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One curious aspect of human timing is the organization of rhythmic patterns in small

integer ratios. Behavioral and neural research has shown that adjacent time intervals in

rhythms tend to be perceived and reproduced as approximate fractions of small numbers

(e.g., 3/2). Recent work on iterated learning and reproduction further supports this: given

a randomly timed drum pattern to reproduce, participants subconsciously transform it

toward small integer ratios. The mechanisms accounting for this “attractor” phenomenon

are little understood, but might be explained by combining two theoretical frameworks

from psychophysics. The scalar expectancy theory describes time interval perception

and reproduction in terms of Weber’s law: just detectable durational differences equal

a constant fraction of the reference duration. The notion of categorical perception

emphasizes the tendency to perceive time intervals in categories, i.e., “short” vs. “long.” In

this piece, we put forward the hypothesis that the integer-ratio bias in rhythm perception

and production might arise from the interaction of the scalar property of timing with the

categorical perception of time intervals, and that neurally it can plausibly be related to

oscillatory activity. We support our integrative approach with mathematical derivations

to formalize assumptions and provide testable predictions. We present equations to

calculate durational ratios by: (i) parameterizing the relationship between durational

categories, (ii) assuming a scalar timing constant, and (iii) specifying one (of K) category

of ratios. Our derivations provide the basis for future computational, behavioral, and

neurophysiological work to test our model.

Keywords: rhythm, music perception, scalar expectancy theory, neural oscillations, integer ratio

INTEGER RATIOS AND MUSICAL RHYTHM

What are small integer ratios, and what makes integer-ratio rhythms special? A ratio between two
inter-onset-intervals (IOIs) is the division between two, usually adjacent durations. Integer ratios
can be written as a fraction: 1.5 equals 15/10 or 3/2, but

√
2 for instance cannot be written as a

fraction. An integer ratio is small if the result of the division can be written as a small integer
number divided by another small integer number e.g., 2/3, but not 23/51 (Pikovsky et al., 2003;
Strogatz, 2003).

A rhythm, by definition as used here, is a pattern of durations (London, 2004, p. 4)
characterized by the succession of event onsets over time, in other words a series of IOIs.
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Auditory rhythms with small integer ratios between IOIs
are common in the world’s music (Essens and Povel, 1985;
Toussaint, 2013; Savage et al., 2015). Psychological and neural
research suggests that small integer-ratio rhythms allow a more
accurate internal representation (Essens, 1986; Sakai et al., 1999),
improved deviance detection (Jones and Yee, 1997; Large and
Jones, 1999), enhanced memory (Deutsch, 1986; Palmer and
Krumhansl, 1990) and reproduction (Povel and Essens, 1985;
Essens, 1986), and better synchronization (Patel et al., 2005).
The distortion of near-integer ratios toward integer ones (or
their harmonics) reported in behavioral (Fraisse, 1982) and
neurophysiological studies (Motz et al., 2013) further supports
the idea of small ratios acting as “attractors” (Gupta and Chen,
2016). This idea has recently received support from studies of
iterated learning and reproduction. When humans reproduce
an initially randomly-timed rhythmic sequence, and this process
is repeated in a cascade fashion within one or across several
individuals, the sequence is subconsciously reshaped to be
composed of IOIs related by small integer ratios (Figure 1A;
c.f. Polak et al., 2016; Ravignani et al., 2016, 2018; Jacoby and
McDermott, 2017).

Why do rhythms (i.e., patterns of durations) tend to exhibit
small integer ratios? Why are humans drawn to rhythms with
such a peculiar mathematical property, in both perception and
production? Does this property reflect a special quirk of music
perception and/or motor sequencing, or could it be explained
by domain-general aspects of cognition? Can we explore these
alternatives through mathematical formalism? Here, we explore
mathematically the possibility that the human bias toward small
integer ratios may be explained by a combination of scalar
expectancy and categorical perception.

We begin by outlining the relevant classical frameworks for
human timing, and go on to summarize the evidence in support
of the small-integer ratio bias in rhythm perception. We then
present our proposal linking the frameworks to the bias through
mathematical formalisms. Specifically, we draw on the scalar
property of time interval estimation to formulate a simple model
of categorical perception that may result in an integer ratio bias
(Figure 1), and link this to neural oscillations. We conclude by
briefly discussing the merits and limitations of our model and
outlining future goals.

PSYCHOPHYSICAL AND OSCILLATORY
APPROACHES

Two major theoretical approaches, among several, have been
suggested to account for the mechanisms behind human timing
(Wing and Kristofferson, 1973a,b; Getty, 1975; Meck, 1996;
Church, 1999; Grondin, 2001, 2010; Mauk and Buonomano,
2004; Karmarkar and Buonomano, 2007; Ivry and Schlerf,
2008; Allman et al., 2014; Merker, 2014). The most influential
and empirically tested psychoacoustic model is the “scalar
expectancy theory” (Wearden, 1991; Allman and Meck, 2011).
Psychophysical research shows that human timing often follows
Weber’s law (Bizo et al., 2006): the error for an interval duration
being timed is proportional to the duration of that interval.
One perception-based formulation states that the ratio between

the just-noticeable difference (JND) and the duration of a
reference stimulus is constant across stimulus length (Grondin,
2001). In another formulation, the coefficient of variation
(standard deviation divided by mean) in estimating durations is
constant across durations (Figure 1D; Gibbon, 1977).

Another relevant approach to timingmechanisms comes from
neuroscience and physics. It suggests that neural oscillations
entrain (or even “resonate”) with the periodicity of external
stimuli at multiple time-scales (Buzsaki, 2006; Large, 2008;
Arnal and Giraud, 2012; Gupta, 2014; Aubanel et al., 2016;
Celma-Miralles et al., 2016). Specifically, it states that phase
and frequency of neural oscillations entrain with the phase
and frequency of external events at multiple metrical levels.
For instance, processing a metronome beat will induce low-
frequency oscillations and/or power fluctuations in high-
frequency oscillations following the periodicity of the beat,
plus its multiples or divisors. Critically, the stability of the
connection between two or more active neural oscillations,
i.e., the “resistance” to external perturbations, depends on the
ratio of their periods (e.g., 1:1, 2:1, 2:3). Small integer ratios
typically confer greater stability. This may explain the perceptual
advantage for integer-ratio stimuli over more complex metrical
patterns (Large and Kolen, 1995). Other frameworks state that
specific neurons or neural channels are tuned to particular
durational intervals or tempi (Merchant et al., 2013; Bartolo et al.,
2014).

ITERATED DRUMMING EXPERIMENTS:
SMALL INTEGER RATIOS AS COGNITIVE
ATTRACTORS

Recent behavioral research investigated human priors for
durations in rhythmic patterns (Ravignani et al., 2016,
2018; Jacoby and McDermott, 2017). Participants were
given drumming sequences to reproduce to the best of
their ability. The patterns produced were presented to the
same or a new participant in an iterative procedure. Strikingly,
“first-generation” participants were given completely random
patterns, and “last-generation” participants produced rhythms
exhibiting small integer ratios, in line with previous work on e.g.,
bimanual tapping (Peper et al., 1991, 1995a,b; Peper and Beek,
1998).

Specifically, participants were presented with sequences of
IOIs sampled from a uniform distributionU (e.g., Figure 1B). As
the patterns were transmitted through “chains of reproductions,”
(Ravignani et al., 2016, 2018; Jacoby and McDermott, 2017),
distribution U converged toward a distribution D: a human
observer’s posterior distribution of IOIs (e.g., Figure 1A). This
distribution is multimodal, and the modes are related by
small integer ratios, a universal property of human musical
cultures (Ravignani et al., 2016; Jacoby and McDermott,
2017).

Here we aim to explain the distribution D via established
psychophysical principles, none of which explicitly entail small-
integer ratios. In other words, is the integer ratio bias a perceptual
primitive in itself, or might it arise from the interaction of more
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FIGURE 1 | Graphical representation of different types of IOI distributions. (A) Empirical distribution of drumming data showing two peaks (slightly below 200 and

400ms) consistent with the notion of integer ratio categories. Data from the last experimental generation of chain 2 in Ravignani et al. (2016). (B) Uniform distribution

from 100 to 1,000ms. (C) Multimodal distribution based on 3 randomly chosen centroids without further assumptions. (D) Multimodal distribution around the same 3

centroids assuming the scalar timing property. (E) Multimodal distribution assuming the scalar timing property and showing small integer ratios. Data in panels (B–E)

are simulated; they were randomly sampled from several normal distributions, with total sample size as in (A). (F) Schematic representation of potential parameters

linking scalar timing and small integer ratios. Panel (F) was produced without simulated or experimental data. Notice how the x-coordinate of the intersection point

between the two Gaussians can be parameterized as to µ1 + scu1µ1 (first Gaussian) and µ2 − scl2µ2 (second Gaussian). For more than two Gaussians, the

intersection can be parameterized as µk + scu
k
µk (first Gaussian) and µk+1 − scl

k+1µk+1 (second Gaussian). This parameterization is used in the derivations below.

fundamental primitives? Jacoby and McDermott (2017) related
a theoretically hypothesized prior with built-in integer ratios to
an empirically estimated prior, showing that these were aligned.

Here, we investigate whether it is possible to derive a prior
with similar properties by not building in the integer-ratio, but
by combining empirically founded principles of timing with a

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 86

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ravignani et al. Modeling Integer-Ratios in Musical Rhythm

minimum of assumptions (and room for refinement by future
testing).

PROBABILISTIC INFERENCE FOR
INTERVAL RATIO CATEGORIES

Our concrete question is: Under which conditions will a
distribution G show small-integer ratios, without having built
these ratios into our model?

Without any assumptions, distribution G would equal the
uniform IOI distribution U in expectation. In other words
which results on basic mechanisms of rhythm perception and
production allow us to turn U into G? Below, we make four
assumptions based on psychophysical evidence and reduce the
number of free parameters in the model drastically with little loss
of generality.We begin by elaborating on previous formalizations
to make relevant assumptions explicit and comparable.

ASSUMPTION 1: CATEGORICAL TIMING

An n-event rhythm defines a sequence of IOIs d = (d1, . . . , dn−1)
and of ratios r = (r1, . . . , rn−2), such that ri = di+1/di.
Perception of a rhythm r induces a representation z =
(z1, . . . , zn−2), with a strong tendency to categorize. The vector
z is a sequence of a small number of unique phenomenal
interval-ratio categories that represent the observed data r. More
specifically, the notation zi = k identifies that interval ratio
ri is attributed to phenomenal category k (Ravignani et al.,
2018). Whilst not used explicitly in our calculations, z formalizes
the first key assumption: the processing of rhythmic sequences
recruits a categorical interpretation of time intervals from a
continuous stream of events (Clarke, 1987; Schulze, 1989; Desain
and Honing, 2003). Behavioral evidence shows that also human
motor timing is categorical: participants tapping produce IOI
distributions with distinct peaks reflecting underlying durational
categories (Collyer et al., 1994). This suggests that the distribution
G can be approximated as a multimodal mixture of normal
distributions (Figure 1C), rather than a uniform distribution
(Figure 1B). A small number of durational categories naturally
results in a small number of ratio categories. For the perception
of a rhythmic sequence as a whole, we would argue that the
perceived durations be transformed toward forming small ratios,
as supported by iterated drumming experiments (Jacoby and
McDermott, 2017), “ideally” into integer multiples of the smallest
unit. Whilst categorical timing may appear to be a simplifying
psychological concept (Schulze, 1989; Drake and Bertrand, 2001;
Desain and Honing, 2003; ten Hoopen et al., 2006) based on
behavioral observations, it may not be that far off neural reality.
The notion of durational categories relate to basic durational
tuning properties of premotor neurons recorded in non-human
primates (Merchant et al., 2013). For instance, categories can be
mapped to interval tuning in the premotor neurons of monkeys
performing a synchronization continuation task (Merchant et al.,
2013). Here, the distribution of preferred intervals could be
viewed as a prior, although this distribution is multimodal, rather
than bimodal as in Merchant et al. (2013). In addition, human

neuroimaging work showed specific activation patterns for the
perceptual processing of integer interval ratios (Sakai et al.,
1999). Moreover, sequences of small integer ratios may induce
a metrical beat by the hierarchical organization of periodicity at
two or more levels, i.e., the occrurence of an accent at a multiple
small integer of the shortest time unit at the next higher level
(Povel and Essens, 1985). Metrical structure is thus a higher,
multi-level demonstration of the psychological prior toward
small-integer ratios, that affords accurate reproduction (Povel
and Essens, 1985). Moreover, the perceptual timing of rhythms
with such a metrical beat is more accurate, their subjective
percept “catchier” and their recognition more robust against
temporal scaling, i.e., speeding up or slowing down the tempo,
as the pattern is processed as one coherent whole rather than
a series of time intervals, in contrast to rhythms that feature
small integer ratios but no metrical beat (Grube and Griffiths,
2009).

ASSUMPTION 2: BAYESIAN INFERENCE
OVER GAUSSIAN CATEGORIES

A general assumption in rhythm research is that perceptual
timing can be described as a process combining prior beliefs
with sensory input. One way to capture this mathematically
is to model time perception as Bayesian inference (Jazayeri
and Shadlen, 2010; Cicchini et al., 2012; Merchant et al., 2013;
Pérez and Merchant, 2018). Whilst our analysis relies on the
nature of the prior rather than how it is deployed during
perceptual interpretation, taking a Bayesian viewpoint is useful.
It lets us express a prior distribution as an inductive bias
(Thompson et al., 2016) and has been successfully applied
in previous models of time interval estimation (e.g., Jazayeri
and Shadlen, 2010; Cicchini et al., 2012). Employing Bayesian
inference, we can characterize participant behavior as attributing
a categorical representation to interval ratio ri according to
the distribution p

(

zi = k |ri
)

∝ p(ri|zi = k)p(zi = k).
Our focus is the prior distribution over categories, p(zi = k),
equivalently G. Alternatively, it would be possible to model
learners’ assumptions about a likelihood distribution as a
source of bias (e.g., Jazayeri and Shadlen, 2010; Cicchini et al.,
2012).

Jacoby and McDermott (2017) recently modeled n-
interval rhythms as single points in the n-1 dimensional
simplex, and formulated a multivariate-mixture prior over
this space, assuming Gaussian models to underlie each of
the mixtures. Namely, they formulated a multivariate p(z)
directly. Our approach to the prior is closely related. Like
Jacoby and McDermott (2017), we express the prior as a
mixture of Gaussian components. However, our formulation
treats an n-interval rhythm as a set of n-1 independent
samples from a univariate multimodal distribution, rather
than a single multivariate sample. The two approaches
essentially represent minor variants of the model for
covariance of interval ratio categories. The assumption that
the distribution p(z) has a Gaussian form should be tested in
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future work, but is in line with existing work and a fair first
approximation.

We write the prior as a K-dimensional Gaussian mixture of
interval ratio categories, and the data likelihood as i.i.d. Gaussian
underlying these categories, such that the marginal distribution
of interval ratios has the form:

p (r) = G (r) =
∏n−1

i= 1

∑K

k= 1
ϕkN(di;µk, σk) (1)

Here, the prior assigns to each Gaussian k = 1, ..., K a weight
in the mixture, ϕk, which determines its relative prominence as
a category; a category mean µk, which specifies the expected
interval ratio underlying this category; and a category variance
σk. The assumption we make is that weights are constant: ϕk =
K−1 (corresponding to an equal number of observations in
the Gaussians in Figures 1C–E). Whilst we hope to examine
this assumption empirically in the future, we proceed under
the most neutral assumption: no interval-ratio category is
privileged.

ASSUMPTION 3: A SMALL NUMBER OF
SUB-SECOND CATEGORIES

Assuming that our indexing of categories under the
prior is strictly ordered by the category means, such
that µj < µk⇔ j < k, we can immediately express our second

empirical constraint on distribution G: only few categories exist
(Desain and Honing, 2003; Motz et al., 2013; Ravignani et al.,
2016, 2018). K is naturally limited by our approach to only model
components for small integer ratios, and these are limited in
number. Furthermore, we bound the range of category means
µk from 200ms (London, 2004, p. 35) to 1,000ms (Shaffer,
1983; Desain and Honing, 2003; Buhusi and Meck, 2005). This
constraint limits K to the largest number of categories such that
no category mean exceeds 1,000 ms:

K = argmaxk µk s.t. µk ≤ 1000 for k = 1, . . . ,K. (2)

ASSUMPTION 4: SCALAR TIMING

So far, our assumptions constrain neither category means µk

nor standard deviations σk. Our final, perhaps most central
assumption is that timing exhibits scalar properties in the sub-
second time range considered here (Gibbon, 1977; Matell and
Meck, 2000). Scalar timing drastically reduces the number of
free parameters describing distribution G, by expressing category
variances as a function of categorymeans. The standard deviation
of each category σk equals the mean µk multiplied by a constant,
dimensionless factor s (Figure 1E):

σk = s µk. (3)

Previous empirical reports estimated s to approximate 0.025
(Friberg and Sundberg, 1995; Madison and Merker, 2004).

LINKING CATEGORICAL PERCEPTION
AND SCALAR TIMING: HOW CLOSE CAN
WE GET TO INTEGER RATIO INTERVALS?

All four assumptions are empirically based and independent of
each other. Now, G can be further characterized by the degree of
overlap between Gaussians composing the mixture. To formalize
this, we assume each category k to intersect with its adjacent
neighbors k−1 and k+1 at a distance proportional to cl

k
and

cu
k
away from its mean µk (Figure 1F), which is a constant

proportion of the standard deviation σk. c
l
k
and cu

k
parameterize

the overlap between categories: they express how many standard
deviations away from its mean µk the cluster k intersects the
cluster k+1, and how many standard deviations away from its
mean µk+1 the cluster k+1 intersects the cluster k (Figure 1F
shows an example for k= 1,2).

Combining this idea of a parameterized overlap with scalar
properties, each cluster k extends from µk− scl

k
µk to µk+ scu

k
µk.

Under these assumptions, the distance between the means of two
adjacent distributions (Figure 1F) can be written as

µk+1 − µk = sclk+1µk+1 + scukµk, (4)

and their ratio as

rk = µk+1/µk . (5)

Substituting (5) into (4) provides

rkµk − µk = sclk+1rkµk + scukµk, (6)

which can be simplified and rewritten as

rk = (1+ scuk )/(1− sclk+1). (7)

Equation (7) requires, to be well-defined, that its right side is
positive, namely

0 < clk+1 <
1

s
. (8)

Operationally, the category means following from the constraints
on G can be calculated using the recursion equation:

µk+1 = rkµk. (9)

The constraints structure the space of component Gaussians in
the prior such that, by specifying µ1, we can compute µk for all k
≤ K using Equation (9) (Figure 1E).

These quantitative tools enable the formulation of several
questions. Given our post-hoc knowledge that the prior is
characterized by categories centered at small integer ratios, do
the constraints we laid out structure the prior such that integer-
ratio clusters are predicted by setting µ1 to the smallest possible
integer ratio?

An alternative approach might be to assume that one ratio
is e.g., ½, and ask whether our equations imply small integer
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FIGURE 2 | Schematic representation of the perspective introduced by this paper. Black solid-line boxes represent empirically supported assumptions. “Bayesian

inference” is outlined in gray to indicate that it is used here as a working assumption and conceptual framework, rather than an empirically supported assumption on

cognitive processes (Shi et al., 2013). “Neural oscillations” are dashed because they represent observed neural process whose connection with the other behavioral

concepts has not been proven (yet). The quantitative parameters are: category means µi , a scalar constant s, and ci , which is the abbreviation of cl
i
and cu

i
,

parameterizing the overlap between categories. The proposed way of representing rhythmic structure depends, among other factors, on the constancy of rk (see

main text). A deviation from this constancy would result in larger integer ratios, with the deviation accumulating over the categories when iterating equation (8).

Empirical work (e.g., Ravignani et al., 2016; Jacoby and McDermott, 2017) has tried to operationalize the connection between the “mathematical perfection” of integer

ratios and their empirical counterpart in a number of alternative ways. This perspective does not address how and when a real number is perceived as an integer ratio,

leaving this as an empirical question for psychophysics research. In general, large integer ratios, and even irrational-number ratios, can be perceived as small integer

ratios if close enough to one. For instance, 27/12≈1.498307 is irrational (Coxeter, 1968) but close to 3/2. Virtually all pianos, today, employ this irrational number

(1.498307) in their well-tempered tuning, which is “close enough” for human hearing to the integer ratio 3:2. At the same time, the “catchiness” of a rhythm also

depends on small deviations from the integer ratios. For instance, delayed occurrences of expected beats even at varying levels of deviation from the underlying

rhythms (together with the compensatory temporary speed-ups) are perceived as interesting, while a strictly regular rhythm will quickly appear dull.

ratios for the remaining cluster centers. More generally, do the
constraints laid out impose an integer ratio structure on the prior
without assuming an integer ratio for any of the clusters, simply
by setting ck in a certain way?

HOW DO cu
k
AND cl

k
RELATE TO µk ?

The x-coordinates for the intersection point, expressed as µk −
scl
k
µk and µk + scu

k
µk, can be substituted in the respective

Gaussian probability density functions, equated to impose the
condition of intersection on the y-axis (Figure 1F):

2 ∗ log
(

sµk

)

+
((µk + scu

k
µk)− µk)

2

s2µ2
k

= 2 ∗ log
(

sµk+1

)

+
((µk+1 − scl

k+1
µk+1)− µk+1)

2

s2µ2
k+1

(10)

which simplifies as:

(cuk)
2 − (clk+1)

2
= 2 log(µk+1/µk). (11)

Equation (11) means that the difference of squares between c’s is
proportional to the logarithm of the ratio of the two means.

To make an example with actual numbers, if one substitutes
µk = µ1 = 100 ms and µk+1 = µ2 = 200 ms in (11), the

equation becomes (cu
k
)2− (cl

k+1
)
2 = 2 log(2). Hence r1 =

µk+1
µk

=
2, cu1 ≈ 2.5 and cl2 ≈ 2.2 are two approximate solutions (among
the infinite possible ones) of this particular example.

As the right side of Equation (11) is always strictly positive,
cu
k

can never equal cl
k+1

. While this does not constitute a
mathematical contradiction with our formulation (still leaving an
infinite number of mathematically possible c’s), it is admittedly
difficult to interpret psychophysically.

SUGGESTED EXPERIMENTS: MODELING
AND PSYCHOPHYSICS

Equations (7, 9) support a potential link between scalar timing
and integer ratios, as they include the integer ratios rk and the
scalar constant s (Figure 2). These generative formulas can be
implemented in computational simulations to explore the shape
of the parameter space. Given specific values for parameters s,
cu
k
and cl

k
, the equations will return a unique set of ratios: are
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these small integer ratios? Likewise, given one single integer ratio
µ1, all other µk are determined by Equation (9): which values
of µ1 result in r being integer ratios and s, cu

k
and cl

k
being

psychophysically plausible values?
The perspective we offer here creates the basis for expanding

not only into theoretical but also empirical work on s, cu
k
and cl

k
.

Experimental research can advance this approach by estimating
s, cu

k
and cl

k
via Equation (7) or (11). Here, we treated the

parameter s as an a priori known, one-valued constant (s =
0.025). To improve the model further, the variance of s might be
estimated by replications of previous psychophysical experiments
such as those by Friberg and Sundberg (1995) and Madison
and Merker (2004). Values for cu

k
and cl

k
can be estimated

from experiments testing the perception (and misattribution) of
durational categories.

LIMITATIONS, DISCUSSION, AND
CONCLUSIONS

We explore quantitative links between scalar timing and the
human bias toward small integer ratios. The arguments we
provide reduce the explanatory space to a few hypotheses. One
possibility is that integer ratios are not a human cognitive
primitive, but rather a simple by-product of other cognitive
constraints, and their interaction.

Alternatively, the scalar timing framework might not be the
most suitable one to explain the integer-ratio phenomenon of
human rhythm. If one adopts oscillatory frameworks, integer
ratios might simply arise from the oscillatory properties of brain
activity, and so can scalar properties and categorical perception.
Small integer ratios in particular would just reflect epiphenomena
of harmonics of one oscillator or the interaction between two
or more oscillators (Collyer et al., 1994; Strogatz, 2003; Buzsaki,
2006; Gupta, 2014; Merker, 2014; Gupta and Chen, 2016). Neural
resonance to musical rhythm (Large, 2008), interval tuning

(Merchant et al., 2013; Bartolo et al., 2014), and population
clocks (Crowe et al., 2014; Gouvêa et al., 2015; Bakhurin
et al., 2016; Merchant and Averbeck, 2017) present alternative
timing mechanisms, documented by in-vivo recordings of neural
populations and compatible with the observed small integer bias.

In any case, scalar timing and oscillatory theories are
simplifications, i.e., approximate descriptions derived from
confined experimental set-ups. Neurally and behaviorally,
the dissociation or compatibility between scalar timing and
oscillatory theories is more complex than it may appear in higher
level cognitive theories, and only detailed neural models will
enable us to define the actual underlying mechanisms.

AUTHOR CONTRIBUTIONS

AR and BT conceived the idea and performed the mathematical
derivations. All authors listed have made a substantial, direct
and intellectual contribution to the work, and approved it for
publication.

FUNDING

AR was supported by funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 665501 with the
research Foundation Flanders (FWO) (Pegasus2 Marie Curie
fellowship 12N5517N awarded to AR). AR and BT were also
supported by a visiting fellowship in Language Evolution from
the Max Planck Society and ERC grant 283435 ABACUS
(awarded to Bart de Boer).

ACKNOWLEDGMENTS

We are grateful to the editor and the reviewers for their support
and helpful comments on earlier versions of this manuscript.

REFERENCES

Allman, M. J., and Meck, W. H. (2011). Pathophysiological distortions

in time perception and timed performance. Brain 135, 656–677.

doi: 10.1093/brain/awr210

Allman, M. J., Teki, S., Griffiths, T. D., and Meck, W. H. (2014). Properties of the

internal clock: first- and second-order principles of subjective time. Ann. Rev.

Psychol. 65, 743–771. doi: 10.1146/annurev-psych-010213-115117

Arnal, L. H., and Giraud, A. L. (2012). Cortical oscillations and sensory

predictions. Trends Cogn. Sci. 16, 390–398. doi: 10.1016/j.tics.2012.

05.003

Aubanel, V., Davis, C., and Kim, J. (2016). Exploring the role of brain oscillations

in speech perception in noise: intelligibility of isochronously retimed speech.

Front. Hum. Neurosci. 10:430. doi: 10.3389/fnhum.2016.00430

Bakhurin, K. I., Mac, V., Golshani, P., and Masmanidis, S. C. (2016).

Temporal correlations among functionally specialized striatal neural

ensembles in reward-conditioned mice. J. Neurophysiol. 115, 1521–1532.

doi: 10.1152/jn.01037.2015

Bartolo, R., Prado, L., and Merchant, H. (2014). Information processing in

the primate basal ganglia during sensory-guided and internally driven

rhythmic tapping. J. Neurosci. 34, 3910–3923. doi: 10.1523/JNEUROSCI.2679-

13.2014

Bizo, L. A., Chu, J. Y., Sanabria, F., and Killeen, P. R. (2006). The failure of

Weber’s law in time perception and production. Behav. Process. 71, 201–210.

doi: 10.1016/j.beproc.2005.11.006

Buhusi, C. V., and Meck, W. H. (2005). What makes us tick? Functional and

neural mechanisms of interval timing. Nat. Rev. Neurosci. 6:755. doi: 10.1038/

nrn1764

Buzsaki, G. (2006). Rhythms of the Brain. Oxford: Oxford University Press.

Celma-Miralles, A., de Menezes, R. F., and Toro, J. M. (2016). Look at the

beat, feel the meter: top–down effects of meter induction on auditory and

visual modalities. Front. Hum. Neurosci. 10:108. doi: 10.3389/fnhum.2016.

00108

Church, R. M. (1999). Evaluation of quantitative theories of timing. J. Exp. Anal.

Behav. 71, 253–256. doi: 10.1901/jeab.1999.71-253

Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., and Burr, D. C. (2012).

Optimal encoding of interval timing in expert percussionists. J. Neurosci. 32,

1056–1060. doi: 10.1523/JNEUROSCI.3411-11.2012

Clarke, E. F. (1987). “Categorical rhythm perception: an ecological perspective,”

in Action and Perception in Rhythm and Music, ed A. Gabrielsson (Stockholm:

Royal Swedish Academy of Music), 19–33.

Collyer, C. E., Broadbent, H. A., and Church, R. M. (1994). Preferred rates of

repetitive tapping and categorical time production. Attent. Percept. Psychophys.

55, 443–453. doi: 10.3758/BF03205301

Frontiers in Computational Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 86

https://doi.org/10.1093/brain/awr210
https://doi.org/10.1146/annurev-psych-010213-115117
https://doi.org/10.1016/j.tics.2012.05.003
https://doi.org/10.3389/fnhum.2016.00430
https://doi.org/10.1152/jn.01037.2015
https://doi.org/10.1523/JNEUROSCI.2679-13.2014
https://doi.org/10.1016/j.beproc.2005.11.006
https://doi.org/10.1038/nrn1764
https://doi.org/10.3389/fnhum.2016.00108
https://doi.org/10.1901/jeab.1999.71-253
https://doi.org/10.1523/JNEUROSCI.3411-11.2012
https://doi.org/10.3758/BF03205301
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ravignani et al. Modeling Integer-Ratios in Musical Rhythm

Coxeter, H. S. M. (1968). Music and mathematics. Math. Teach. 61,

312–320.

Crowe, D. A., Zarco, W., Bartolo, R., and Merchant, H. (2014). Dynamic

representation of the temporal and sequential structure of rhythmic

movements in the primate medial premotor cortex. J. Neurosci. 34,

11972–11983. doi: 10.1523/JNEUROSCI.2177-14.2014

Desain, P., and Honing, H. (2003). The formation of rhythmic categories and

metric priming. Perception 32, 341–365. doi: 10.1068/p3370

Deutsch, D. (1986). A musical paradox. Music Percept. 3, 275–280.

doi: 10.2307/40285337

Drake, C., and Bertrand, D. (2001). The quest for universals in

temporal processing in music. Ann. N. Y. Acad. Sci. 930, 17–27.

doi: 10.1111/j.1749-6632.2001.tb05722.x

Essens, P. J. (1986). Hierarchical organization of temporal patterns. Percept.

Psychophys. 40, 69–73. doi: 10.3758/BF03208185

Essens, P. J., and Povel, D. (1985). Metrical and nonmetrical representations of

temporal patterns. Percept. Psychophys. 37, 1–7. doi: 10.3758/BF03207132

Fraisse, P. (1982). “Rhythm and tempo,” in The Psychology of Music,

ed D. Deutsch (New York, NY: Academic Press), 149–180.

doi: 10.1016/B978-0-12-213562-0.50010-3

Friberg, A., and Sundberg, J. (1995). Time discrimination in a monotonic,

isochronous sequence. J. Acoust. Soc. Am. 98, 2524–2531.

Getty, D. J. (1975). Discrimination of short temporal intervals: a comparison of

two models. Percept. Psychophys. 18, 1–8.

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing.

Psychol. Rev. 84:279. doi: 10.1037/0033-295X.84.3.279

Gouvêa, T. S., Monteiro, T., Motiwala, A., Soares, S., Machens, C., and Paton,

J. J. (2015). Striatal dynamics explain duration judgments. Elife 4:e11386.

doi: 10.7554/eLife.11386

Grondin, S. (2001). From physical time to the first and second moments of

psychological time. Psychol. Bull. 127:22. doi: 10.1037/0033-2909.127.1.22

Grondin, S. (2010). Timing and time perception: a review of recent behavioral and

neuroscience findings and theoretical directions. Attent. Percept. Psychophys.

72, 561–582. doi: 10.3758/APP.72.3.561

Grube, M., and Griffiths, T. D. (2009). Metricality-enhanced temporal encoding

and the subjective perception of rhythmic sequences. Cortex 45, 72–79.

doi: 10.1016/j.cortex.2008.01.006

Gupta, D. S. (2014). Processing of sub- and supra-second intervals in the primate

brain results from the calibration of neuronal oscillators via sensory, motor, and

feedback processes. Front. Psychol. 5:816. doi: 10.3389/fpsyg.2014.00816

Gupta, D. S., and Chen, L. (2016). Brain oscillations in perception, timing and

action. Curr. Opin. Behav. Sci. 8, 161–166. doi: 10.1016/j.cobeha.2016.02.021

Ivry, R. B., and Schlerf, J. E. (2008). Dedicated and intrinsic models of

time perception. Trends Cogn. Sci. 12, 273–280. doi: 10.1016/j.tics.2008.

04.002

Jacoby, N., and McDermott, J. H. (2017). Integer ratio priors on musical rhythm

revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370.

doi: 10.1016/j.cub.2016.12.031

Jazayeri, M., and Shadlen, M. N. (2010). Temporal context calibrates interval

timing. Nat. Neurosci. 13:1020. doi: 10.1038/nn.2590

Jones, M. R., and Yee, W. (1997). Sensitivity to time change: the role of

context and skill. J. Exp. Psychol. Hum. Percept. Perform. 23, 693–709.

doi: 10.1037/0096-1523.23.3.693

Karmarkar, U. R., and Buonomano, D. V. (2007). Timing in the absence

of clocks: encoding time in neural network states. Neuron 53, 427–438.

doi: 10.1016/j.neuron.2007.01.006

Large, E. W. (2008). Resonating to musical rhythm: theory and experiment.

Psychol. Time 189–232. doi: 10.1016/B978-0-08046-977-5.00006-5

Large, E. W., and Jones, M. R. (1999). The dynamics of attending:

how we track time varying events. Psychol. Rev. 106, 119–159.

doi: 10.1037/0033-295X.106.1.119

Large, E. W., and Kolen, J. (1995). Resonance and the perception of musical meter.

Connect. Sci. 6, 177–208. doi: 10.1080/09540099408915723

London, J. (2004). Hearing in Time. New York, NY: Oxford University Press.

doi: 10.1093/acprof:oso/9780195160819.001.0001

Madison, G., and Merker, B. (2004). Human sensorimotor tracking of

continuous subliminal deviations from isochrony. Neurosci. Lett. 370, 69–73.

doi: 10.1016/j.neulet.2004.07.094

Matell, M. S., and Meck, W. H. (2000). Neuropsychological

mechanisms of interval timing behavior. Bioessays 22, 94–103.

doi: 10.1002/(SICI)1521-1878(200001)22:1<94::AID-BIES14>3.0.CO;2-E

Mauk, M. D., and Buonomano, D. V. (2004). The neural basis

of temporal processing. Annu. Rev. Neurosci. 27, 307–340.

doi: 10.1146/annurev.neuro.27.070203.144247

Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cogn.

Brain Res. 3, 227–242.

Merchant, H., and Averbeck, B. B. (2017). The computational and neural basis

of rhythmic timing in medial premotor cortex. J. Neurosci. 37, 4552–4564.

doi: 10.1523/JNEUROSCI.0367-17.2017

Merchant, H., Pérez, O., Zarco, W., and Gámez, J. (2013). Interval tuning in the

primate medial premotor cortex as a general timing mechanism. J. Neurosci.

33, 9082–9096. doi: 10.1523/JNEUROSCI.5513-12.2013

Merker, B. (2014). Groove or swing as distributed rhythmic consonance:

introducing the groove matrix. Front. Hum. Neurosci. 8:454.

doi: 10.3389/fnhum.2014.00454

Motz, B. A., Erickson, M. A., and Hetrick, W. P. (2013). To the beat

of your own drum: cortical regularization of non-integer ratio rhythms

toward metrical patterns. Brain Cogn. 81, 329–336. doi: 10.1016/j.bandc.2013.

01.005

Palmer, C., and Krumhansl, C. L. (1990).Mental representations formusical meter.

J. Exp. Psychol. 16:728. doi: 10.1037/0096-1523.16.4.728

Patel, A. D., Iversen, J. R., Chen, Y., and Repp, B. H. (2005). The influence of

metricality and modality on synchronization with a beat. Exp. Brain Res. 163,

226–238. doi: 10.1007/s00221-004-2159-8

Peper, C. E., and Beek, P. J. (1998). Distinguishing between the effects of frequency

and amplitude on interlimb coupling in tapping a 2: 3 polyrhythm. Exp. Brain

Res. 118, 78–92. doi: 10.1007/s002210050257

Peper, C. E., Beek, P. J., and van Wieringen, P. C. (1995a). Frequency-

induced phase transitions in bimanual tapping. Biol. Cybernet. 73,

301–309.

Peper, C. E., Beek, P. J., and Van Wieringen, P. C. W. (1991). “Bifurcations

in polyrhythmic tapping: in search of Farey principles,” in Tutorials in

Motor Neuroscience, eds J. Requin and G. E. Stelmach (Dordrecht: Springer),

413–431.

Peper, C. L. E., Beek, P. J., and van Wieringen, P. C. (1995b). Coupling strength in

tapping a 2: 3 polyrhythm. Hum. Mov. Sci. 14, 217–245.

Pérez, O., and Merchant, H. (2018). The synaptic properties of cells define the

hallmarks of interval timing in a recurrent neural network. J. Neurosci. 38,

4186–4199. doi: 10.1523/JNEUROSCI.2651-17.2018

Pikovsky, A., Rosenblum, M., and Kurths, J. (2003). Synchronization: A Universal

Concept in Nonlinear Sciences, Vol. 12. Cambridge: Cambridge University

Press.

Polak, R., London, J., and Jacoby, N. (2016). Both isochronous and non-

isochronous metrical subdivision afford precise and stable ensemble

entrainment: a corpus study of malian jembe drumming. Front. Neurosci.

10:285. doi: 10.3389/fnins.2016.00285

Povel, D. J., and Essens, P. (1985). Perception of temporal patterns.Music Percept.

2, 411–440. doi: 10.2307/40285311

Ravignani, A., Delgado, T., and Kirby, S. (2016). Musical evolution

in the lab exhibits rhythmic universals. Nat. Hum. Behav. 1:0007.

doi: 10.1038/s41562-016-0007

Ravignani, A., Thompson, B., Grossi, T., Delgado, T., and Kirby, S. (2018).

Evolving building blocks of rhythm: how human cognition creates

music via cultural transmission. Ann. N.Y. Acad. Sci. 1423, 176–187.

doi: 10.1111/nyas.13610

Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Tamada, T., Iwata, N.

K., et al. (1999). Neural representation of a rhythm depends on its

interval ratio. J. Neurosci. 19, 10074–10081. doi: 10.1523/JNEUROSCI.19-22-

10074.1999

Savage, P. E., Brown, S., Sakai, E., and Currie, T. E. (2015). Statistical universals

reveal the structures and functions of humanmusic. Proc. Natl. Acad. Sci. U.S.A.

112, 8987–8992. doi: 10.1073/pnas.1414495112

Schulze, H. H. (1989). Categorical perception of rhythmic patterns. Psychol. Res.

51, 10–15. doi: 10.1007/BF00309270

Shaffer, L. H. (1983). Timing in musical performance. Ann. N. Y. Acad. Sci. 423,

420–428.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 86

https://doi.org/10.1523/JNEUROSCI.2177-14.2014
https://doi.org/10.1068/p3370
https://doi.org/10.2307/40285337
https://doi.org/10.1111/j.1749-6632.2001.tb05722.x
https://doi.org/10.3758/BF03208185
https://doi.org/10.3758/BF03207132
https://doi.org/10.1016/B978-0-12-213562-0.50010-3
https://doi.org/10.1037/0033-295X.84.3.279
https://doi.org/10.7554/eLife.11386
https://doi.org/10.1037/0033-2909.127.1.22
https://doi.org/10.3758/APP.72.3.561
https://doi.org/10.1016/j.cortex.2008.01.006
https://doi.org/10.3389/fpsyg.2014.00816
https://doi.org/10.1016/j.cobeha.2016.02.021
https://doi.org/10.1016/j.tics.2008.04.002
https://doi.org/10.1016/j.cub.2016.12.031
https://doi.org/10.1038/nn.2590
https://doi.org/10.1037/0096-1523.23.3.693
https://doi.org/10.1016/j.neuron.2007.01.006
https://doi.org/10.1016/B978-0-08046-977-5.00006-5
https://doi.org/10.1037/0033-295X.106.1.119
https://doi.org/10.1080/09540099408915723
https://doi.org/10.1093/acprof:oso/9780195160819.001.0001
https://doi.org/10.1016/j.neulet.2004.07.094
https://doi.org/10.1002/(SICI)1521-1878(200001)22:1<94::AID-BIES14>3.0.CO
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1523/JNEUROSCI.0367-17.2017
https://doi.org/10.1523/JNEUROSCI.5513-12.2013
https://doi.org/10.3389/fnhum.2014.00454
https://doi.org/10.1016/j.bandc.2013.01.005
https://doi.org/10.1037/0096-1523.16.4.728
https://doi.org/10.1007/s00221-004-2159-8
https://doi.org/10.1007/s002210050257
https://doi.org/10.1523/JNEUROSCI.2651-17.2018
https://doi.org/10.3389/fnins.2016.00285
https://doi.org/10.2307/40285311
https://doi.org/10.1038/s41562-016-0007
https://doi.org/10.1111/nyas.13610
https://doi.org/10.1523/JNEUROSCI.19-22-10074.1999
https://doi.org/10.1073/pnas.1414495112
https://doi.org/10.1007/BF00309270
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ravignani et al. Modeling Integer-Ratios in Musical Rhythm

Shi, Z., Church, R. M., and Meck, W. H. (2013). Bayesian optimization

of time perception. Trends in Cognitive Sciences, 17, 556–564.

doi: 10.1016/j.tics.2013.09.009

Strogatz, S. H. (2003). Sync: The Emerging Science of Spontaneous Order.NewYork,

NY: Hyperion Books.

ten Hoopen, G., Sasaki, T., Nakajima, Y., Remijn, G., Massier, B., Rhebergen,

K. S., et al. (2006). Time-shrinking and categorical temporal ratio

perception: evidence for a 1: 1 temporal category. Music Percept. 24, 1–22.

doi: 10.1525/mp.2006.24.1.1

Thompson, B., Kirby, S., and Smith, K. (2016). Culture shapes the

evolution of cognition. Proc. Natl. Acad. Sci. U.S.A. 113, 4530–4535.

doi: 10.1073/pnas.1523631113

Toussaint, G. T. (2013). The Geometry of Musical Rhythm: What Makes a Rhythm

“Good”? New York, NY: Chapman and Hall; CRC Press.

Wearden, J. H. (1991). Do humans possess an internal clock with scalar timing

properties? Learn. Motiv. 22, 59–83. doi: 10.1016/0023-9690(91)90017-3

Wing, A. M., and Kristofferson, A. B. (1973a). Response delays and the timing of

discrete motor responses. Atten. Percept. Psychophys. 14, 5–12.

Wing, A. M., and Kristofferson, A. B. (1973b). The timing of interresponse

intervals. Atten. Percept. Psychophys. 13, 455–460.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Ravignani, Thompson, Lumaca and Grube. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 86

https://doi.org/10.1016/j.tics.2013.09.009
https://doi.org/10.1525/mp.2006.24.1.1
https://doi.org/10.1073/pnas.1523631113
https://doi.org/10.1016/0023-9690(91)90017-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Why Do Durations in Musical Rhythms Conform to Small Integer Ratios?
	Integer Ratios and Musical Rhythm
	Psychophysical and Oscillatory Approaches
	Iterated Drumming Experiments: Small Integer Ratios as Cognitive Attractors
	Probabilistic Inference for Interval Ratio Categories
	Assumption 1: Categorical Timing
	Assumption 2: Bayesian Inference Over Gaussian Categories
	Assumption 3: A Small Number of Sub-second Categories
	Assumption 4: Scalar Timing
	Linking Categorical Perception and Scalar Timing: How close can we get to Integer Ratio Intervals?
	How do cku and ckl relate to μk ?
	Suggested Experiments: MODELING and Psychophysics
	Limitations, Discussion, and Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


