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Spatio-temporal chaotic dynamics in a two-dimensional excitable medium is (cross-)

estimated using a machine learning method based on a convolutional neural network

combined with a conditional random field. The performance of this approach is

demonstrated using the four variables of the Bueno-Orovio-Fenton-Cherry model

describing electrical excitation waves in cardiac tissue. Using temporal sequences of

two-dimensional fields representing the values of one or more of the model variables

as input the network successfully cross-estimates all variables and provides excellent

forecasts when applied iteratively.

Keywords: deep learning, conditional random fields, artificial neural network, cross-estimation, spatio-temporal

chaos, excitable media, cardiac arrhythmias, non-linear observer

1. INTRODUCTION

In life sciences mathematical models based on first principles are scarce and often a variety
of approximate models of different complexity exists for describing the given (experimental)
dynamical process. For example, electrical excitation waves in cardiac tissue can be described using
partial differential equations (PDEs) with 2 to more than 60 variables, covering the range from
simple qualitative models [1, 2] to detailed ionic cell models including not only cell membrane
voltage but also different ionic currents and gating variables [3, 4]. While there are several
modalities for measuring membrane voltage (electrical sensors, fluorescent dyes [5]) it is in general
much more difficult and expensive (if not impossible) to directly measure the other variables of
the mathematical model, such as ionic currents or gating variables. In such cases it is desirable to
(cross) estimate variables, which are difficult to assess from those that can be easily measured. In
control theory this task is addressed by constructing an observer based on a given mathematical
model describing the process of interest. Once all state variables of the model have been estimated,
the model (e.g., a PDE) can be used to simulate and forecast the future evolution of the dynamical
process. This combination of cross estimation and prediction of dynamical variables is the core of
all data assimilation methods [6–10] where again the model equations are involved and have to be
known. In this contribution, we present amachine learningmethod for estimating all state variables
and forecasting their evolution from limited observations. This “black-box model" consists of a
convolutional neural network (CNN) combined with a conditional random field (CRF) and will be
introduced in section 2. For training and evaluating the network two dimensional spatio-temporal
time series are used, which were generated by the Bueno-Orovio-Fenton-Cherry (BOCF) model
[11] describing complex electrical excitation waves in cardiac tissue. This model is introduced in
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section 3. As modeling tasks we consider cross estimation
of variables, forecasting dynamics using an iterative feedback
scheme, and a combination of forecasting and cross estimation
providing future values of not measured variables. These results
are presented in section 4. A summary and a brief discussion of
potential future developments are given in section 5.

2. DATA DRIVEN MODELING

In data driven modeling mathematical models are not based
on first principles (e.g., Newton’s laws, Maxwell’s equations, ...)
but are directly derived from experimental measurement data
or other physical observations. The model should describe the
experiment as precisely as possible but it also should possess a
high level of generalizability, i.e., the ability to provide a suitable
and good description for data from a very similar experiment.
Therefore, overfitting has to be avoided and all irrelevant aspects
that are not necessary to describe the desired effect should
be discarded when generating the model (without employing
human expert knowledge). Many approaches for generating
(dynamical) models from (training) data have been devised
including autoregressive models [12], evolutionary algorithms in
particular genetic algorithms [13], local modeling [14], reservoir
computing [15–19], symbolic regression [20], or adaptive fuzzy
rule-based models [21]. Furthermore, Monte Carlo techniques
may be used for assessing uncertainty in model parameters [22].
In this work we present a modeling ansatz which combines deep
convolutional neural networks [23] for feature extraction and
dimension reduction with conditional random fields (CRFs) [24]
for modeling the properties of temporal sequences.

2.1. Artificial Neural Network
Artificial neural networks (ANNs) [25–27] are parameterizable
models for approximating a (unknown) function F implicitly
given by the data. The actual function provided by the ANN:

f :RO 7→ R
P, (1)

should be a good approximation of F, i.e., f ≃ F. Here O ∈ N

and P ∈ N denote the dimension of the input and the output of f ,
respectively. A widely used type of ANN are feed-forward neural
networks (FNN) where, in general, f is given by

f (X) = ψ(WX + b), (2)

with a non-linear function ψ applied component-wise, an input
vector X ∈ R

O, a weight matrix W ∈ R
P×O, and a bias b ∈ R

P.
Equation (2) is called a one-layer FNN. By recursively applying
the output of one layer as input to the next layer, a multi-layer
FNN can be constructed:

f (X) = f L(. . . f 2(f 1(X;W1, b1);W2, b2) . . . ;WL, bL). (3)

Equation (3) describes a multi-layer FNN with L ∈ N layers.
In the following an input with several variables is considered
and the input is given by X ∈ R

h×w×d, with h ∈ N rows and
w ∈ N columns of the input field, and the number of variables

d. To improve the approximation properties of the network
Equation (3), FNNs may contain additional convolutional layers
leading to state-of-the-art models for data classification, so-called
convolutional neural networks (CNNs) [23].

2.2. Network Architecture
The network used in the following for prediction of multivariate
time series is built based on the architecture of a convolutional
autoencoder [28], with residual connections [29] consisting of an
encoding path (left half of the network, from 512×512 to 64×64)
to retrieve the features of interest and a symmetric decoding path
(right half of the network, from 64 × 64 back to 512 × 512). As
illustrated in Figure 1 each encoding/decoding path consists of
multiple levels, i.e., resolutions, for feature extraction on different
scales and noise reduction. The conditional random field block
has a special role: Based on the selected feature, the CRF should
map a sequence of features of a previous time step t to the next
time step t +1t. The other four components of the network are
basic building blocks, like regular convolutional layers followed
by rectified linear unit activation and batch normalization (these
blocks are omitted in Figure 1 for simplicity). Each residual
layer consists of three convolutional blocks and a residual
skip connection. A maxpooling layer is located between levels
in the encoding path to perform downsampling for feature
compression. The deconvolutional layer [30] is located between
levels in the decoding path to up-sample the input data using
learnable interpolations. The input for the network are all four
system variables of the BOCF model which will be introduced
in section 3.1 or a sequence of the four system variables as
introduced in section 4.1. The output of the network always
consists of four system variables.

2.3. Convolution Layer
Convolutional neural networks [23, 26, 27] receive a training
data set X = {X1,X2, . . . ,Xm}, where Xα ∈ R

h×w×d. The data
processing through the network is described layer-wise i.e., in
the l-th convolutional layer the input X(l) will be transformed to
the raw output o(l), which is in turn the input to the next layer
l + 1, where the dimension changes depending on the number
and size of convolutions, padding and stride of the layers as
illustrated in Figure 1. The padding parameter P(l) ∈ N, for layer
l, describes the number of zeros at the edges of a field by which
the field is extended. This is necessary since every convolution
being larger than 1 × 1 will decrease the output size. The stride
parameter S(l) ∈ N is the parameter determining how much the
kernel is shifted in each step to compute the next spatial position
(x, y). This specifies the overlap between individual output pixels,
and it is here set to 1. Each layer l is specified by its number

of kernels K(l) = {K(l,1),K(l,2), . . .K(l,d(l))}, where d(l) ∈ N is
the number of kernels in layer l, and its additive bias terms

b(l) = {b(l,1), b(l,2), . . . , b(l,d
(l))} with b(l,d) ∈ R. Note that the input

X(l,d) ∈ R
h(l)×w(l)

in the l-th layer with size h(l) × w(l), kernel k,
and depth d(l) is processed by a set of kernels {K(l,d)}. For each

kernel K(l,d) ∈ R
h
(l)
K ×w

(l)
K with size h

(l)
K × w

(l)
K and d ∈ {1, . . . , d(l)},

the raw output o(l) ∈ R

h(l)−h
(l)
K −1+P(l)

S(l)
×

w(l)−w
(l)
K −1+P(l)

S(l) is computed
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FIGURE 1 | The proposed architecture for forecasting and cross-estimation consisting of a splitted autoencoder and a conditional random field (CRF, orange block) in

the middle, with residual blocks (cyan blocks), convolutional layers (turquoise blocks), maxpooling and downsampling layers (yellow blocks), and deconvolutional

layers (pink blocks).

element by element as:

o(l,d)x,y = b(l,d) +
(

K(l,d) ∗ X(l,d)
)

x,y

= b(l,d) +

d(l)
∑

k=1

h
(l)
K

∑

i=1

w
(l)
K

∑

j=1

K
(l,d)
i,j · X

(l,k)
x+i−1,y+j−1. (4)

The result is clipped by an activation function ψ to obtain the

activation ψ(o
(l,d)
x,y ) of each unit in layer l:

ψ

(

o(l,d)x,y

)

= max
{

0, o(l,d)x,y

}

. (5)

To obtain o(l) = {o(l,1), . . . , o(l,d
(l))}, Equation (5) needs to be

calculated ∀d = 1, . . . , d(l) and ∀(x, y). Each spatial calculation

of o
(l,d)
x,y is considered as a unit and ψ(o

(l,d)
x,y ) as the feedforward

activation of the unit. The value of an element of a kernel
(K

(l,d)
i,j ) between two units is the weight of the feedforward

connection. Such systems are well-suited for feature extraction
[28], but their linear structure does not allow a direct modeling
of temporal changes or the possibility to process a sequence
of data. To enable temporal modeling, we employ linear-chain
conditional random fields [31] that will be introduced in the next
section.

2.4. Linear-Chain Conditional Random
Fields
To implement a probabilistic forecasting block we consider
the output of the convolutional layer o and the corresponding
forecast q as random variables O and Q, respectively. Both
random variables O and Q are jointly distributed and in a
predictive framework we aim at constructing a conditional model
P(Q|O) from paired observation and forecast sequences. Let G =

(V ,E) be a undirected graph such that Q = (Qv)v∈V , where
Q is indexed by the vertices of G. Each vertex in G represents
a state, a history or a forecast. Then (O,Q) is a conditional
random field (CRF), if conditioned on O the random variables
Qv obey the Markov property [24]. A linear-chain conditional
random field, where o is a sequence of historical extracted
features and q a corresponding forecasted feature in the future, is
given by:

P(q | o, θ) =
∑

h∈H

P(q, h | o, θ)

=

∑

h∈H exp(9(q, h, o; θ))
∑

q′∈Q

∑

h∈H exp(9(q′, h, o; θ))
, (6)

where q ∈ Q, Q is a set of future events, h ∈ H, H is the set
of layers of the CRF where each element hi of h represents a
historical state of an event at time t. θ is the set of parameters.
9(q, h, o; θ) is a so called potential function (also called local or
compatibility function) which measures the compatibility (i.e.,
high probability) between a forecast, a set of observed features,
and a configuration of historical states, such that:

9(q, h, o; θ) =

n
∑

j=1

φj(o,ω) · θh[hj]

+

n
∑

j=1

θy[y, hj]+
∑

(i,j)∈ǫ

θǫ[q, hj, hk]+
φ(o,ω) · θp[q]

k
, (7)

Here n is the number of historical states and φj(o,ω) is a
vector that can include any feature of the observation specific
for a specific time window ω, and θ = [θh, θq, θǫ , θp] are
model parameters. To restrict the search space for possible
parametrizations only sine, cosine, and a linear interpolation
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function are allowed to be used as feature functions. θh[hj] is the
parameter that corresponds to the state hj. The function θq[q, hj]
indicates the parameters that corresponds to the forecast q and
the state hj. θǫ[q, hi, hk] refers to parameters that describe the
dependency relation between the nodes hi and hk. θp[q] defines
the parameters for q given the features over the past, while the
dot product φj(o,ω) · θn[hj] measures the compatibility between
the observed features and the state at time j. In contrast to this
φ(o,ω) · θp[q] measures the compatibility between observation
and the forecast. h consists of k = 1, 024 elements and the last
term in Equation (7) captures the influence of the past features
on the forecast. For training the following likelihood function
is defined:

L(θ) =

n
∑

i=1

P(qi | oi, θ)−
1

2σ 2
‖θ‖2, (8)

where n is the number of training examples. By maximizing
the likelihood for the forecasted training data the optimal
parameter set θ∗ is determined. To find θ∗ Equation (8) can be
evaluated by the same gradient descent method which is used
for optimizing/training the autoencoder. To forecast the input
sequence with a linear-chain CRF it is necessary to compute the
q sequence that maximizes the following equation:

q̂ = argmax
q

P(q | o; θ∗) (9)

The sequence maximizing this is then used by the
deconvolutional part of the network to map the features
back to the desired system variables at t +1t.

3. MODELING EXCITABLE MEDIA

Excitable systems are non-linear dynamical systems with a stable
fixed point. Small perturbations of the stable equilibrium decay,
but stronger perturbations above some characteristic threshold
lead to a high amplitude excursion in state space until the
trajectory returns to the stable fixed point. In neural or cardiac
cells this response leads to a so-called action potential. After such
a strong response a so-called refractory period has to pass until the
next excitation can be initialized by perturbing the system again.
An excitable medium consists of excitable systems (e.g., cells),
which are spatially coupled. Electric coupling of neighboring
cardiac cells, for example, can be modeled by means of a
diffusion term for local currents. The resulting partial differential
equations (PDEs) describe the propagation of undamped solitary
excitation waves. Due to the refractory time of local excitations
spiral or scroll waves are very common and typical hallmarks
of excitable media, which can lead to stable periodically rotating
wave patterns or may break-up forming complex chaotic wave
dynamics. From the large selection of different PDE models
describing excitable media we have chosen the Bueno-Orovio-
Cherry-Fenton (BOCF) model which was devised as an efficient
model for cardiac tissue [11].

3.1. Bueno-Orovio-Cherry-Fenton Model
The Bueno-Orovio-Cherry-Fenton (BOCF) model [11] provides
a compact description of excitable cardiac dynamics. We use this
model as a benchmark to validate our approach for forecasting
and cross-estimation of complex wave patterns in excitable
media. The evolution of the four system variables of the BOCF
model is given by four PDEs

∂u

∂t
= D · ∇2u− (Jsi + Jfi + Jso)

∂v

∂t
=

1

τ−v

(

1−H(u− θv)
)

(v∞ − v)−
1

τ+v
H(u− θv)v

∂w

∂t
=

1

τ−w
(1−H(u− θw))(w∞ − w)−

1

τ+w
H(u− θw)w

∂s

∂t
=

1

2τs
((1+ tanh(ks(u− us)))− 2s),

(10)

where u represents the membrane voltage and H(·) denotes the
Heaviside function. The three currents Jsi, Jfi and Jso are given by
the equations

Jsi = −
1

τsi
H(u− θw)ws

Jfi = −
1

τfi
vH(u− θv)(u− θv)(uu − u)

Jso =
1

τo
(u− uo)(1−H(u− θw))+

1

τso
H(u− θw).

(11)

Furthermore, seven voltage dependent variables

τ−v = (1−H(u− θ−v ))τ−v1 +H(u− θ−v )τ−v2

τ−w = τ−w1 +
1

2
(τ−w2 − τ

−
w1)(1+ tanh(k−w (u− u−w )))

τ−so = τso1 +
1

2
(τso2 − τso1)(1+ tanh(kso(u− uso)))

τs = (1−H(u− θw))τs1 +H(u− θw)τs2

τo = (1−H(u− θo))τo1 +H(u− θo)τo2

v∞ =

{

1, if u ≤ θ−v

0, if u ≥ θ−v

w∞ = (1−H(u− θo))(1−
u

τw∞
)+H(u− θo)w

∗
∞

(12)

are required. The characteristic model dynamics is determined
through 28 parameters. In our simulations we used a
set of parameters [11] given in Table 1 for which the
BOCF model exhibits chaotic excitation wave dynamics
similar to the Ten Tusscher-Noble-Noble-Panfilov (TNNP)
model [32].

The spatio-temporal chaotic dynamics of this system is
actually transient chaos whose lifetime grows exponentially
with system size [33, 34]. To obtain chaotic dynamics
with a sufficiently long lifetime the system has been
simulated on a domain of 512 × 512 grid points with a
grid constant of 1x = 1.0 space units and a diffusion
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TABLE 1 | TNNP model parameter values for the BOCF model [11].

uo 0 τ−
v2 1150 τfi 0.11 τs1 2.7342

uu 1.58 τ+v 1.4506 τo1 6 τs2 3

θv 0.3 τ−
w1 70 τo2 6 ks 2.0994

θw 0.015 τ−
w2 20 τso1 43 us 0.9087

θ−v 0.015 k−w 65 τso2 0.2 τsi 2.8723

θo 0.006 u−w 0.03 kso 2 τw∞ 0.07

τ−
v1 60 τ+w 280 uso 0.65 w∗

∞ 0.94

FIGURE 2 | Snapshots from the BOCF model at t = 100 of (A) the u variable, (B) the v variable, (C) the w variable, and (D) the s variable.

constant D = 0.2. Furthermore, an explicit Euler stepping
in time with 1t = 0.1 time units1, a 5 point approximation
of the Laplace operator, and no-flux boundary conditions
were used. Figure 2 shows typical snapshots of the
dynamics.

4. RESULTS

The proposed network model was trained with simulated data
generated by the BOCF model with parameter values given
in Table 1. Ten trajectories with different initial conditions for
the variables u, v,w, and s were generated by simulating the
BOCF model for a time series of 50,000 samples spanning a
period of time of 5 s. Five of these data sets randomly chosen,
were used to train the network, while the other solutions were
used for validation. For training the Adam optimizer [35] was
used, with a learning rate lr = 0.0001 and β1 = 0.9,
β2 = 0.999.

In order to quantify the performance of the estimation and
predictionmethods the similarity of target fields and output fields
of the network has to be quantified. For this purpose we use
the Jensen-Shannon divergence (JSD) [36] applied to normalized
fields of the variables of the BOCFmodel. The JSD of two discrete
probability distributions A and B is defined as

JSD(A‖B) =
1

2
DKL(A‖M)+

1

2
DKL(B‖M), (13)

1We consider all variables and parameters of the BOCF model as dimensionless.

The parameter values given in Table 1 are, however, consistent with the choice

of a time unit equalling 1ms. In this case all t-values given in this article would

correspond to milli seconds.

where M = 1
2 (A + B) and DKL(A‖M) is the Kullback-Leibler

divergence [37]:

DKL(A‖M) = −
∑

i

P(i) log

(

A(i)

M(i)

)

. (14)

During training the JSD was used as objective function to be
minimized (for a GPU implementation of the JSD see [38]).
The JSD is bounded by 0 and 1 and a value below 0.02 was
considered to indicate no discernible differences between the two
distributions (fields). An alternative for quantifying the deviation
would be the Fractions Brier Score [39]. For training the network,
for each trajectory at each time step, sequences of lengths up to
m = 10 were used as input.

The input of the network consisted of fields of variables that
were assumed to be measured and random fields representing
variables that were considered to be not available.

4.1. Forecast
For forecasting the input of the network consisted of sequences
of length m = 10 of u, v,w, and s given by {ut−m+1, . . . , ut},
{vt−m+1, . . . , vt}, {wt−m+1, . . . ,wt}, and {st−m+1, . . . , st}. The
desired output of the network is then ut+1t , vt+1t ,wt+1t and
st+1t . By using the output of the network as a new input the
system can be run iteratively in a closed loop for long term
prediction. The development of the JSDs of u, v,w, s through
time are shown in Figure 3A. Since the u and the s fields look
quite similar (see Figures 2A,D) their JSD-values are almost the
same. Thew-field (Figure 2C) exhibits relatively high values at all
spatial locations and therefore the JSD of two such fields is rather
low. On the other hand, the v field (Figure 2B) possesses only
very localized structures with high values and this leads to rather
high values of the JSD for (slightly) different fields. Figure 3B
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FIGURE 3 | Temporal development of (A) the Jensen-Shannon divergence (JSD) and (B) the root normalized mean squared error (RNMSE) for all variables u, v,w, s

showing the deviation of the iterative network prediction (in a feedback mode) from the reference orbit obtained with the BOCF model. During the period [0− 1000] the

predicted and the true fields agree very well as indicated by very small values of the JSD. In the time interval (1000− 3000] the JSD values increase until they saturate

and the forecasts become very poor and useless. The RNMSE values show a similar increase in time but turn out to be more sensitive to minor deviations during the

initial phase [0− 1000] of the forecast. The solid curves show median values of JSD and RNMSE obtained from ten different initial values of u, v,w, s. The transparent

areas visualize the 0.25/0.75 percentile.

FIGURE 4 | Temporal development of the sum of the root normalized mean squared errors (RNMSE) of all variables u, v,w, s. (A) shows the NMSE for t ∈ [1, 100] and

(B) shows the NMSE for t ∈ [1, 1000]. The orange curve describes the deviation of the trajectory generated by the network from the reference orbit simulated with the

BOCF model. For comparison the blue curve shows the distance between the reference orbit and a second solution of the BOCF model obtained by perturbing the

initial conditions where each variable was perturbed at every spatial location using Gaussian random noise (µ = 0, σ2 = 10−11). The error dynamics of ten perturbed

trajectories was analyzed. These orbits were obtained by perturbing the reference orbit at different times [0, 1000), [1000, 2000), . . . [9000, 10000). The blue curve

shows the median and the 0.25/0.75 percentile is visualized by the transparent areas. The dotted black line (A) denotes the slope the linear part of the log(NMSE) vs. t

curve which provides an estimate of the largest Lyapunov exponent [40] λ1 ≈ 0.25 (with respect to the natural logarithm).

shows for comparison the root normalized mean squared errors
(RNMSE) of all variables u, v,w, s which is given by

RNMSE(v) =

√

MSE(v)

MSE(v̄)
(15)

where

MSE(v) =
1

M2

M
∑

i=1

M
∑

j=1

(

vBOCFij (t)− vij(t)
)2

. (16)

Here v̄ denotes the temporal and spatial mean values of the BOCF
sequence of length TF, M

2 = 512 · 512 is the number of grid
points of the domain and vBOCFij denotes the value of variable v at

grid point (i, j) for the reference solution generated by the BOCF
model. As can be seen in Figure 3A all four curves possess very
similar values and indicate an increase of the error already during
the initial period for t ∈ [0, 1000].

Figure 4 shows a comparison of the error dynamics of
the forecast obtained with the iterated network with feedback
(orange curve) and the dynamics of a BOCF model starting from
slightly perturbed initial conditions (blue curve). Both curves
give the root normalized mean squared error (RNMSE) with
respect to the same reference orbit generated by the BOCFmodel.
The perturbation of the initial condition of the second BOCF
solution with respect to the initial condition of the reference
orbits was chosen to be very small. Therefore, during the initial
phase the deviation still remains so small that (with semi-
logarithmic axes) a linear segment of the error curve occurs that
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FIGURE 5 | Snapshots of u at different time steps. (A–D) Show the (reference) values from the BOCF simulation, while (E–H) display the values forcasted by the

network. The diagrams (I–L) show the absolute deviation of the forecasted values from the reference values. At t = 500 the patterns (A,E) are still (almost)

indistinguishable, and for t = 1, 500 still only minor differences between (B,F) are noticeable.

FIGURE 6 | Jensen-Shannon-Divergence (JSD) of true and estimated fields for different cross estimation tasks. In cases where more than one variable is estimated

the mean value of the JSDs of the estimated variables is given. (A) Cross estimation for the cases (vt,wt, st → ut ), (wt, st → ut, vt ), (ut, vt → wt, st ), (ut → vt,wt, st ),

and (wt → ut, vt, st ), based on the input from the BOCF simulation. (B) Cross estimation of future values of not measured variables for the cases

(vt∗ ,wt∗ , st∗ → uτ ), (wt∗ , st∗ → uτ , vτ ), (ut∗ , vt∗ → wτ , sτ ), (ut∗ → vτ ,wτ , sτ ), and (wt∗ → uτ , vτ , sτ ) based on the forecast of the data driven model for a period of

τ = 1, 000, where t∗ denotes 10 successive snapshots at times 0, 0.1, . . . , 0.9 constituting the input . In both diagrams the orange line is the median value for each

case, the box extends from the lower to upper quartile values. The whiskers extend from the box to show the range of the data. Flier points are those past the end of

the whiskers.
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FIGURE 7 | (A–H): Cross estimation of u, v, s at t = 100 based on the input w at t = 0 where (A,B,D) is the random noise input for the system variables u, v and s, (C)

is the snapshot input of w at t = 0 (estimation). (E–H) show the output of the data-driven model for the system variables u, v,w, s at time t = 100. (I–P): Cross

estimation of v,w, s at t = 100 based on the input u at t = 0 where (I) shows the snapshot input of u at t = 0. (J,K,L) show the random noise input for the system

variables v,w and s, (M–P) is the output of the data-driven model for the system variables u, v,w, s at time t = 100 (prediction). (Q–U): Reference data from the BOCF

model for time t = 100, where (Q–U) are the snapshots for the system variables u, v,w, and s.

can be used to estimate the largest Lyapunov exponent [40]. Once
the error of the perturbed BOCF orbit (blue curve) reaches the
level of the network prediction error (orange curve) both error
curves continue to increase in the same way indicating that the
network almost perfectly learned the true dynamics of the BOCF
model.

To illustrate the deviation between the u field forecasted by
the network and the (true) u field provided by the simulation
of the BOCF PDE Figure 5 shows snapshots at times t = 500,
t = 1, 500, t = 3, 000, and t = 5, 000. While at t = 500 original
(A) and forecast (E) are almost indistinguishable the snapshots
at t = 1, 500 exhibit minor differences (Figures 5B,F). At time
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t = 3, 000 only rough structures agree (Figures 5C,G) until at t =
5, 000 forecast and simulation appear completely decorrelated
(Figures 5D,H). The full evolution of the forecast compared
to the original dynamics generated with the BOCF model is
also available as a movie (Supplemental Data). Compared to
a typical spiral rotation period of approximately Tsp = 350
good forecasting results can be obtained for about five spiral
rotations corresponding to 5*350 / 4 = 437 Lyapunov times TL =

1/λ1 ≈ 4 given by the largest Lyapunov exponent λ1 ≈ 0.25 (see
Figure 4).

4.2. Cross-Estimation
For cross-estimation only a part of the system variables are
considered as being directly observable or measurable. Based
on these available variables the other not measurable variables
have to be estimated (a task also called cross prediction). In
the context of the BOCF model we shall, for example, estimate
vt ,wt , st from observations of ut , only. Since the network expects
all system variables as input the not observed variables were
replaced by uniform noise in the range of 0 − 0.3. For this
purpose for every t ∈ [0, 1000] the data of the BOCF model
were used as single time step input for the network and the
cases (vt ,wt , st → ut), (wt , st → ut , vt), (ut , vt → wt , st), (ut →
vt ,wt , st), and (wt → ut , vt , st) were considered as estimation
tasks. Figure 6 shows the JSD statistics for all these cases. The
low JSD values for (vt ,wt , st → ut) indicated that the variable
u can be very well estimated by the variables v,w, s, which
could be expected because the variable u is part of the PDEs
of the other variables. Similarly good estimation results are
obtained for (ut → vt ,wt , st) which is remarkable, because the
membrane potential u is the variable, which can be measured
most easily in experiments and the result shows that this
information is sufficient to recover the other variables v, w,
and s of the BOCF model. The worst performance is achieved
if only w is used to cross estimate all other system variables.
These cross estimation results are in very good agreement with
the performance of an Echo State Network applied to similar
data [19].

4.3. Forecast and Cross-Estimation
This investigation represents a combination of the two previous
ones. In this case, however, not for every time step the data
from the BOCF model were used, but only ten time steps

from the BOCF model were used to initialize the forecast of
the network. Depending on the case which variable should be

estimated the BOCF variables for initialization were replaced

by uniform noise, as before. Figure 6B shows the JSD statistics
for the four estimation cases considered and in Figure 7

snapshots of the input and the true and estimated fields are
presented illustrating the very good performance at time t =

100.

5. DISCUSSION

Spatio-temporal non-linear dynamical systems like extended
systems (described by PDEs) or networks of interacting

oscillators may exhibit very high dimensional chaotic dynamics.
A typical example are complex wave pattern occurring in some
excitable media. As a representative of this class of systems
we used the BOCF model describing electrical excitation waves
in cardiac tissue where chaotic dynamics is associated with
cardiac arrhythmias. For future applications like monitoring and
predicting the dynamical state of the heart or the impact of
interventions, mathematical models are required describing the
temporal evolution or the relation between different (physical)
variables. As an alternative to the large number of simple
qualitative or detailed (ionic) models (incorporating many
biophysical details and corresponding variables) we presented
a machine learning approach for data driven modeling of
the spatio-temporal dynamics. A convolutional neural network
combined with a linear-chain of conditional random fields was
trained and validated with data generated by a simulation of
the BOCF model. To mimic experimental limitations when
measuring cardiac dynamics we considered different cases where
only some of the variables of the BOCF model were assumed
to be available as input of the generated model and the not
measurable variables were replace by random numbers. Running
the trained network in a closed loop (feedback) configuration
iterated prediction provided forecasts of the complex dynamics
that turned out to follow the true (chaotic!) evolution of the
BOCF simulation for about five periods of the intrinsic spiral
rotations. These results clearly show that machine learning
methods like those employed here provide faithful models of
the underlying complex dynamics of excitable media that, when
suitably trained can provide powerful tools for predicting the
spatio-temporal evolution and for cross-estimating not directly
observed variables.
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