization in Brazilian grass pollen 
allergic patients. PLoS ONE 10: 1–13. https://doi.org/10.1371/journal.pone.0128402

103. Denne T (1988) Economics of nassella tussock (Nassella trichotoma) control in New 
Zealand. Agriculture, ecosystems & environment 20: 259–278.

104. Dhima KV, Eleftherohorinos IG, Vasilakoglou IB (2000) Interference between Avena 
sterilis, Phalaris minor and five barley cultivars. Weed Research 40: 549–559.

105. DiTomaso JM, Drewitz JJ, Kyser GB (2008) Jubatagrass (Cortaderia Jubata) Control 
Using Chemical and Mechanical Methods. Invasive Plant Science and Management 1: 
82–90. https://doi.org/10.1614/IPSM-07-028

106. Domènech R, Vilà M (2007) Cortaderia selloana invasion across a Mediterranean coast-
al strip. Acta Oecologica 32: 255–261. https://doi.org/10.1016/j.actao.2007.05.006

107. Domènech R, Vilà M, Gesti J, Serrasolses I (2006) Neighbourhood association of Cor-
taderia selloana invasion, soil properties and plant community structure in Mediter-
ranean coastal grasslands. Acta Oecologica 29: 171–177. https://doi.org/10.1016/j.
actao.2005.09.004

https://doi.org/10.1111/j.1398-9995.2005.00663.x
https://doi.org/10.1111/j.1398-9995.2005.00663.x
https://doi.org/10.1186/2045-7022-2-4
https://doi.org/10.1016/j.molimm.2008.08.267
https://doi.org/10.1071/WF11161
https://doi.org/10.4141/cjps92-093
https://doi.org/10.4141/cjps92-093
https://doi.org/10.1007/s00049-011-0092-4
https://doi.org/10.1007/s00049-011-0092-4
https://doi.org/10.1007/BF02261776
https://doi.org/10.1007/s10530-006-9033-5
https://doi.org/10.1371/journal.pone.0128402
https://doi.org/10.1614/IPSM-07-028
https://doi.org/10.1016/j.actao.2007.05.006
https://doi.org/10.1016/j.actao.2005.09.004
https://doi.org/10.1016/j.actao.2005.09.004


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)44

108. Domènech R, Vilà M, Pino J, Gesti J (2005) Historical land-use legacy and Cortaderia 
selloana invasion in the Mediterranean region. Global Change Biology 11: 1054–1064. 
https://doi.org/10.1111/j.1365-2486.2005.00965.x

109. Donald WW (1988) Established foxtail barley, Hordeum jubatum, control with glypho-
sate plus ammonium sulfate. Weed Technology 2: 364–368.

110. Donald WW (1990) Primary tillage for foxtail barley (Hordeum jubatum) control. Weed 
Technology 4: 318–321.

111. Dostálek J, Frantík T (2011) The impact of different grazing periods in dry grasslands 
on the expansive grass Arrhenatherum elatius L. and on woody species. Environmental 
Management 49: 855–861. https://doi.org/10.1007/s00267-012-9819-4

112. Dowling PM, Leys AR, Verbeek B, Millar GD, Lemerle D, Nicol HI (2004) Effect of 
annual pasture composition, plant density, soil fertility and drought on vulpia (Vulpia 
bromoides (L.) S.F. Gray). Australian Journal of Agricultural Research 55: 1097–1107. 
https://doi.org/10.1071/AR04032

113. Drake KK, Bowen L, Nussear KE, Esque TC, Berger AJ, Custer NA, Waters SC, John-
son JD, Miles AK, Lewison RL (2016) Negative impacts of invasive plants on conserva-
tion of sensitive desert wildlife. Ecosphere 7: 1–20. https://doi.org/10.1002/ecs2.1531

114. Drewitz JJ, Ditomaso JM, Drewitz JJ (2017) Seed Biology of Jubatagrass (Cortaderia 
jubata) Published by: Weed Science Society of America Seed biology of jubatagrass 
(Cortaderia jubata). 52: 525–530.

115. Eberwine Jr JW, Hagood Jr ES, Tolin, SA (1998) Quantification of viral disease inci-
dence in corn (Zea mays) as affected by johnsongrass (Sorghum halepense) control. Weed 
technology 12: 121–127.

116. Eberwine JW, Hagood ES (1995) Effect of johnsongrass (Sorghum halepense) control on 
the severity of virus diseases of corn (Zea mays). Weed technology 9: 73–79.

117. Edgar JA (1994) Toxins in temperate grasses-implications and solutions. New Zealand 
Journal of Agricultural Research 37: 341–347. https://doi.org/10.1080/00288233.199
4.9513072

118. Emam TM, Espeland EK, Rinella MJ (2014) Soil sterilization alters interactions be-
tween the native grass Bouteloua gracilis and invasive Bromus tectorum. Journal of Arid 
Environments 111: 91–97. https://doi.org/10.1016/j.jaridenv.2014.08.006

119. Evans RM, Thill DC, Tapia L, Shafii B, Lish JM (1991) Wild oat (Avena fatua) and 
spring barley (Hordeum vulgare) density affect spring barley grain yield. Weed Technol-
ogy 5: 33–39.

120. Everitt JH, Yang C, Deloach CJ (2006) Remote Sensing of Giant Reed with QuickBird 
Satellite Imagery. Journal of Aquatic Plant Management 43: 81–85.

121. Evetts LL, Burnside OC (1975) Effect of early competition on growth of common 
milkweed. Weed Science 23: 1–3.

122. Eytcheson A (2011) Field sandbur (Cenchrus spinifex) control and bermudagrass (Cy-
nodon dactylon) response to herbicide and nitrogen fertilizer treatments. PhD thesis. 
Oklahoma State University. Aavailable from: https://shareok.org/handle/11244/9323 
(April 12, 2017).

https://doi.org/10.1111/j.1365-2486.2005.00965.x
https://doi.org/10.1007/s00267-012-9819-4
https://doi.org/10.1071/AR04032
https://doi.org/10.1002/ecs2.1531
https://doi.org/10.1080/00288233.1994.9513072
https://doi.org/10.1080/00288233.1994.9513072
https://doi.org/10.1016/j.jaridenv.2014.08.006
https://shareok.org/handle/11244/9323


Global environmental and socio-economic impacts of selected alien grasses... 45

123. Fahleson J, Okori P, Åkerblom-Espeby L, Dixelius C (2008) Genetic variability and 
genomic divergence of Elymus repens and related species. Plant Systematics and Evolu-
tion 271: 143–156. https://doi.org/10.1007/s00606-007-0623-1

124. Falloon RE (1976) Effect of infection by Ustilago bullata on vegetative growth of Bro-
mus catharticus. New Zealand Journal of Agricultural Research 19: 249–254. https://
doi.org/10.1080/00288233.1976.10426774

125. Fausey JC, Renner KA (1997) Germination, emergence, and growth of giant foxtail (Se-
taria faberi) and fall panicum (Panicum dichotomiflorum). Weed Science 45: 423–425. 
https://doi.org/10.1614/WS-06-139.1

126. Figueroa M, Alderman S, Garvin DF, Pfender WF (2013) Infection of Brachypodi-
um distachyon by Formae Speciales of Puccinia graminis: Early Infection Events and 
Host-Pathogen Incompatibility. PLoS ONE 8: 1–9. https://doi.org/10.1371/journal.
pone.0056857

127. Fleming TR, Maule AG, Martin T, Hainon-McDowell M, Entwistle K, McClure MA, 
Fleming CC (2015) A first report of Anguina pacificae in Ireland. Journal of Nematol-
ogy 47: 97–104.

128. Flint JL, Barrett M (1989) Antagonism of glyphosate toxicity to johnsongrass (Sorghum 
halepense) by 2, 4-D and dicamba. Weed Science, 37: 700–705.

129. Follak S, Essl F (2013) Spread dynamics and agricultural impact of Sorghum halepense, 
an emerging invasive species in Central Europe. Weed Research 53: 53–60. https://doi.
org/10.1111/j.1365-3180.2012.00952.x

130. Francis J (1993) Bambusa Vulgaris Schrad Ex Wendl: Common Bamboo: Gramineae. US 
Department of Agriculture, Forest Service, International Institute of Tropical Forestry.

131. Freckleton RP, Watkinson AR, Dowling PM, Leys AR (2000) Determinants of the abun-
dance of invasive annual weeds: community structure and non-equilibrium dynamics. 
Proceedings of the Royal Society of London B: Biological Sciences 267: 1153-1161.

132. Frey L (2010) Grasses in Poland: invincible but threatened. Biodiversity: Research and 
Conservation 19: 93–102. https://doi.org/10.2478/v10119-010-0025-z

133. Fu R, Ashley RA (2006) Interference of large crabgrass (Digitaria sanguinalis), redroot 
pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pep-
per. Weed Science 54: 364–372.

134. Gill GS, Bowran DG (1990) Tolerance of wheat cultivars to metribuzin and implica-
tions for the control of Bromus diandrus and B. rigidus in Western Australia. Australian 
Journal of Experimental Agriculture 30: 373–378. https://doi.org/10.1071/EA9900373

135. Gleichsner JA, Appleby AP (1996) Effects of vernalization on flowering in ripgut brome 
(Bromus diandrus). Weed science 44: 57–62.

136. Goergen E, Daehler CC (2001) Reproductive ecology of a native Hawaiian grass (Het-
eropogon contortus; Poaceae) versus its invasive alien competitor (Pennisetum setaceum; 
Poaceae). International Journal of Plant Sciences 162: 317–326.

137. Golder HM, Moss N, Rogers G, Jackson B, Gannon N, Wong PTW, Lean IJ (2017) 
Acute photosensitisation and mortality in a herd of dairy cattle in Tasmania. New Zea-
land Veterinary Journal 65: 39–45. https://doi.org/10.1080/00480169.2016.1232181

https://doi.org/10.1007/s00606-007-0623-1
https://doi.org/10.1080/00288233.1976.10426774
https://doi.org/10.1080/00288233.1976.10426774
https://doi.org/10.1614/WS-06-139.1
https://doi.org/10.1371/journal.pone.0056857
https://doi.org/10.1371/journal.pone.0056857
https://doi.org/10.1111/j.1365-3180.2012.00952.x
https://doi.org/10.1111/j.1365-3180.2012.00952.x
https://doi.org/10.2478/v10119-010-0025-z
https://doi.org/10.1071/EA9900373
https://doi.org/10.1080/00480169.2016.1232181


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)46

138. Gondo T, Tsuruta SI, Akashi R, Kawamura O, Hoffmann F (2005) Green, herbi-
cide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahia-
grass (Paspalum notatum). Journal of Plant Physiology 162: 1367–1375. https://doi.
org/10.1016/j.jplph.2005.03.005

139. González-Rodríguez AM, Baruch Z, Palomo D, Cruz-Trujillo G, Jiménez MS, Morales D 
(2010) Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Ca-
nary Islands. Acta Oecologica 36: 248–254. https://doi.org/10.1016/j.actao.2010.01.004

140. Goolsby JA, Moran P (2009) Host range of Tetramesa romana Walker (Hymenop-
tera: Eurytomidae), a potential biological control of giant reed, Arundo donax L. in 
North America. Biological Control 49: 160–168. https://doi.org/10.1016/j.biocon-
trol.2009.01.019

141. Graham S (2013) Three cooperative pathways to solving a collective weed management 
problem. Australasian Journal of Environmental Management 20: 116–129. https://
doi.org/10.1080/14486563.2013.774681

142. Graham S (2014) A new perspective on the trust power nexus from rural Australia. 
Journal of Rural Studies 36: 87–98. https://doi.org/10.1016/j.jrurstud.2014.06.010

143. Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis 
stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Bio-
logical Conservation 85: 223–231. https://doi.org/10.1016/S0006-3207(97)00178-X

144. Griffin JL, Miller DK, Salassi ME (2006) Johnsongrass (Sorghum halepense) control 
and economics of using glyphosate-resistant soybean in fallowed sugarcane fields. Weed 
technology 20: 980–985.

145. Griffith A, Loik M (2010) Effects of climate and snow depth on Bromus tectorum popu-
lation dynamics at high elevation. Oecologia 164: 821–832. https://doi.org/10.1007/
S00442-01

146. Grubb PJ (1982) Control of relative abundance in roadside Arrhenatheretum: results of 
a long-term garden experiment. The Journal of Ecology 70: 845–861.

147. Guérin-Marchand C, Sénéchal H, Bouin AP, Leduc-Brodard V, Taudou G, Weyer A, 
Peltre G, David B (1996) Cloning, sequencing and immunological characterization of 
Dac g 3, a major allergen from Dactylis glomerata pollen. Molecular immunology 33: 
797–806.

148. Gunes E, Uludag A, Uremis I (2008) Economic impact of Johnsongrass (Sorghum ha-
lepense [L.] Pers.) in cotton production in Turkey. Journal of Plant Diseases and Proctec-
tion, Supplement: 515–520.

149. Guthrie G (2007) Impacts of the invasive reed Arundo donax on biodiversity at the com-
munity-ecosystem level. MSc Thesis. University of the Western Cape.Available from: 
http://etd.uwc.ac.za/handle/11394/2313 (April 23, 2017).

150. Hadfield J, Martin DP, Stainton D, Kraberger S, Owor BE, Shepherd DN, Lakay F, 
Markham PG, Greber RS, Briddon RW, Varsani A (2011) Bromus catharticus striate 
mosaic virus: A new mastrevirus infecting Bromus catharticus from Australia. Archives 
of Virology 156: 335–341. https://doi.org/10.1007/s00705-010-0872-0

151. Hashem A, Radosevich SR, Dick R (2000) Competition Effects on Yield, Tissue Ni-
trogen, and Germination of Winter Wheat (Triticum aestivum) and Italian Ryegrass 

https://doi.org/10.1016/j.jplph.2005.03.005
https://doi.org/10.1016/j.jplph.2005.03.005
https://doi.org/10.1016/j.actao.2010.01.004
https://doi.org/10.1016/j.biocontrol.2009.01.019
https://doi.org/10.1016/j.biocontrol.2009.01.019
https://doi.org/10.1080/14486563.2013.774681
https://doi.org/10.1080/14486563.2013.774681
https://doi.org/10.1016/j.jrurstud.2014.06.010
https://doi.org/10.1016/S0006-3207(97)00178-X
https://doi.org/10.1007/S00442-01
https://doi.org/10.1007/S00442-01
http://etd.uwc.ac.za/handle/11394/2313
https://doi.org/10.1007/s00705-010-0872-0


Global environmental and socio-economic impacts of selected alien grasses... 47

(Lolium multiflorum) Competition Effects on Yield, Tissue Nitrogen, and Germination 
of Winter Wheat (Triticum aestivum) and I. Weed Science 14: 718–725.

152. Hassan M, Širlová L, Vacke J (2014) Tall oatgrass mosaic virus (TOgMV): A novel 
member of the genus Tritimovirus infecting Arrhenatherum elatius. Archives of Virology 
159: 1585–1592. https://doi.org/10.1007/s00705-013-1905-2

153. Hendrickson JR, Lund C (2010) Plant community and target species affect responses to 
restoration strategies. Rangeland Ecology & Management 63: 435–442.

154. Henry G, Burton J, Richardson R, Yelverton F (2008) Absorption and Translocation of 
Foramsulfuron in Dallisgrass (Paspalum dilatatum) Following Preapplication of MSMA. 
Weed Science 56: 785–788. https://doi.org/10.1614/WS-08-035.1

155. Henry GM, Burton MG, Yelverton FH (2009) Heterogeneous distribution of weedy 
paspalum species and edaphic variables in turfgrass. HortScience 44: 447–451.

156. Henry GM, Yelverton FH, Burton MG (2007) Dallisgrass (Paspalum Dilatatum) Con-
trol with Foramsulfuron in Bermudagrass Turf. Weed Technology 21: 759–762. https://
doi.org/10.1614/WT-06-163.1

157. Herget ME, Hufford KM, Mummey DL, Mealor BA, Shreading LN (2015) Effects of 
competition with Bromus tectorum on early establishment of Poa secunda accessions: 
Can seed source impact restoration success? Restoration Ecology 23: 277–283. https://
doi.org/10.1111/rec.12177

158. Herrera LP, Laterra P (2009) Do seed and microsite limitation interact with seed size 
in determining invasion patterns in flooding Pampa grasslands? Herbaceous Plant Ecol-
ogy: Recent Advances in Plant Ecology: 93–105. https://doi.org/10.1007/978-90-481-
2798-6_8

159. Hoskins AJ, Young BG, Krausz RF Russin JS (2005) Control of Italian ryegrass (Lolium 
multiflorum) in winter wheat. Weed technology 19: 261–265.

160. Houliston GJ, Goeke DF (2017) Cortaderia spp. In New Zealand: Patterns of genetic 
variation in two widespread invasive species. New Zealand Journal of Ecology 41: 107–
112. https://doi.org/10.20417/nzjecol.41.13

161. Hsiao YH, Chen C, Willemse T (2016) Allergen sensitization patterns of allergic dogs: 
IgE-microarray analysis. Thai Journal of Veterinary Medicine 46: 235–242.

162. Huang Y, Kaminski JE, Landschoot PJ (2015) Regulation with Trinexapac-ethyl and 
Dew Removal at the Time of Fungicide Application Did Not Influence Dollar Spot 
Control. HortScience 50: 496–500.

163. Huxman TE, Hamerlynck EP Smith SD (1999) Reproductive allocation and seed 
production in Bromus madritensis ssp. rubens at elevated atmospheric CO2. Functional 
Ecology 13: 769–777.

164. Ivany JA (1978). Effects of quack grass competition on silage corn yield. Canadian 
Journal of Plant Science 58: 539–542.

165. James A, Brown R, Basse B, Bourdôt GW, Lamoureaux SL, Roberts M, Saville DJ 
(2011) Application of a spatial meta-population model with stochastic parameters to 
the management of the invasive grass Nassella trichotoma in North Canterbury, New 
Zealand. Ecological Modelling 222: 1030–1037. https://doi.org/10.1016/j.ecolmo-
del.2010.11.031

https://doi.org/10.1007/s00705-013-1905-2
https://doi.org/10.1614/WS-08-035.1
https://doi.org/10.1614/WT-06-163.1
https://doi.org/10.1614/WT-06-163.1
https://doi.org/10.1111/rec.12177
https://doi.org/10.1111/rec.12177
https://doi.org/10.1007/978-90-481-2798-6_8
https://doi.org/10.1007/978-90-481-2798-6_8
https://doi.org/10.20417/nzjecol.41.13
https://doi.org/10.1016/j.ecolmodel.2010.11.031
https://doi.org/10.1016/j.ecolmodel.2010.11.031


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)48

166. Johnson BJ (1979) Bahiagrass (Paspalum notatum) and common lespedeza (Lespedeza 
striata) control with herbicides in centipedegrass (Eremochloa ophiuroides). Weed Sci-
ence 27: 346–348.

167. Johnson WG, Frans RE, Parsch LD (1991) Economics of johnsongrass (Sorghum ha-
lepense) control in soybeans (Glycine max). Weed Technology 5: 765–770.

168. Johnston DJ, Reverter A, Robinson DL, Ferguson DM (2001) Sources of variation in 
mechanical shear force measures of tenderness in beef from tropically adapted genotypes, 
effects of data editing and their implications for genetic parameter estimation. Australian 
Journal of Experimental Agriculture 41: 991–996. https://doi.org/10.1071/EA97144

169. Jones LJ, Ostoja SM, Brooks ML, Hutten M (2015) Short-term Response of Hol-
cus lanatus L. (Common Velvetgrass) to Chemical and Manual Control at Yosemite Na-
tional Park, USA. Invasive Plant Science and Management 8: 262–268. https://doi.
org/10.1614/IPSM-D-14-00060.1

170. Jones MA, Christians NE (2007) Mesotrione controls creeping bentgrass (Agros-
tis stolonifera) in Kentucky bluegrass. Weed Technology 21: 402–405. https://doi.
org/10.1614/WT-05-181.1

171. Jones RE, Vere DT, Campbell MH (2000) The external costs of pasture weed spread: An 
economic assessment of serrated tussock control. Agricultural Economics 22: 91–103. 
https://doi.org/10.1016/S0169-5150(99)00043-2

172. Josic D, Delic D, Rasulic N, Stajkovic O, Kuzmanovic D, Stanojkovic A, Pivic R (2012) 
Indigenous pseudomonads from rhizosphere of maize grown on pseudogley soil in ser-
bia. Bulgarian Journal of Agricultural Science 18: 197–206. https://doi.org/10.1007/sl

173. Juan VF, Monterroso L, Sacido MB, Cauhepe MA (2000) Postburning Legume Seed-
ing in the Flooding Pampas, Argentina. Society for Range Management 53: 300–304. 
https://doi.org/10.2111/RANGELANDS-D-10-00090.1

174. Jurand BS, Abella SR (2013) Soil seed banks of the exotic annual grass bromus rubens 
on a burned desert landscape. Rangeland Ecology and Management 66: 157–163. htt-
ps://doi.org/10.2111/REM-D-12-00106.1

175. Jurand BS, Abella SR, Suazo AA (2013) Soil seed bank longevity of the exotic annual 
grass Bromus rubens in the Mojave Desert, USA. Journal of Arid Environments 94: 
68–75. https://doi.org/10.1016/j.jaridenv.2013.03.006

176. Kammerer SJ, Burpee LL, Harmon PF (2011) Identification of a New Waitea circinata 
Variety Causing Basal Leaf Blight of Seashore Paspalum. Plant Disease 95: 515–522. 
https://doi.org/10.1094/PDIS-03-10-0204

177. Kant R, Paulin L, Alatalo E, de Vos W m, Palva A (2011) Genome sequence of Lact-
tobacillus amylovorus GRL1118, isolated from pig ileum. Journal of bacteriology 193: 
3147–3148. https://doi.org/10.1111/j.1751

178. Kavak H (2003) First record of leaf scald caused by Rhynchosporium secalis in a natural 
population of Hordeum vulgare ssp. spontaneum in Turkey. Plant Pathology 52: 805. 
https://doi.org/10.1111/j.1365-3059.2003.00914.x

179. Kavak H (2004) First record of spot blotch caused by Bipolaris sorokiniana on Hordeum 
murinum in Turkey. Canadian Journal of Plant Pathology 26: 205–206. https://doi.
org/10.1080/07060660409507133

https://doi.org/10.1071/EA97144
https://doi.org/10.1614/IPSM-D-14-00060.1
https://doi.org/10.1614/IPSM-D-14-00060.1
https://doi.org/10.1614/WT-05-181.1
https://doi.org/10.1614/WT-05-181.1
https://doi.org/10.1016/S0169-5150(99)00043-2
https://doi.org/10.1007/sl
https://doi.org/10.2111/RANGELANDS-D-10-00090.1
https://doi.org/10.2111/REM-D-12-00106.1
https://doi.org/10.2111/REM-D-12-00106.1
https://doi.org/10.1016/j.jaridenv.2013.03.006
https://doi.org/10.1094/PDIS-03-10-0204
https://doi.org/10.1111/j.1751
https://doi.org/10.1111/j.1365-3059.2003.00914.x
https://doi.org/10.1080/07060660409507133
https://doi.org/10.1080/07060660409507133


Global environmental and socio-economic impacts of selected alien grasses... 49

180. Kavanagh VB, Hall LM, Hall JC (2010) Potential hybridization of genetically engi-
neered triticale with wild and weedy relatives in Canada. Crop Science 50: 1128–1140. 
https://doi.org/10.2135/cropsci2009.11.0644

181. Khan MA, Stace C a. (1999) Breeding relationships in the genus Brachypo-
dium (Poaceae: Pooideae). Nordic Journal of Botany 19: 257–269. https://doi.
org/10.1111/j.1756-1051.1999.tb01108.x

182. Kiecana I, Cegiełko M, Mielniczuk E, Pastucha A (2014) Fungi infecting ornamental grasses 
and the pathogenicity of Fusarium culmorum (WG Sm.) Sacc. and Fusarium equiseti (Corda) 
Sacc. to selected species. Acta Scientiarum Polonorum. Hortorum Cultus, 13: 61–75.

183. King SR, Hagood Jr ES (2003) The effect of johnsongrass (Sorghum halepense) control 
method on the incidence and severity of virus diseases in glyphosate-tolerant corn (Zea 
mays). Weed technology 17: 503–508.

184. Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of 
rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant cell 
reports 17: 362–367.

185. Kleemann SGL, Boutsalis P, Gill GS, Preston C (2016) Applications of pre-emergent 
pyroxasulfone, flufenacet and their mixtures with triallate for the control of Bromus di-
andrus (ripgut brome) in no-till wheat (Triticum aestivum) crops of southern Australia. 
Crop Protection 80: 144–148. https://doi.org/10.1016/j.cropro.2015.11.010

186. Kleemann SGL, Gill GS (2006) Differences in the distribution and seed germination 
behaviour of populations of Bromus rigidus and Bromus diandrus in South Australia: 
Adaptations to habitat and implications for weed management. Australian Journal of 
Agricultural Research 57: 213–219. https://doi.org/10.1071/AR05200

187. Kleemann SGL, Gill GS (2008) Applications of Metribuzin for The Control of Rigid 
Brome (Bromus rigidus) in No-Till Barley Crops of Southern Australia. Weed Technol-
ogy 22: 34–37. https://doi.org/10.1614/WT-07-017.1

188. Kleemann SGL, Gill GS (2009) Population ecology and management of rigid brome 
(Bromus rigidus) in Australian cropping systems. Weed Science 57: 202–207. https://
doi.org/10.1614/WS-08-121.1

189. Kleemann SGL, Gill GS (2009) The role of imidazolinone herbicides for the control 
of Bromus rigidus (rigid brome) in wheat in southern Australia. Crop Protection 28: 
913–916. https://doi.org/10.1016/j.cropro.2009.07.005

190. Klepeis P, Gill N, Chisholm L (2009) Emerging amenity landscapes: Invasive weeds 
and land subdivision in rural Australia. Land Use Policy 26: 380–392. https://doi.
org/10.1016/j.landusepol.2008.04.006

191. Kloppers, F. J., & Pretorius, Z. A. (1993). Bromus catharticus: a new host record for 
wheat stem rust in South Africa. Plant Disease, 77(10).

192. Knapp PA (1996) Cheatgrass (Bromus tectorum L) dominance in the Great Basin 
Desert: history, persistence, and influences to human activities. Global environmental 
change, 6(1), pp. 37–52.

193. Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome 
constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theoret-
ical and Applied Genetics 113: 731–742. https://doi.org/10.1007/s00122-006-0341-z

https://doi.org/10.2135/cropsci2009.11.0644
https://doi.org/10.1111/j.1756-1051.1999.tb01108.x
https://doi.org/10.1111/j.1756-1051.1999.tb01108.x
https://doi.org/10.1016/j.cropro.2015.11.010
https://doi.org/10.1071/AR05200
https://doi.org/10.1614/WT-07-017.1
https://doi.org/10.1614/WS-08-121.1
https://doi.org/10.1614/WS-08-121.1
https://doi.org/10.1016/j.cropro.2009.07.005
https://doi.org/10.1016/j.landusepol.2008.04.006
https://doi.org/10.1016/j.landusepol.2008.04.006
https://doi.org/10.1007/s00122-006-0341-z


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)50

194. Kosmala A, Zwierzykowska E, Zwierzykowski Z (2006) Chromosome pairing in trip-
loid intergeneric hybrids of Festuca pratensis with Lolium multiflorum, revealed by GISH. 
Journal of applied genetics 47: 215–220. https://doi.org/10.1007/BF03194626

195. Kostromytska OS, Koppenhöfer AM (2016) Responses of Poa annua and three bent-
grass species (Agrostis spp.) to adult and larval feeding of annual bluegrass weevil, Lis-
tronotus maculicollis (Coleoptera: Curculionidae). Bulletin of Entomological Research 
106: 729–739. https://doi.org/10.1017/S0007485316000468

196. Kulik MM, Dery PD (1995) The Infection of Festuca arundinacea by Puccinia 
graminis subsp. graminicola. Journal of Phytopathology 143: 53–58. https://doi.
org/10.1111/j.1439-0434.1995.tb00200.x

197. Laffan SW (2006) Assessing regional scale weed distributions, with an Australian exam-
ple using Nassella trichotoma. Weed Research 46: 194–206.

198. Lambrinos JG (2000) The impact of the invasive alien grass Cortaderia jubata (Lem-
oine) Stapf on an endangered mediterranean-type shrubland in California. Diversity 
and Distributions 6: 217–231. https://doi.org/10.1046/j.1472-4642.2000.00086.x

199. Lamoureaux SL, Basse B, Bourdôt GW, Saville DJ (2015) Comparison of manage-
ment strategies for controlling Nassella trichotoma in modified tussock grasslands in 
New Zealand: A spatial and economic analysis. Weed Research 55: 449–460. https://
doi.org/10.1111/wre.12158

200. Lamoureaux SL, Bourdôt GW, Saville DJ (2011) Population growth of Nassella tricho-
toma in grasslands in New Zealand slower today than in the past. Acta Oecologica 37: 
484–494. https://doi.org/10.1016/j.actao.2011.06.008

201. Laterra P (1997). Post-burn recovery in the flooding Pampa: Impact of an invasive leg-
ume. Journal of Range Management 50: 274–277.

202. Laterra P, Solbrig OT (2001) Dispersal strategies, spatial heterogeneity and coloniza-
tion success in fire-managed grasslands. Ecological Modelling 139: 17–29. https://doi.
org/10.1016/S0304-3800(01)00227-7

203. Lean IJ (2001) Association between feeding perennial ryegrass (Lolium perenne cultivar 
Grasslands Impact) containing high concentrations of ergovaline, and health and pro-
ductivity in a herd of lactating dairy cows. Australian Veterinary Journal 79: 262–264. 
https://doi.org/10.1111/j.1751-0813.2001.tb11978.x

204. Leduc-Brodard V, Inacio F, Jaquinod M, Forest E, David B, Peltre G (1996) Charac-
terization of Dac g 4, a major basic allergen from Dactylis glomerata pollen. Journal 
of Allergy and Clinical Immunology 98: 1065–1072. https://doi.org/10.1016/S0091-
6749(96)80193-X

205. Leffler AJ, Monaco TA, James JJ, Sheley RL (2016) Importance of soil and plant com-
munity disturbance for establishment of Bromus tectorum in the Intermountain West, 
USA. NeoBiota 30: 111–125. https://doi.org/10.3897/neobiota.30.7119

206. Leofanti GA, Camadro EL (2017) Pollen viability and meiotic abnormalities in brome 
grasses (Bromus L., section Ceratochloa) from Argentina. Turkish Journal of Botany 41: 
127–133. https://doi.org/10.3906/bot-1607-46

https://doi.org/10.1007/BF03194626
https://doi.org/10.1017/S0007485316000468
https://doi.org/10.1111/j.1439-0434.1995.tb00200.x
https://doi.org/10.1111/j.1439-0434.1995.tb00200.x
https://doi.org/10.1046/j.1472-4642.2000.00086.x
https://doi.org/10.1111/wre.12158
https://doi.org/10.1111/wre.12158
https://doi.org/10.1016/j.actao.2011.06.008
https://doi.org/10.1016/S0304-3800(01)00227-7
https://doi.org/10.1016/S0304-3800(01)00227-7
https://doi.org/10.1111/j.1751-0813.2001.tb11978.x
https://doi.org/10.1016/S0091-6749(96)80193-X
https://doi.org/10.1016/S0091-6749(96)80193-X
https://doi.org/10.3897/neobiota.30.7119
https://doi.org/10.3906/bot-1607-46


Global environmental and socio-economic impacts of selected alien grasses... 51

207. Leys AR, Cullis BR, Plater B (1991) Effect of spraytopping applications of paraquat and 
glyphosate on the nutritive value and regeneration of Vulpia (Vulpia bromoides (L.) S.F. 
Gray]. Australian Journal of Agricultural Research 42: 1405–1415.

208. Leys AR, Plater B Lill WJ (1991) Response of vulpia (Vulpia bromoides (L.) SF Gray and 
V. myuros (L.) CC Gmelin) and subterranean clover to rate and time of application of 
simazine. Australian Journal of Experimental Agriculture, 31: 785–791.

209. Li R, Wang S, Duan L, Li Z, Christoffers MJ, Mengistu LW (2007) Genetic diversity 
of wild oat (Avena fatua) populations from China and the United States. Weed Sci 55: 
95–101. https://doi.org/10.1614/WS-06-108.1

210. Li Y zhi, Cao Y, Zhou Q, Guo H ming, Ou G cai (2012) The Efficiency of Southern 
rice black-streaked dwarf virus Transmission by the Vector Sogatella furcifera to Differ-
ent Host Plant Species. Journal of Integrative Agriculture 11: 621–627. https://doi.
org/10.1016/S2095-3119(12)60049-5

211. Liu S, Vargas J, Merewitz E (2017) Phytohormones associated with bacterial etiolation 
disease in creeping bentgrass. Environmental and Experimental Botany 133: 35–49. 
https://doi.org/10.1016/j.envexpbot.2016.09.004

212. López-Granados F, Peña-Barragán JM, Jurado-Expósito M, Francisco-Fernández M, 
Cao R, Alonso-Betanzos A, Fontenla-Romero O (2008) Multispectral classification of 
grass weeds and wheat (Triticum durum) using linear and nonparametric functional 
discriminant analysis and neural networks. Weed Research 48: 28–37. https://doi.
org/10.1111/j.1365-3180.2008.00598.x

213. Ma L, Vu GTH, Schubert V, Watanabe K, Stein N, Houben A, Schubert I (2010) 
Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. 
Chromosome Research 18: 841–850. https://doi.org/10.1007/s10577-010-9166-3

214. Ma Y, Zhang M, Li Y, Shui J, Zhou Y (2014) Allelopathy of rice (Oryza sativa L.) root exu-
dates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. 
Journal of Plant Interactions 9: 722–730. https://doi.org/10.1080/17429145.2014.912358

215. Marshall GR, Coleman MJ, Sindel BM, Reeve IJ, Berney PJ (2016) Collective action 
in invasive species control, and prospects for community-based governance: The case of 
serrated tussock (Nassella trichotoma) in New South Wales, Australia. Land Use Policy 
56: 100–111. https://doi.org/10.1016/j.landusepol.2016.04.028

216. Matocha MA, Grichar WJ, Grymes C (2010) Field Sandbur (Cenchrus spinifex) Control 
and Bermudagrass Response to Nicosulfuron Tank Mix Combinations. Weed Technol-
ogy 24: 510–514. https://doi.org/10.1614/WT-D-10-00032.1

217. May C, Stewart PL (1998) Development of a toxin-binding agent as a treatment for tu-
nicaminyluracil toxicity: protection against tunicamycin poisoning of sheep. Australian 
veterinary journal 76: 752–756. https://doi.org/10.1111/j.1751-0813.1998.tb12307.x

218. Mcgraw BA, Koppenhöfer AM (2015) Spatial analysis of Listronotus maculicollis im-
mature stages demonstrates strong associations with conspecifics and turfgrass damage 
but not with optimal hosts on golf course fairways. Entomologia Experimentalis et Ap-
plicata 157: 307–316. https://doi.org/10.1111/eea.12363

https://doi.org/10.1614/WS-06-108.1
https://doi.org/10.1016/S2095-3119(12)60049-5
https://doi.org/10.1016/S2095-3119(12)60049-5
https://doi.org/10.1016/j.envexpbot.2016.09.004
https://doi.org/10.1111/j.1365-3180.2008.00598.x
https://doi.org/10.1111/j.1365-3180.2008.00598.x
https://doi.org/10.1007/s10577-010-9166-3
https://doi.org/10.1080/17429145.2014.912358
https://doi.org/10.1016/j.landusepol.2016.04.028
https://doi.org/10.1614/WT-D-10-00032.1
https://doi.org/10.1111/j.1751-0813.1998.tb12307.x
https://doi.org/10.1111/eea.12363


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)52

219. McKay AC, Ophel KM, Reardon TB, Gooden JM (1993) Livestock deaths associated 
with Clavibacter toxicus/Anguina sp. infection in seedheads of Agrostis avenacea and Poly-
pogon monspeliensis. Plant Disease 77: 635–641.

220. McKenzie EHC, Thongkantha S, Lumyong S (2007) Zygosporium bioblitzi sp. nov. on 
dead leaves of Cortaderia and Dracaena. New Zealand Journal of Botany 45: 433–435. 
https://doi.org/10.1080/00288250709509724

221. Mckinley TL, Roberts RK, Hayes RM English BC (1999) Economic comparison of 
herbicides for johnsongrass (Sorghum halepense) control in glyphosate-tolerant soybean 
(Glycine max). Weed technology13: 30–36.

222. McWhorter CG, Azlin WR (1978) Effects of environment on the toxicity of glypho-
sate to johnsongrass (Sorghum halepense) and soybeans (Glycine max). Weed Science 26: 
605–608.

223. Mebalds MI, Price T V. (2010) Epidemiology of blind seed disease in perennial ryegrass 
(Lolium perenne) in Victoria. Australasian Plant Pathology 39: 394–405. https://doi.
org/10.1071/AP10071

224. Mesléard F, Ham LT, Boy V, van Wijck C, Grillas P (1993) Competition between an 
introduced and an indigenous species: the case of Paspalum paspalodes (Michx) Schrib-
ner and Aeluropus littoralis (Gouan) in the Camargue (southern France). Oecologia 94: 
204–209. https://doi.org/10.1007/BF00341318

225. Meyer SE, Quinney D, Nelson DL, Weaver J (2007) Impact of the pathogen Pyrenopho-
ra semeniperda on Bromus tectorum seedbank dynamics in North American cold deserts. 
Weed Research 47: 54–62. https://doi.org/10.1111/j.1365-3180.2007.00537.x

226. Michael PJ, Owen MJ, Powles SB (2010) Herbicide-resistant weed seeds contaminate 
grain sown in the Western Australian grain belt. Weed Science 58: 466–472.

227. Middleton BA, Shakla JB, Dubey B (1998) The water buffalo controversy in Keoladeo 
National Park, India. Ecological Modelling 106: 93–98. https://doi.org/10.1016/
S0304-3800(97)00171-3

228. Milton SJ (2004) Grasses as invasive alien plants in South Africa. South African Journal 
of Science 100: 69–75.

229. Min AN (1997) Phytotoxicity of vulpia residues: I. Investigation of aqueous ex-
tracts. Journal of Chemical Ecology 23: 1979–1995. https://doi.org/10.1023/
B:JOEC.0000006484.57119.84

230. Mitkowski NA, Browning M, Basu C, Jordan K, Jackson N (2005) Pathogenicity of 
Xanthomonas translucens from Annual Bluegrass on Golf Course Putting Greens. Plant 
Disease 89: 469–473. https://doi.org/10.1094/PD-89-0469

231. Miz RB, De Souza-Chies TT (2006) Genetic relationships and variation among bio-
types of dallisgrass (Paspalum dilatatum Poir.) and related species using random ampli-
fied polymorphic DNA markers. Genetic Resources and Crop Evolution 53: 541–552. 
https://doi.org/10.1007/s10722-005-1290-0

232. Mokhtassi-Bidgoli A, Navarrete L, AghaAlikhani M, Gonzalez-Andujar JL (2013) 
Modelling the population dynamic and management of Bromus diandrus in a 
non-tillage system. Crop Protection 43: 128–133. https://doi.org/10.1016/j.cro-
pro.2012.08.015

https://doi.org/10.1080/00288250709509724
https://doi.org/10.1071/AP10071
https://doi.org/10.1071/AP10071
https://doi.org/10.1007/BF00341318
https://doi.org/10.1111/j.1365-3180.2007.00537.x
https://doi.org/10.1016/S0304-3800(97)00171-3
https://doi.org/10.1016/S0304-3800(97)00171-3
https://doi.org/10.1023/B:JOEC.0000006484.57119.84
https://doi.org/10.1023/B:JOEC.0000006484.57119.84
https://doi.org/10.1094/PD-89-0469
https://doi.org/10.1007/s10722-005-1290-0
https://doi.org/10.1016/j.cropro.2012.08.015
https://doi.org/10.1016/j.cropro.2012.08.015


Global environmental and socio-economic impacts of selected alien grasses... 53

233. Molina-Montenegro MA, Carrasco-Urra F, Acuña-Rodríguez I, Oses R, Torres-Díaz C, 
Chwedorzewska KJ (2014) Assessing the importance of human activities for the estab-
lishment of the invasive Poa annua in Antarctica. Polar Research 33: 21425. https://doi.
org/10.3402/polar.v33.21425

234. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli 
E (2012) Occurrence of the Non-Native Annual Bluegrass on the Antarctic Mainland 
and Its Negative Effects on Native Plants. Conservation Biology 26: 717–723. https://
doi.org/10.1111/j.1523-1739.2012.01865.x

235. Molina-Montenegro MA, Pertierra LR, Razeto-Barry P, Díaz J, Finot VL, Torres-Díaz C 
(2015) A recolonization record of the invasive Poa annua in Paradise Bay, Antarctic Pen-
insula: modeling of the potential spreading risk. Polar Biology 38: 1091–1096. https://
doi.org/10.1007/s00300-015-1668-1

236. Monks DW, Schultheis JR (1998) Critical weed-free period for large crabgrass (Digitaria 
sanguinalis) in transplanted watermelon (Citrullus lanatus). Weed Science 46: 530–532.

237. Morales, J (2012). Patterns of Distribution of Paspalum species along environmental 
gradients landscapes in the Nicaraguan Dry Tropical Forest. Master’s Thesis. Norwe-
gian University of Science and Technology. Available from: https://brage.bibsys.no/
xmlui/bitstream/handle/11250/245173/608831_FULLTEXT01.pdf?sequence=1 
(October 23, 2017).

238. Morgan WG, King IP, Koch S, Harper JA, Thomas HM (2001) Introgression of chro-
mosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by 
genomic in situ hybridisation (GISH). Theoretical and Applied Genetics 103: 696–701. 
https://doi.org/10.1007/s001220100634

239. Morris C, Monaco T a., Rigby CW (2009) Variable Impacts of Imazapic Rate on 
Downy Brome (Bromus tectorum) and Seeded Species in Two Rangeland Communi-
ties. Invasive Plant Science and Management 2: 110–119. https://doi.org/10.1614/
IPSM-08-104.1

240. Morrow LA, Stahlman PW (1984) The history and distribution of downy brome (Bro-
mus tectorum) in North America. Weed Science 32: 2–6.

241. Mugdi LF, Goodall J, Witkowski ET Byrne, MJ (2015) The role of reproduction in 
Glyceria maxima invasion. African Journal of Range & Forage Science, 59–66.

242. Mugwedi LF, Goodall J, Witkowski ETF, Byrne MJ (2015) The role of reproduction 
in Glyceria maxima invasion. African Journal of Range and Forage Science 32: 59–66. 
https://doi.org/10.2989/10220119.2014.929177

243. Mugwedi LF, Goodall JM, Witkowski ETF, Byrne MJ (2015) Post-fire vegetative re-
cruitment of the alien grass Glyceria maxima at a KwaZulu-Natal Midlands dam, South 
Africa. African Journal of Aquatic Science 40: 443–445. https://doi.org/10.2989/1608
5914.2015.1082069

244. Murry LE, Tai W (1980) Genome relations of Agropyron sericeum, Hordeum jubatum 
and their hybrids. American Journal of Botany 67: 1374–1379.

245. Musil CF, Milton SJ, Davis GW (2005) The threat of alien invasive grasses to lowland 
Cape floral diversity: An empirical appraisal of the effectiveness of practical control 
strategies. South African Journal of Science 101: 337–344.

https://doi.org/10.3402/polar.v33.21425
https://doi.org/10.3402/polar.v33.21425
https://doi.org/10.1111/j.1523-1739.2012.01865.x
https://doi.org/10.1111/j.1523-1739.2012.01865.x
https://doi.org/10.1007/s00300-015-1668-1
https://doi.org/10.1007/s00300-015-1668-1
https://brage.bibsys.no/xmlui/bitstream/handle/11250/245173/608831_FULLTEXT01.pdf?sequence=1
https://brage.bibsys.no/xmlui/bitstream/handle/11250/245173/608831_FULLTEXT01.pdf?sequence=1
https://doi.org/10.1007/s001220100634
https://doi.org/10.1614/IPSM-08-104.1
https://doi.org/10.1614/IPSM-08-104.1
https://doi.org/10.2989/10220119.2014.929177
https://doi.org/10.2989/16085914.2015.1082069
https://doi.org/10.2989/16085914.2015.1082069


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)54

246. Myer R, Blount A, Coleman S, Carter J (2011) Forage nutritional quality evaluation of 
Bahiagrass selections during autumn in Florida. Communications in Soil Science and 
Plant Analysis 42: 167–172. https://doi.org/10.1080/00103624.2011.535067

247. Najafabadi AS, Mofid MR, Solouki M, Mohammadi R (2010) Ergovaline levels in 
iranian ecotypes of Festuca arundinacea schreb. Trakia Journal of Sciences 8: 40–46.

248. Nasseri A. (2016). Canal Geometry, Flow Velocity, Dallisgrass (Paspalum dilatatum 
Poir.) Density and Soil Phosphorous Effects on Hydraulic Resistance of Vegetated Ca-
nals. Tarim Bilimleri Dergisi 22: 187–195.

249. Newingham BA, Belnap J (2006) Direct effects of soil amendments on field emergence 
and growth of the invasive annual grass Bromus tectorum L. and the native perennial 
grass Hilaria jamesii (Torr.) Benth. Plant and Soil 280: 29–40. https://doi.org/10.1007/
s11104-005-8551-8

250. Newman YC, Sollenberger LE (2005) Grazing management and nitrogen fertilization 
effects on vaseygrass persistence in limpograss pastures. Crop Science 45: 2038–2043. 
https://doi.org/10.2135/cropsci2004.0736

251. Nishikawa T, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K, Nishikawa T, 
Salomon B, Komatsuda T, von Bothmer R, Kadowaki K (2002) Molecular phylogeny of 
the genus Hordeum using three chloroplast DNA sequences. Genome 45: 1157–1166. 
https://doi.org/10.1139/G02-088

252. O’connor PJ, Covich AP, Scatena FN, Loope LL (2000) Non-indigenous bamboo along 
headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay 
and patterns of invasion. Journal of Tropical Ecology, 16(04), pp. 499–516.

253. O’Donovan JT (1988) Wild oat (Avena fatua) infestations and economic returns as 
influenced by frequency of control. Weed Technology 2: 495–498.

254. Okada M, Lyle M, Jasieniuk M (2009) Inferring the introduction history of the invasive 
apomictic grass Cortaderia jubata using microsatellite markers. Diversity and Distribu-
tions 15: 148–157. https://doi.org/10.1111/j.1472-4642.2008.00530.x

255. Oliveira LB, Soares EM, Jochims F, Tiecher T, Marques AR, Kuinchtner BC, Rheinhe-
imer DS, De Quadros FLF (2015) Long-Term Effects of Phosphorus on Dynamics of 
an Overseeded Natural Grassland in Brazil. Rangeland Ecology and Management 68: 
445–452. https://doi.org/10.1016/j.rama.2015.07.012

256. Orgaard M, Anamthawat-Jónsson K (2001) Genome discrimination by in situ hybridi-
zation in Icelandic species of Elymus and Elytrigia (Poaceae: Triticeae). Genome 44: 
275–283. https://doi.org/10.1139/gen-44-2-275

257. Owen MJ, Goggin DE, Powles SB (2012) Non-target-site-based resistance to ALS-in-
hibiting herbicides in six Bromus rigidus populations from Western Australian cropping 
fields. Pest Management Science 68: 1077–1082. https://doi.org/10.1002/ps.3270

258. Pablos I, Wildner S, Asam C, Wallner M, Gadermaier G (2016) Pollen Allergens for 
Molecular Diagnosis. Current Allergy and Asthma Reports 16. https://doi.org/10.1007/
s11882-016-0603-z

259. Panayotou PC (1982) Some aspects on barley yellow dwarf virus host range/Einlge Aspekte 
zum Wirtspflanzenkreis des Gelbverzwergungs-Virus der Gerste. Zeitschrift für Pflanzenk-
rankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection 89: 595–603.

https://doi.org/10.1080/00103624.2011.535067
https://doi.org/10.1007/s11104-005-8551-8
https://doi.org/10.1007/s11104-005-8551-8
https://doi.org/10.2135/cropsci2004.0736
https://doi.org/10.1139/G02-088
https://doi.org/10.1111/j.1472-4642.2008.00530.x
https://doi.org/10.1016/j.rama.2015.07.012
https://doi.org/10.1139/gen-44-2-275
https://doi.org/10.1002/ps.3270
https://doi.org/10.1007/s11882-016-0603-z
https://doi.org/10.1007/s11882-016-0603-z


Global environmental and socio-economic impacts of selected alien grasses... 55

260. Papapanagiotou AP, Kaloumenos NS, Eleftherohorinos IG (2012) Sterile oat (Avena 
sterilis L.) cross-resistance profile to ACCase-inhibiting herbicides in Greece. Crop Pro-
tection 35: 118–126. https://doi.org/10.1016/j.cropro.2011.08.001

261. Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distribu-
tions of invasive Eurasian annual grasses: A South African perspective. Climatic Change 
94: 87–103. https://doi.org/10.1007/s10584-009-9549-7

262. Parkinson H, Zabinski C, Shaw N (2013) Impact of native grasses and cheatgrass (Bro-
mus tectorum) on great basin forb seedling growth. Rangeland Ecology and Manage-
ment 66: 174–180. https://doi.org/10.2111/REM-D-11-00028.1

263. Patra A, Tushar J, Dubey B (2017) Modeling and simulation of a wetland park: An ap-
plication to Keoladeo National Park, India. Mathematics and Computers in Simulation 
134: 54–78. https://doi.org/10.1016/j.matcom.2016.10.001

264. Patterson DT (1994) Temperature responses and potential range of the grass weed, ser-
rated tussock (Nassella trichotoma), in the United States. Weed technology 8: 703–712.

265. Pereira MRR, Teixeira RN, Souza GSF, Silva JIC, Martins D (2011) Inibição do 
desenvolvimento inicial de plantas de girassol, milho e triticale por palhada de 
capim-colchão. Planta Daninha 29: 305–310. https://doi.org/10.1590/S0100-
83582011000200008

266. Petersen G (1991) Intergeneric hybridization between Hordeum and Secale (Poaceae). 
I. Crosses and development of hybrids. Nordic Journal of Botany 11: 253–270. https://
doi.org/10.1111/j.1756-1051.1991.tb01404.x

267. Philipson MN (1978) Apomixis in Cortaderia jubata (Gramineae). New Zealand Jour-
nal of Botany 16: 45–59. https://doi.org/10.1080/0028825X.1978.10429656

268. Picone LI, Quaglia G, Garcia FO, Laterra, P (2003). Biological and chemical response 
of a grassland soil to burning. Journal of Range Management 56: 291–297.

269. Popay I, Timmins SM, McCluggage T (2003) Aerial spraying of pampas grass in dif-
ficult conservation sites. Science for Conservation. Department of Conservation, Wel-
lington, New Zealand: 5–17.

270. Poulin J, Sakai A, Weller SG, Nguyen T (2007) Plasticity, Precipitation, and Invasive-
ness in the Fire - Promoting Grass. American Journal of Botany 94: 533–541.

271. Poulin J, Weller SG, Sakai AK (2005) Genetic diversity does not affect the inva-
siveness of fountain grass (Pennisetum setaceum) in Arizona, California and Ha-
waii. Diversity and Distributions 11: 241–247. https://doi.org/10.1111/j.1366-
9516.2005.00136.x

272. Puliafico KP, Schwarzländer M, Price WJ, Harmon BL, Hinz HL (2011) Native and 
Exotic Grass Competition with Invasive Hoary Cress (Cardaria draba). Invasive Plant 
Science and Management 4: 38–49. https://doi.org/10.1614/IPSM-D-10-00041.1

273. Qasem JR (2007) Chemical control of wild-oat (Avena sterilis L.) and other weeds in 
wheat (Triticum durum Desf.) in Jordan. Crop Protection 26: 1315–1324. https://doi.
org/10.1016/j.cropro.2006.11.006

274. Quarín CL, Caponio I (1995) Cytogenetics and reproduction of Paspalum dasypleurum 
and its hybrids with P. urvillei and P. dilatatum ssp. flavescens. International Journal of 
Plant Sciences 156: 232–235.

https://doi.org/10.1016/j.cropro.2011.08.001
https://doi.org/10.1007/s10584-009-9549-7
https://doi.org/10.2111/REM-D-11-00028.1
https://doi.org/10.1016/j.matcom.2016.10.001
https://doi.org/10.1590/S0100-83582011000200008
https://doi.org/10.1590/S0100-83582011000200008
https://doi.org/10.1111/j.1756-1051.1991.tb01404.x
https://doi.org/10.1111/j.1756-1051.1991.tb01404.x
https://doi.org/10.1080/0028825X.1978.10429656
https://doi.org/10.1111/j.1366-9516.2005.00136.x
https://doi.org/10.1111/j.1366-9516.2005.00136.x
https://doi.org/10.1614/IPSM-D-10-00041.1
https://doi.org/10.1016/j.cropro.2006.11.006
https://doi.org/10.1016/j.cropro.2006.11.006


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)56

275. Quinn LD, Holt JS (2008) Ecological correlates of invasion by Arundo donax in three 
southern California riparian habitats. Biological Invasions 10: 591–601. https://doi.
org/10.1007/s10530-007-9155-4

276. Racelis AE, Goolsby JA, Moran P (2009) Seasonality and Movement of Adventive Pop-
ulations of the Arundo Wasp (Hymenoptera: Eurytomidae), a Biological Control Agent 
of Giant Reed in the Lower Rio Grande Basin in South Texas. Southwestern Entomolo-
gist 34: 347–357. https://doi.org/10.3958/059.034.0401

277. Rahlao SJ, Milton SJ, Esler KJ, Barnard P (2010) The distribution of invasive Pennise-
tum setaceum along roadsides in western South Africa: The role of corridor interchanges. 
Weed Research 50: 537–543. https://doi.org/10.1111/j.1365-3180.2010.00801.x

278. Rahlao SJ, Milton SJ, Esler KJ, Barnard P (2014) Performance of invasive alien foun-
tain grass (Pennisetum setaceum) along a climatic gradient through three South Afri-
can biomes. South African Journal of Botany 91: 43–48. https://doi.org/10.1016/j.
sajb.2013.11.013

279. Rahlao SJ, Milton SJ, Esler KJ, Van Wilgen BW, Barnard P (2009) Effects of invasion 
of fire-free arid shrublands by a fire-promoting invasive alien grass (Pennisetum seta-
ceum) in South Africa. Austral Ecology 34: 920–928. https://doi.org/10.1111/j.1442-
9993.2009.02000.x

280. Ray-Mukherjee J, Jones TA, Adler PB, Monaco TA (2011) Immature seedling growth 
of two north american native perennial bunchgrasses and the invasive grass bromus 
tectorum. Rangeland Ecology and Management 64: 358–365. https://doi.org/10.2111/
REM-D-10-00101.1

281. Riefner Jr RE Columbus JT (2008) Paspalum vaginatum (Poaceae), a new threat to 
wetland diversity in southern California. Journal of the Botanical Research Institute of 
Texas 2: 743–759.

282. Riley IT (1996) Dilophospora alopecuri on Lolium rigidum and Holcus lanatus in south-
eastern Australia. Australasian Plant Pathology 25: 255–259.

283. Riley IT, Reardon TB, Bertozzi T (1998) Allozyme analysis of Australian isolates of 
Dilophospora alopecuri. Mycological Research 102: 301–307. https://doi.org/10.1017/
S095375629700498X

284. Riley IT, Schmitz A, De Silva P (2001) Anguina australis, a vector for Rathayibacter 
toxicus in Ehrharta longiflora. Australasian Plant Pathology 30: 171–175. https://doi.
org/10.1071/AP01024

285. Ringselle B, Prieto-Ruiz I, Andersson L, Aronsson H, Bergkvist G (2017) Elymus repens 
biomass allocation and acquisition as affected by light and nutrient supply and compan-
ion crop competition. Annals of botany 119: 477–485. https://doi.org/10.1093/aob/
mcw228

286. Roberts AM, Van Ree R, Cardy SM, Bevan LJ, Walker MRC-1421683 (1992) Recom-
binant pollen allergens from Dactylis glomerata: preliminary evidence that human IgE 
cross-reactivity between Dac g II and Lol p I/II is increased following grass pollen im-
munotherapy. Immunology 76: 389–396.

287. Roché ACS (2010) New habitats, new menaces: Centaurea × kleinii (C. moncktonii × 
C. solstitialis), a new hybrid species between two alien weeds. Collectanea Botanica 23: 
17–23. https://doi.org/10.3989/collectbot.2010.v29.002

https://doi.org/10.1007/s10530-007-9155-4
https://doi.org/10.1007/s10530-007-9155-4
https://doi.org/10.3958/059.034.0401
https://doi.org/10.1111/j.1365-3180.2010.00801.x
https://doi.org/10.1016/j.sajb.2013.11.013
https://doi.org/10.1016/j.sajb.2013.11.013
https://doi.org/10.1111/j.1442-9993.2009.02000.x
https://doi.org/10.1111/j.1442-9993.2009.02000.x
https://doi.org/10.2111/REM-D-10-00101.1
https://doi.org/10.2111/REM-D-10-00101.1
https://doi.org/10.1017/S095375629700498X
https://doi.org/10.1017/S095375629700498X
https://doi.org/10.1071/AP01024
https://doi.org/10.1071/AP01024
https://doi.org/10.1093/aob/mcw228
https://doi.org/10.1093/aob/mcw228
https://doi.org/10.3989/collectbot.2010.v29.002


Global environmental and socio-economic impacts of selected alien grasses... 57

288. Roehrs H, Klooss S, Kirleis W (2013) Evaluating prehistoric finds of Arrhenatherum 
elatius var. bulbosum in north-western and central Europe with an emphasis on the first 
Neolithic finds in Northern Germany. Archaeological and Anthropological Sciences 5: 
1–15. https://doi.org/10.1007/s12520-012-0109-0

289. Rolston MP (1981) Wild oats in Newzealand: A review. New Zealand Journal of Ex-
perimental Agriculture 9: 115–121. https://doi.org/10.1080/03015521.1981.1042781
4

290. Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic 
N2-fixing bacteria and alters soil biogeochemistry. Plant and Soil 315: 163–172. htt-
ps://doi.org/10.1007/s11104-008-9740-z

291. Rúa MA, Umbanhowar J, Hu S, Burkey KO, Mitchell CE (2013) Elevated CO2 spurs 
reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus. 
New Phytologist 199: 541–549.

292. Ruttledge A, Whalley RDB, Reeve I, Backhouse DA, Sindel BM (2015) Preventing 
weed spread: A survey of lifestyle and commercial landholders about Nassella tricho-
toma in the Northern Tablelands of New South Wales, Australia. Rangeland Journal 37: 
409–423. https://doi.org/10.1071/RJ15010

293. Salo LF (2004) Population dynamics of red brome (Bromus madritensis subsp. rubens): 
Times for concern, opportunities for management. Journal of Arid Environments 57: 
291–296. https://doi.org/10.1016/S0140-1963(03)00110-1

294. Salo LF (2005) Red brome (Bromus rubens subsp. madritensis) in North America: Possi-
ble modes for early introductions, subsequent spread. Biological Invasions 7: 165–180. 
https://doi.org/10.1007/s10530-004-8979-4

295. Sarah S, Hussain F, Ehsan M, Burni T (2011) Allelopathic potential of Polypogon mon-
speliensis L. against two cultivars of wheat. African Journal of Biotechnology 10: 19723–
19728. https://doi.org/10.5897/Ajb11.1528

296. Savova Bianchi D, Keller Senften J, Felber F (2002) Isozyme variation of Hordeum 
murinum in Switzerland and test of hybridization with cultivated barley. Weed Research 
42: 325–333. https://doi.org/10.1046/j.1365-3180.2002.00292.x

297. Schmidt M, Bothma G (2006) Risk assessment for transgenic sorghum in Africa: Crop-
to-crop gene flow in Sorghum bicolor (L.) Moench. Crop Science 46: 790–798. https://
doi.org/10.2135/cropsci2005.06-0117

298. Schmidt W, Brubach M (1993) Plant-Distribution Patterns During Early Succes-
sion on an Artificial Protosoil. Journal of Vegetation Science 4: 247–254. https://doi.
org/10.2307/3236111

299. Schramm G, Bufe A, Petersen A, Schlaak M, Becker WM (1998) Molecular and immu-
nological characterization of group V allergen isoforms from velvet grass pollen (Holcus 
lanatus). Eur J Biochem 252: 200–206.

300. Schrauf GE, Blanco MA, Cornaglia PS, Deregibus VA, Madia M, Pacheco MG, Padilla 
J (2003) Ergot resistance in plants of Paspalum dilatatum incorporated by hybridisation 
with Paspalum urvillei. Tropical Grasslands 37: 182–186.

301. Scursoni JA, Palmano M, De Notta A, Delfino D (2012) Italian ryegrass (Lolium mul-
tiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in 
Argentina. Crop Protection 32: 36–40. https://doi.org/10.1016/j.cropro.2011.11.002

https://doi.org/10.1007/s12520-012-0109-0
https://doi.org/10.1080/03015521.1981.10427814
https://doi.org/10.1080/03015521.1981.10427814
https://doi.org/10.1007/s11104-008-9740-z
https://doi.org/10.1007/s11104-008-9740-z
https://doi.org/10.1071/RJ15010
https://doi.org/10.1016/S0140-1963(03)00110-1
https://doi.org/10.1007/s10530-004-8979-4
https://doi.org/10.5897/Ajb11.1528
https://doi.org/10.1046/j.1365-3180.2002.00292.x
https://doi.org/10.2135/cropsci2005.06-0117
https://doi.org/10.2135/cropsci2005.06-0117
https://doi.org/10.2307/3236111
https://doi.org/10.2307/3236111
https://doi.org/10.1016/j.cropro.2011.11.002


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)58

302. Scursoni JA, Satorre EH (2005) Barley (Hordeum vulgare) and wild oat (Avena fatua) 
competition is affected by crop and weed density. Weed technology 19: 790–795.

303. Severns PM (2008) Exotic grass invasion impacts fitness of an endangered prairie but-
terfly, Icaricia icarioides fenderi. Journal of Insect Conservation 12: 651–661. https://
doi.org/10.1007/s10841-007-9101-x

304. Sezen UU, Barney JN, Atwater DZ, Pederson GA, Pederson JF, Chandler JM, Cox TS, 
Cox S, Dotray P, Kopec D, Smith SE, Schroeder J, Wright SD, Jiao Y, Kong W, Goff 
V, Auckland S, Rainville LK, Pierce GJ, Lemke C, Compton R, Phillips C, Kerr A, 
Mettler M, Paterson AH (2016) Multi-phase US spread and habitat switching of a post-
columbian invasive, Sorghum halepense. PLoS ONE 11: 1–15. https://doi.org/10.1371/
journal.pone.0164584

305. Sharma A, Sharma N, Bhalla P, Singh M (2017) Comparative and evolutionary analysis 
of grass pollen allergens using Brachypodium distachyon as a model system. PLoS ONE 
12: 1–22. https://doi.org/10.1371/journal.pone.0169686

306. Sharma MP, Vandenborn WH (1978) The Biology of Canadian Weeds: Avena fatua. 
Canada Journal Plant Science 58: 141–157. https://doi.org/10.4141/cjps78-022

307. Shearer BL, Skovmand B, Wilcoxson RD (1977) Hordeum jubatum as a source of inoc-
ulum of Septoria avenae f. sp. triticea and S. passerinii. Phytopathology 67: 1338–1341.

308. Showler AT, Moran PJ (2014) Associations between host plant concentrations of se-
lected biochemical nutrients and Mexican rice borer, Eoreuma loftini, infestation. Ento-
mologia Experimentalis et Applicata 151: 135–143. https://doi.org/10.1111/eea.12177

309. Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumu-
lation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Envi-
ronmental Pollution 120: 445–453. https://doi.org/10.1016/S0269-7491(02)00110-0

310. Shukla JB, Dubey B (1996) Effect of changing habitat on species: application to Keoladeo 
National Park, India. Ecological Modelling 86: 91–99. https://doi.org/10.1016/0304-
3800(94)00194-4

311. Sierota Z, Damszel M, Borys M, Nowakowska JA (2016) The couch grass rhizome 
with Heterobasidion annosum fruiting bodies in afforested post-agricultural land. Forest 
Pathology 46: 376–379. https://doi.org/10.1111/efp.12289

312. Skerritt JH, Guihot SL, McDonald SE, Culvenor RA (2000) Development of immuno-
assays for tyramine and tryptamine toxins of Phalaris aquatica L. Journal of Agricultural 
and Food Chemistry 48: 27–32. https://doi.org/10.1021/jf990452z

313. Smith AE (1983) Differential bahiagrass (Paspalum notatum) cultivar response to atra-
zine. Weed Science 31: 88–92.

314. Smith MW, Wolf ME, Cheary BS, Carroll BL (2001) Allelopathy of bermudagrass, 
tall fescue, redroot pigweed, and cutleaf evening primrose on pecan. HortScience 36: 
1047–1048.

315. Snow AA (2012) Illegal gene flow from transgenic creeping bentgrass: The saga 
continues. Molecular Ecology 21: 4663–4664. https://doi.org/10.1111/j.1365-
294X.2012.05695.x

316. Sorrell BK, Brix H, Fitridge I, Konnerup D, Lambertini C (2012) Gas exchange 
and growth responses to nutrient enrichment in invasive Glyceria maxima and native 

https://doi.org/10.1007/s10841-007-9101-x
https://doi.org/10.1007/s10841-007-9101-x
https://doi.org/10.1371/journal.pone.0164584
https://doi.org/10.1371/journal.pone.0164584
https://doi.org/10.1371/journal.pone.0169686
https://doi.org/10.4141/cjps78-022
https://doi.org/10.1111/eea.12177
https://doi.org/10.1016/S0269-7491(02)00110-0
https://doi.org/10.1016/0304-3800(94)00194-4
https://doi.org/10.1016/0304-3800(94)00194-4
https://doi.org/10.1111/efp.12289
https://doi.org/10.1021/jf990452z
https://doi.org/10.1111/j.1365-294X.2012.05695.x
https://doi.org/10.1111/j.1365-294X.2012.05695.x


Global environmental and socio-economic impacts of selected alien grasses... 59

New Zealand Carex species. Aquatic Botany 103: 37–47. https://doi.org/10.1016/j.
aquabot.2012.05.008

317. Soukup J, Holec J, Hamouz P, Tyšer L (2004) Aliens on arable land. Weed Science on 
the Go: 11–22.

318. Speranza PR (2009) Evolutionary patterns in the Dilatata group (Paspalum, Poaceae). Plant 
Systematics and Evolution 282: 43–56. https://doi.org/10.1007/s00606-009-0205-5

319. Stahlman PW, Miller SD (1990) Downy brome (Bromus tectorum) interference and 
economic thresholds in winter wheat (Triticum aestivum). Weed Science 38: 224–
228.

320. Standish RJ, Cramer VA, Hobbs RJ (2008) Land-use legacy and the persistence of in-
vasive Avena barbata on abandoned farmland. Journal of Applied Ecology 45: 1576–
1583. https://doi.org/10.1111/j.1365-2664.2008.01558.x

321. Steppuhn H, Asay K (2005) Emergence, height, and yield of tall, NewHy, and green 
wheatgrass forage crops grown in saline root zones. Canadian journal of plant science, 
85: 863–875.

322. Sugiura S, Yamazaki K (2007) Migratory moths as dispersal vectors of an introduced 
plant-pathogenic fungus in Japan. Biological Invasions 9: 101–106. https://doi.
org/10.1007/s10530-006-9006-8

323. Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T, von Bothmer R (1994) 
Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theoreti-
cal and Applied Genetics 89: 801–810. https://doi.org/10.1007/BF00224500

324. Sweet LC, Holt JS (2015) Establishment Stage Competition between Exotic Crimson 
Fountaingrass (Pennisetum setaceum, C4) and Native Purple Needlegrass (Stipa pulchra, 
C3). Weed Science Society of America 8: 139–150. https://doi.org/10.1614/IPSM-
D-14-00048.1

325. Szczepaniak M (2009) Biosystematic studies of Elymus repens (L.) gould (Poaceae): Pat-
terns of phenotypic variation. Acta Societatis Botanicorum Poloniae 78: 51–61.

326. Takahashi W, Miura Y, Sasaki T, Takamizo T (2014) Identification of a novel major 
locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.). BMC 
Plant Biology 14: 1–12. https://doi.org/10.1186/s12870-014-0303-6

327. Takahashi W, Takamizo T, Kobayashi M, Ebina M (2010) Plant regeneration from 
calli in giant reed (Arundo donax L.). Grassland Science 56: 224–229. https://doi.
org/10.1111/j.1744-697X.2010.00198.x

328. Takahashi Y, Aoyama M, Abe E, Aita T, Kawashima S, Ohta N, Sakaguchi M (2008) 
Development of electron spin resonance radical immunoassay for measurement of 
airborne orchard grass (Dactylis glomerata) pollen antigens. Aerobiologia 24: 53–59. 
https://doi.org/10.1007/s10453-007-9082-y

329. Tanji A (2001). Response of ripgut brome (Bromus rigidus) and foxtail brome (Bromus 
rubens) to MON 37500. Weed technology 15: 642–646.

330. Tanno K, Von Bothmer R, Yamane K, Takeda K, Komatsuda T (2010) Analysis of DNA 
sequence polymorphism at the cMWG699 locus reveals phylogenetic relationships and 
allopolyploidy within Hordeum murinum subspecies. Hereditas 147: 34–42. https://
doi.org/10.1111/j.1601-5223.2009.02142.x

https://doi.org/10.1016/j.aquabot.2012.05.008
https://doi.org/10.1016/j.aquabot.2012.05.008
https://doi.org/10.1007/s00606-009-0205-5
https://doi.org/10.1111/j.1365-2664.2008.01558.x
https://doi.org/10.1007/s10530-006-9006-8
https://doi.org/10.1007/s10530-006-9006-8
https://doi.org/10.1007/BF00224500
https://doi.org/10.1614/IPSM-D-14-00048.1
https://doi.org/10.1614/IPSM-D-14-00048.1
https://doi.org/10.1186/s12870-014-0303-6
https://doi.org/10.1111/j.1744-697X.2010.00198.x
https://doi.org/10.1111/j.1744-697X.2010.00198.x
https://doi.org/10.1007/s10453-007-9082-y
https://doi.org/10.1111/j.1601-5223.2009.02142.x
https://doi.org/10.1111/j.1601-5223.2009.02142.x


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)60

331. Tayyar R, Khudamrongsawat J, Holt JS (2004) Genetic diversity of giant reed (Arun-
do donax) in the Santa Ana River, California. Weed Science 52: 395–405. https://doi.
org/10.1614/WS-03-120R1

332. Timbrell VL, Riebelt L, Simmonds C, Solley G, Smith WB, McLean-Tooke A, Van 
Nunen S, Smith PK, Upham JW, Langguth D, Davies JM (2014) An immunodiagnos-
tic assay for quantitation of specific ige to the major pollen allergen component, pas n 1, 
of the subtropical bahia grass. International Archives of Allergy and Immunology 165: 
219–228. https://doi.org/10.1159/000369341

333. Timko MP, Huang K, Lis KE (2012) Host Resistance and Parasite Virulence in Stri-
ga–Host Plant Interactions: A Shifting Balance of Power. Weed Science 60: 474–479. 
https://doi.org/10.1614/WS-D-l

334. Tozer KN, Chapman DF, Quigley PE, Dowling PM, Cousens RD, Kearney GA (2009) 
Integrated management of vulpia in dryland perennial pastures of southern Australia. 
Crop and Pasture Science 60: 32–42. https://doi.org/10.1071/CP07445

335. Tozer KN, Chapman DF, Quigley PE, Dowling PM, Cousens RD, Kearney GA (2008) 
Effect of grazing, gap dynamics, and inter-specific seedling competition on growth and 
survival of Vulpia spp. and Hordeum murinum ssp. leporinum. Australian Journal of 
Agricultural Research 59: 646–655. https://doi.org/10.1071/AR07375

336. Tozer KN, Chapman DF, Quigley PE, Dowling PM, Cousens RD, Kearney GA, Sed-
cole JR (2008) Controlling invasive annual grasses in grazed pastures: Population dy-
namics and critical gap sizes. Journal of Applied Ecology 45: 1152–1159. https://doi.
org/10.1111/j.1365-2664.2008.01500.x

337. Travlos IS (2013) Competition between ACCase-Inhibitor Resistant and Suscepti-
ble Sterile Wild Oat (Avena sterilis) Biotypes. Weed Science 61: 26–31. https://doi.
org/10.1614/WS-D-12-00065.1

338. Travlos IS, Giannopolitis CN, Economou G (2011) Diclofop resistance in sterile wild 
oat (Avena sterilis L.) in wheat fields in Greece and its management by other post-
emergence herbicides. Crop Protection 30: 1449–1454. https://doi.org/10.1016/j.cro-
pro.2011.07.001

339. Tushemereirwe WK (1993) First report of Fusarium wilt on East African Highland 
cultivars of banana. Plant Disease 77: 1063.

340. Tworkoski TJ, Glenn DM (2001) Yield, shoot and root growth, and physiological re-
sponses of mature peach trees to grass competition. HortScience 36: 1214–1218.

341. Upadhyay RK, Rai V, Tiwari SK (2014) Modeling wetland systems of Keoladeo Na-
tional Park (KNP), India: the role of space. Wetlands Ecology and Management 22: 
605–624. https://doi.org/10.1007/s11273-014-9355-5

342. Van der Valk AG, Middleton BA, Williams RL, Mason DH, Davis CB (1993) The bio-
mass of an Indian monsoonal wetland before and after being overgrown with Paspalum 
distichum L. Vegetatio 109: 81–90. https://doi.org/10.1007/BF00149547

343. Vázquez de Aldana BR, García Ciudad A, Zabalgogeazcoa I, García Criado B (2001) 
Ergovaline levels in cultivars of Festuca arundinacea. Animal Feed Science and Technol-
ogy 93: 169–176. https://doi.org/10.1016/S0377-8401(01)00285-1

344. Venuto BC, Croughan SS, Pitman WD, Jessup RW, Renganayaki K, Burson BL 
(2007) Variation among hexaploid Paspalum dilatatum Poir. regenerants from tissue 

https://doi.org/10.1614/WS-03-120R1
https://doi.org/10.1614/WS-03-120R1
https://doi.org/10.1159/000369341
https://doi.org/10.1614/WS-D-l
https://doi.org/10.1071/CP07445
https://doi.org/10.1071/AR07375
https://doi.org/10.1111/j.1365-2664.2008.01500.x
https://doi.org/10.1111/j.1365-2664.2008.01500.x
https://doi.org/10.1614/WS-D-12-00065.1
https://doi.org/10.1614/WS-D-12-00065.1
https://doi.org/10.1016/j.cropro.2011.07.001
https://doi.org/10.1016/j.cropro.2011.07.001
https://doi.org/10.1007/s11273-014-9355-5
https://doi.org/10.1007/BF00149547
https://doi.org/10.1016/S0377-8401(01)00285-1


Global environmental and socio-economic impacts of selected alien grasses... 61

culture. Australian Journal of Experimental Agriculture 47: 1109–1116. https://doi.
org/10.1071/EA06337

345. Vere DT, Auld BA, Campbell MH (1993) Economic assessments of serrated tussock 
(Nassella trichotoma) as a pasture weed. Weed Technology 7: 776–782.

346. Verloove F, Reynders M (2007) Studies in the genus Paspalum (Paniceae, Poaceae) in 
Europe-2. The Quadrifaria group. Willdenowia 37: 423–430. https://doi.org/10.3372/
wi.37.37203

347. Wales WJ, Dellow DW, Doyle PT (2000) Protein supplementation of cows grazing 
limited amounts of paspalum (Paspalum dilatatum Poir.)-dominant irrigated pasture in 
mid lactation. Australian Journal of Experimental Agriculture 40: 923–929. https://doi.
org/10.1071/EA00020

348. Walker RH, Wehtje G, Richburg III JS (1998) Interference and control of large crab-
grass (Digitaria sanguinalis) and southern sandbur (Cenchrus echinatus) in forage bermu-
dagrass (Cynodon dactylon). Weed technology 12: 707–711.

349. Westbrooks RG (1991) Plant protection issues: I. A commentary on new weeds in the 
United States. Weed Technology 5: 232–237.

350. Westbrooks RG, Cross G (1993) Serrated tussock (Nassella trichotoma) in the United 
States. Weed Technology 7: 525–528.

351. Wijte AHBM, Mizutani T, Motamed ER, Margaret L, Miller DE, Alexander DE, Jour-
nal I (2005) Temperature and Endogenous Factors Cause Seasonal Patterns in Rooting 
by Stem Fragments of the Invasive Giant Reed, Arundo donax (Poaceae). International 
Journal of Plant Science 166: 507–517. https://doi.org/10.1086/428915

352. Willenborg CJ, May WE, Gulden RH, Lafond GP, Shirtliffe SJ (2005) Influence of wild 
oat (Avena fatua) relative time of emergence and density on cultivated oat yield, wild oat 
seed production, and wild oat contamination. Weed Science 53: 342–352. https://doi.
org/10.1614/WS-04-124R1

353. Williams CS, Hayes RM (1984) Johnsongrass (Sorghum halepense) competition in soy-
beans (Glycine max). Weed Science 32: 498–501.

354. Williams DG, Mack RN, Black RA (1995) Ecophysiology of Introduced Pennisetum 
Setaceum on Hawaii: The Role of Phenotypic Plasticity. Ecology 76: 1569–1580. htt-
ps://doi.org/10.2307/1938158

355. Wilson MV, Clark DL (2001) Controlling invasive Arrhenatherum elatius and promot-
ing native prairie grasses through mowing. Applied Vegetation Science 4: 129–138.

356. Wojciechowaka B (1984) Crosses of barley with rye, Hordeum jubatum× 4x Secale cereale 
and BC progenies of H. jubatum× 2x S. cereale. Cereal research communications 12: 67–73.

357. Wood ML, Murray DS, Banks JC, Verhalen LM, Westerman RB, Anderson KB (2002) 
Johnsongrass (Sorghum halepense) density effects on cotton (Gossypium hirsutum) har-
vest and economic value. Weed technology 16: 495–501.

358. Yakubu MT, Bukoye BB, Oladiji AT, Akanji MA (2009) Toxicological implications 
of aqueous extract of Bambusa vulgaris leaves in pregnant Dutch rabbits. Human and 
Experimental Toxicology 28: 591–598. https://doi.org/10.1177/0960327109106975

359. Yamada T (2001) Introduction of a self-compatible gene of Lolium temulentum L. to 
perennial ryegrass (Lolium perenne L.) for the purpose of the production of inbred lines 
of perennial ryegrass. Euphytica 122: 213–217.

https://doi.org/10.1071/EA06337
https://doi.org/10.1071/EA06337
https://doi.org/10.3372/wi.37.37203
https://doi.org/10.3372/wi.37.37203
https://doi.org/10.1071/EA00020
https://doi.org/10.1071/EA00020
https://doi.org/10.1086/428915
https://doi.org/10.1614/WS-04-124R1
https://doi.org/10.1614/WS-04-124R1
https://doi.org/10.2307/1938158
https://doi.org/10.2307/1938158
https://doi.org/10.1177/0960327109106975


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)62

360. Yelenik SG, Levine JM (2011) The role of plant-soil feedbacks in driving native-species 
recovery. Ecology 92: 66–74. https://doi.org/10.1890/10-0465.1

361. Yoder CK, Nowak RS (2000) Phosphorus acquisition by Bromus madritensis ssp. rubens 
from soil interspaces shared with Mojave desert shrubs. Functional Ecology 14: 685–
692. https://doi.org/10.1046/j.1365-2435.2000.00482.x

362. Yongsheng ZHU, Baotang C, Shunwu YU (2004) Transfer of bacterial blight resistance 
from Oryza meyeriana to O. sativa L. by asymmetric somatic hybridization. Chinese 
Science Bulletin 49: 1481–1484. https://doi.org/10.1360/03wc0545

363. Yu J, McCullough PE (2014) Methiozolin efficacy, absorption, and fate in six cool-season 
grasses. Crop Science 54: 1211–1219. https://doi.org/10.2135/cropsci2013.05.0349

364. Yu J, Mccullough PE, Grey T (2015) Physiological effects of temperature on turf-
grass tolerance to amicarbazone. Pest Management Science 71: 571–578. https://doi.
org/10.1002/ps.3853

365. Yu Q, Friesen LJS, Zhang XQ, Powles SB (2004) Tolerance to acetolactate synthase and 
acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred 
by two co-existing resistance mechanisms. Pesticide Biochemistry and Physiology 78: 
21–30. https://doi.org/10.1016/j.pestbp.2003.07.004

366. Zand E, Beckie HJ (2002) Competitive ability of hybrid and open-pollinated canola 
(Brassica napus) with wild oat (Avena fatua). Canadian Journal of Plant Science 82: 
473–480. https://doi.org/10.4141/P01-149

367. Zapiola ML, Mallory-Smith CA (2012) Crossing the divide: Gene flow produces inter-
generic hybrid in feral transgenic creeping bentgrass population. Molecular Ecology 21: 
4672–4680. https://doi.org/10.1111/j.1365-294X.2012.05627.x

368. Zhang H, Ge Y, Wang M, Liu J, Si H, Zhang L, Liang G, Gu M, Tang S (2016) Map-
ping QTLs conferring resistance to rice black-streaked dwarf disease in rice (Oryza sa-
tiva L). Euphytica 212: 323–330. https://doi.org/10.1007/s10681-016-1782-3

369. Zhong S, Ali S, Leng Y, Wang R, Garvin DF (2015) Brachypodium distachyon-Coch-
liobolus sativus Pathosystem is a New Model for Studying Plant-Fungal Interactions 
in Cereal Crops. Phytopathology 105: 482–489. https://doi.org/10.1094/PHYTO-08-
14-0214-R

370. Zhou B, Kong CH, Li YH, Wang P, Xu XH (2013) Crabgrass (Digitaria sanguinalis) al-
lelochemicals that interfere with crop growth and the soil microbial community. Journal 
of Agricultural and Food Chemistry 61: 5310–5317. https://doi.org/10.1021/jf401605g

371. Zhou B, Kong C-H, Wang P, Li Y-H (2013) Chemical constituents of the essential oils 
of wild oat and crabgrass and their effects on the growth and allelochemical produc-
tion of wheat. Weed Biology and Management 13: 62–69. https://doi.org/10.1111/
wbm.12010

372. Zhou L, Hopkins AA, Huhman D V., Sumner LW (2006) Efficient and sensitive meth-
od for quantitative analysis of alkaloids in hardinggrass (Phalaris aquatica L.). Journal of 
Agricultural and Food Chemistry 54: 9287–9291. https://doi.org/10.1021/jf061819k

373. Zhu Y, Qiang S (2004) Isolation, pathogenicity and safety of Curvularia eragrostidis 
isolate QZ-2000 as a bioherbicide agent for large crabgrass (Digitaria sanguinalis). Bio-
control Science and Technology 14: 769–782. https://doi.org/10.1080/095831504100
01720699

https://doi.org/10.1890/10-0465.1
https://doi.org/10.1046/j.1365-2435.2000.00482.x
https://doi.org/10.1360/03wc0545
https://doi.org/10.2135/cropsci2013.05.0349
https://doi.org/10.1002/ps.3853
https://doi.org/10.1002/ps.3853
https://doi.org/10.1016/j.pestbp.2003.07.004
https://doi.org/10.4141/P01-149
https://doi.org/10.1111/j.1365-294X.2012.05627.x
https://doi.org/10.1007/s10681-016-1782-3
https://doi.org/10.1094/PHYTO-08-14-0214-R
https://doi.org/10.1094/PHYTO-08-14-0214-R
https://doi.org/10.1021/jf401605g
https://doi.org/10.1111/wbm.12010
https://doi.org/10.1111/wbm.12010
https://doi.org/10.1021/jf061819k
https://doi.org/10.1080/09583150410001720699
https://doi.org/10.1080/09583150410001720699


Global environmental and socio-economic impacts of selected alien grasses... 63

374. Zou L, Santanen A, Tein B, Stoddard FL, Mäkela PSA (2014) Interference potential of 
buckwheat, fababean, oilseed hemp, vetch, white lupine and caraway to control couch 
grass weed. Allelopathy Journal 33: 227–236.

375. http://aknhp.uaa.alaska.edu
376. http://dpipwe.tas.gov.au/invasivespecies/
377. http://eol.org/pages/1115814/details
378. http://explorer.natureserve.org/servlet/NatureServe?searchName=Arrhenatherum+elati

us
379. http://explorer.natureserve.org/servlet/NatureServe?searchName=Cynosurus+echinatus
380. http://gri.msstate.edu/research
381. http://ice.ucdavis.edu/invasives/scorecard/avenabarbatascorecard
382. http://ipm.ucanr.edu/PMG/WEEDS/hare_barley.html
383. http://issg.org/database/species
384. http://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/Avena_

sterilis_(Sterile_Oat).htm
385. http://keyserver.lucidcentral.org/weeds/data/030308000b07490a8d040605030c0f01/

media/Html/Avena_barbata.
386. http://oacc.info/Docs/Quackgrass_final_rev_JD.pdf
387. http://plants.usda.gov/
388. http://www.cabi.org/isc/datasheet/10024
389. http://www.cabi.org/isc/datasheet/10029
390. http://www.cabi.org/isc/datasheet/10029
391. http://www.cabi.org/isc/datasheet/10032
392. http://www.cabi.org/isc/datasheet/10033
393. http://www.cabi.org/isc/datasheet/10036
394. http://www.cabi.org/isc/datasheet/109621
395. http://www.cabi.org/isc/datasheet/110291
396. http://www.cabi.org/isc/datasheet/112795
397. http://www.cabi.org/isc/datasheet/11872
398. http://www.cabi.org/isc/datasheet/14501
399. http://www.cabi.org/isc/datasheet/38952
400. http://www.cabi.org/isc/datasheetreport?dsid=112070
401. http://www.cabi.org/isc/datasheetreport?dsid=7065
402. ht tp : / /www.ca l ipc .org/ ip/management/ ipcw/pages /de ta i l repor t . c fm@

usernumber=20&surveynumber=182.php
403. http://www.capetowninvasives.org.za/project/terrestrial/species/cortaderiaselloana
404. http://www.columbia.edu/itc/cerc/danoffburg/invasion_bio/inv_spp_summ/Bromus_

tectorum.html
405. http://www.environment.gov.au/cgibin/biodiversity/invasive/weeds/weeddetails.

pl?taxon_id=6390#
406. http://www.fao.org/ag
407. http://www.fs.usda.gov/main/r3/forest-grasslandhealth/invasivespecies
408. http://www.herbiguide.com.au/Descriptions/hg_Great_Brome.htm
409. http://www.invasives.org.za/legislation/item/228commonpampasgrasscortaderiaselloana

http://aknhp.uaa.alaska.edu
http://dpipwe.tas.gov.au/invasivespecies/
http://eol.org/pages/1115814/details
http://explorer.natureserve.org/servlet/NatureServe?searchName=Arrhenatherum+elatius
http://explorer.natureserve.org/servlet/NatureServe?searchName=Arrhenatherum+elatius
http://explorer.natureserve.org/servlet/NatureServe?searchName=Cynosurus+echinatus
http://gri.msstate.edu/research
http://ice.ucdavis.edu/invasives/scorecard/avenabarbatascorecard
http://ipm.ucanr.edu/PMG/WEEDS/hare_barley.html
http://issg.org/database/species
http://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/Avena_sterilis_(Sterile_Oat).htm
http://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/Avena_sterilis_(Sterile_Oat).htm
http://keyserver.lucidcentral.org/weeds/data/030308000b07490a8d040605030c0f01/media/Html/Avena_barbata
http://keyserver.lucidcentral.org/weeds/data/030308000b07490a8d040605030c0f01/media/Html/Avena_barbata
http://oacc.info/Docs/Quackgrass_final_rev_JD.pdf
http://plants.usda.gov/
http://www.cabi.org/isc/datasheet/10024
http://www.cabi.org/isc/datasheet/10029
http://www.cabi.org/isc/datasheet/10029
http://www.cabi.org/isc/datasheet/10032
http://www.cabi.org/isc/datasheet/10033
http://www.cabi.org/isc/datasheet/10036
http://www.cabi.org/isc/datasheet/109621
http://www.cabi.org/isc/datasheet/110291
http://www.cabi.org/isc/datasheet/112795
http://www.cabi.org/isc/datasheet/11872
http://www.cabi.org/isc/datasheet/14501
http://www.cabi.org/isc/datasheet/38952
http://www.cabi.org/isc/datasheetreport?dsid=112070
http://www.cabi.org/isc/datasheetreport?dsid=7065
http://www.calipc.org/ip/management/ipcw/pages/detailreport.cfm@usernumber=20&surveynumber=182.php
http://www.calipc.org/ip/management/ipcw/pages/detailreport.cfm@usernumber=20&surveynumber=182.php
http://www.capetowninvasives.org.za/project/terrestrial/species/cortaderiaselloana
http://www.columbia.edu/itc/cerc/danoffburg/invasion_bio/inv_spp_summ/Bromus_tectorum.html
http://www.columbia.edu/itc/cerc/danoffburg/invasion_bio/inv_spp_summ/Bromus_tectorum.html
http://www.environment.gov.au/cgibin/biodiversity/invasive/weeds/weeddetails.pl?taxon_id=6390#
http://www.environment.gov.au/cgibin/biodiversity/invasive/weeds/weeddetails.pl?taxon_id=6390#
http://www.fao.org/ag
http://www.fs.usda.gov/main/r3/forest-grasslandhealth/invasivespecies
http://www.herbiguide.com.au/Descriptions/hg_Great_Brome.htm
http://www.invasives.org.za/legislation/item/228commonpampasgrasscortaderiaselloana


Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)64

410. http://www.invasives.org.za/legislation/item/235-giant-reed-arundo-donax
411. http://www.invasives.org.za/legislation/item/300feathertoppennisetumvillosum
412. http://www.invasives.org.za/legislation/item/829-serrated-tussock-nassella-trichotoma
413. http://www.invasives.org.za/legislation/item/850tussockpaspalumpaspalumquadrifarium
414. http://www.iucngisd.org/gisd/species.php?sc=1315
415. http://www.iucngisd.org/gisd/species.php?sc=1399
416. http://www.iucngisd.org/gisd/species.php?sc=1418
417. http://www.iucngisd.org/gisd/species.php?sc=1419
418. http://www.iucngisd.org/gisd/species.php?sc=266
419. http://www.iucngisd.org/gisd/species.php?sc=373
420. http://www.nps.gov/plants/alien/pubs/midatlantic/bamboos.htm
421. http://www.pittwater.nsw.gov.au/environment/noxious_weeds/grasses/tussock_

paspalum?SQ_DESIGN_NAME=printer_friendly
422. http://www.texasinvasives.org/plant_database/detail.php?symbol=BRCA6
423. https://florabase.dpaw.wa.gov.au
424. https://keyserver.lucidcentral.org/weeds/data/media/Html/aira_caryophyllea.htm
425. https://keyserver.lucidcentral.org/weeds/data/media/Html/briza_maxima.htm
426. https://keyserver.lucidcentral.org/weeds/data/media/Html/cortaderia_selloana.htm
427. https://keyserver.lucidcentral.org/weeds/data/media/Html/paspalum_quadrifarium.htm
428. https://wiki.bugwood.org/Bromus_tectorum
429. https://wiki.bugwood.org/Elymus_repens
430. https://wiki.bugwood.org/Glyceria_maxima
431. https://www.cabi.org/isc/datasheet/112070
432. https://www.cabi.org/isc/datasheet/114824
433. https://www.cabi.org/isc/datasheet/18916
434. https://www.cabi.org/isc/datasheet/31166
435. https://www.cabi.org/isc/datasheet/31169
436. https://www.cabi.org/isc/datasheet/81510
437. https://www.cal-ipc.org/plants/profile/festuca-arundinacea-profile/
438. https://www.cropscience.bayer.com
439. https://www.invasive.org/browse/subinfo.cfm?sub=5214
440. https://www.nies.go.jp/biodiversity/invasive/DB/detail/80850e.html
441. www.biosecurity.qld.gov.au
442. www.nies.go.jp/biodiversity
443. https://escholarship.org/uc/item/3qt3s5c4
444. http://www.aprs.iobc.info/download/20141106_Symposium/20141106_IOBC-

APRS_Symposium_Sands.pdf
445. http://agris.fao.org/agris-search/search.do
446. http://indigo-dc.org
447. http://agris.fao.org/agris-search/search.do
448. https://www.cabi.org/isc/datasheet/112778

http://www.invasives.org.za/legislation/item/235-giant-reed-arundo-donax
http://www.invasives.org.za/legislation/item/300feathertoppennisetumvillosum
http://www.invasives.org.za/legislation/item/829-serrated-tussock-nassella-trichotoma
http://www.invasives.org.za/legislation/item/850tussockpaspalumpaspalumquadrifarium
http://www.iucngisd.org/gisd/species.php?sc=1315
http://www.iucngisd.org/gisd/species.php?sc=1399
http://www.iucngisd.org/gisd/species.php?sc=1418
http://www.iucngisd.org/gisd/species.php?sc=1419
http://www.iucngisd.org/gisd/species.php?sc=266
http://www.iucngisd.org/gisd/species.php?sc=373
http://www.nps.gov/plants/alien/pubs/midatlantic/bamboos.htm
http://www.pittwater.nsw.gov.au/environment/noxious_weeds/grasses/tussock_paspalum?SQ_DESIGN_NAME=printer_friendly
http://www.pittwater.nsw.gov.au/environment/noxious_weeds/grasses/tussock_paspalum?SQ_DESIGN_NAME=printer_friendly
http://www.texasinvasives.org/plant_database/detail.php?symbol=BRCA6
https://florabase.dpaw.wa.gov.au
https://keyserver.lucidcentral.org/weeds/data/media/Html/aira_caryophyllea.htm
https://keyserver.lucidcentral.org/weeds/data/media/Html/briza_maxima.htm
https://keyserver.lucidcentral.org/weeds/data/media/Html/cortaderia_selloana.htm
https://keyserver.lucidcentral.org/weeds/data/media/Html/paspalum_quadrifarium.htm
https://wiki.bugwood.org/Bromus_tectorum
https://wiki.bugwood.org/Elymus_repens
https://wiki.bugwood.org/Glyceria_maxima
https://www.cabi.org/isc/datasheet/112070
https://www.cabi.org/isc/datasheet/114824
https://www.cabi.org/isc/datasheet/18916
https://www.cabi.org/isc/datasheet/31166
https://www.cabi.org/isc/datasheet/31169
https://www.cabi.org/isc/datasheet/81510
https://www.cal-ipc.org/plants/profile/festuca-arundinacea-profile/
https://www.cropscience.bayer.com
https://www.invasive.org/browse/subinfo.cfm?sub=5214
https://www.nies.go.jp/biodiversity/invasive/DB/detail/80850e.html
http://www.biosecurity.qld.gov.au
http://www.nies.go.jp/biodiversity
https://escholarship.org/uc/item/3qt3s5c4
http://www.aprs.iobc.info/download/20141106_Symposium/20141106_IOBC-APRS_Symposium_Sands.pdf
http://www.aprs.iobc.info/download/20141106_Symposium/20141106_IOBC-APRS_Symposium_Sands.pdf
http://agris.fao.org/agris-search/search.do
http://indigo-dc.org
http://agris.fao.org/agris-search/search.do
https://www.cabi.org/isc/datasheet/112778


Global environmental and socio-economic impacts of selected alien grasses... 65

Supplementary material 1

Table S1, Table S2, Figure S1
Authors: Khensani V. Nkuna, Vernon Visser, John R.U. Wilson, Sabrina Kumschick
Data type: species data
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/neobiota.41.26599.suppl1

Supplementary material 2

Figure S2
Authors: Khensani V. Nkuna, Vernon Visser, John R.U. Wilson, Sabrina Kumschick
Data type: statistical data
Explanation note: The impact magnitude of the 48 studied alien grasses across differ-

ent habitats. The impact magnitudes on the x-axis are the least-square means of the 
impact scores as derived from a cumulative link mixed effects model. On the y-axis 
are the habitat types impacted by alien grasses and in brackets is the number of spe-
cies with records in that habitat. The points represent the impact magnitudes and 
the error bars represent 95 % confidence intervals. Letters on the right side of the 
confidence intervals are level groupings indicating no significant differences among 
the habits. Comparisons are Tukey adjusted.
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original source and author(s) are credited.
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