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Hough transform (HT) is one of the most well-known techniques in computer vision

that has been the basis of many practical image processing algorithms. HT however

is designed to work for frame-based systems such as conventional digital cameras.

Recently, event-based systems such as Dynamic Vision Sensor (DVS) cameras, has

become popular among researchers. Event-based cameras have a significantly high

temporal resolution (1 µs), but each pixel can only detect change and not color. As such,

the conventional image processing algorithms cannot be readily applied to event-based

output streams. Therefore, it is necessary to adapt the conventional image processing

algorithms for event-based cameras. This paper provides a systematic explanation,

starting from extending conventional HT to 3D HT, adaptation to event-based systems,

and the implementation of the 3D HT using Spiking Neural Networks (SNNs). Using SNN

enables the proposed solution to be easily realized on hardware using FPGA, without

requiring CPU or additional memory. In addition, we also discuss techniques for optimal

SNN-based implementation using efficient number of neurons for the required accuracy

and resolution along each dimension, without increasing the overall computational

complexity. We hope that this will help to reduce the gap between event-based and

frame-based systems.

Keywords: Hough Transform (HT), dynamic vision sensor (DVS), parameter space, spiking neural network (SNN),

inhibitory connections, event-based video, line segment detection (LSD), generalized Hough transform (GHT)

1. INTRODUCTION

Neuromorphic engineering is an inter-disciplinary field focusing on implementing the biological
neural systems on software and hardware systems such as analog, digital, or mixed-mode electronic
circuits. This implementation can be done at different levels. For example, in the area of human
vision system, the implementation can be for a simple neuron, many neurons as a vision sensor, the
visual cortex or even the whole brain (Smith, 2010).

Izhikevich (2004) introduces many models of spiking neurons and compares them with respect
to biological plausibility and cost of implementation. 20 different neuro-computational properties
are considered for a model to be biologically plausible. The author concludes that the best model
to be used depends on the application. If the purpose is to study a real neuron behavior under
specific conditions, Hodgkin–Huxleymodel is recommended as it is themost biologically plausible.
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However, its computation complexity is very high. On the other
hand, if the goal is simulating a large number of neurons in real
time, the most appropriate model is the Integrate-and-Fire (IF)
model as it is the most computationally efficient. However, it has
low similarity to real neurons.

Spiking Neural Network (SNN) is the third generation of
Artificial Neural Network (ANN) models. Compared to the
conventional ANN, SNN is more biologically plausible since
it incorporates spike times into computational models which
mimic the information processing in the biological neural
system. Recent advances in VLSI technology have solved the
spiking neurons’ implementation issues (Painkras et al., 2013;
Merolla et al., 2014) that we faced previously because of their
higher computational complexity compared to conventional
artificial neurons, and thus have largely boosted the research
and development of SNN. SNN has been used for many tasks
such as learning (Ponulak and Kasiński, 2010; Yu et al., 2013a,b)
and classification (Chen et al., 2012; Hu et al., 2013; Zhao et al.,
2015). Among the various spiking neuron models proposed in
the literatures (Izhikevich, 2003; Gütig and Sompolinsky, 2006),
the most popular one is Leaky Integrate-and-Fire (LIF) neuron
model (Burkitt, 2006a) due to its simplicity. Since the output
of DVS can be considered as some spikes in time, it is highly
consistent with any SNN input and combination of them has
been a trending research interest.

Dynamic Vision Sensor (DVS) is one of the latest
Neuromorphic implementation of a real visual system.
Currently, they are available in two different resolutions
128 × 128 (Lichtsteiner et al., 2006, 2008; Leñero-Bardallo et al.,
2011; Serrano-Gotarredona and Linares-Barranco, 2013) or
240× 180 (Berner et al., 2013; Brandli et al., 2014). Conventional
cameras are frame-based systems, i.e., capturing a series of
frames which have information about all the pixels. Therefore,
there is a lot of information in each frame, and most of that
is redundant. The high volume of information in each frame
prevents the camera to have a better time resolution (Posch
et al., 2014). On the other hand, DVS captures only the changes
in pixels intensity and as a result, it generates less redundant
data. This data is transmitted serially using Address Event
Representation (AER) protocol. Moreover, due to the change of
logarithmic intensity detection, DVS offers a very high-dynamic
range, meaning it has no problem in capturing the scenes which
contain both very dark and very bright areas (Lichtsteiner et al.,
2006).

Although DVS devices are relatively new, they have many
applications in machine vision, robotics, high-speed tracking and
surveillance. Benosman et al. (2012), Benosman et al. (2014) and
Clady et al. (2014) have introduced some methods for event-
based visual flow extraction. They are accurate in detecting the
normal velocity of the objects in DVS videos. The corner points
of an object are the intersecting points of two edges in different
directions. For a corner point, the velocity components along the
perpendicular directions to two intersecting edges are extracted.
These components can be used to recognize the corner points
and their actual velocity (Clady et al., 2015). In another work,
a tracking algorithm (Zhao et al., 2012) has been suggested
based on a Gaussian modeling of objects (Lagorce et al., 2015).

Subsequently, this algorithm has been generalized for part-based
shapes by minimizing an energy function defined by the parts’
location and distance (Valeiras et al., 2015). Bauer et al. (2007)
used a DVS as a traffic camera to track a vehicle and estimate its
velocity. Due to DVS’s high temporal resolution, several event-
based algorithms have been introduced for tracking objects such
as circles with varying diameters (Delbruck and Lichtsteiner,
2007; Delbruck and Lang, 2013) and micro-particles (Ni et al.,
2012). Other applications of DVS proposed include robot self-
localization (Weikersdorfer and Conradt, 2012; Weikersdorfer
et al., 2013; Clady et al., 2014), terrain map reconstruction
(Brandli et al., 2013), object recognition (Neftci et al., 2013; Pérez-
Carrasco et al., 2013; Zhao et al., 2015) and gesture recognition
(Kohn et al., 2012).

Hough Transform (HT) is a well-known method in computer
vision to efficiently identify lines in images. The first appearance
of HT was in a patent application by Paul V C Hough in 1962, for
machine analysis of bubble chamber photographs (Hough, 1962)
with the name “Method and Means for Recognizing Complex
Patterns.” Then, in 1972, HT was proposed as a feature extraction
(especially line detection) method in computer vision (Duda
and Hart, 1972). Since then, it has been used in a wide range
of pattern recognition applications in more than 2500 research
articles. The main idea of this method is to first transform
every point from the conventional Cartesian coordinates to the
Hough parameter space (or parameter space in short), where
every point defines a specific shape. Therefore, finding the local
maxima through a voting procedure in the parameter space is
equivalent to obtaining the shape parameters. The dimension of
the parameter space depends on the shape that is to be extracted
and its complexity. For example, a line can be uniquely defined by
two parameters and therefore the parameter space for detecting
lines is two dimensional. On the other hand, three parameters
(x and y positions of centroid and radius) can define a circle
on a plane, and thus the parameter space for detecting circles is
three dimensional. HT can also be used for detecting arbitrary
shapes (Ballard, 1981). Shen and Wang (2002) proposes a quick
method for corner point detection. They detect simple lines
which pass through the local coordinate origin. As a result, these
lines can be expressed by only one parameter leading to a one-
dimensional Hough Transform which is much faster. Moreover,
they use both gradient magnitude threshold and gray level
analysis to reduce the effect of noise. Jung and Schramm (2004)
introduces a method for rectangle detection. Hough transform
is implemented on a sliding disk-shape window over the frame.
The internal diameter of the disk should be smaller than the
short edge of the rectangle while the external diameter of the
disk should be larger than the diameter of the rectangle. Each
edge of the rectangle is identified as a peak point in parameter
space. These points should satisfy some geometric conditions if
they belong to a rectangle. Kang et al. (2005) presents another
method for corner detection. Hough transform is used to find
line segments in the frame and then inverse Hough transform
is utilized to calculate the intersection points in Cartesian space.
Bruckmann et al. (2014) proposes a SNN based on the HT
for 2D slope and sinusoidal shape detection. After a training
stage, the network is able to discriminate among different test
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patterns. Bachiller-Burgos et al. (2018) presents a 3D Hough
transform model for detecting corner points using a 3D SNN.
In addition to r and θ which are the normal parameters of
Hough transform, the position of the line segment on a particular
orientation is used as the third parameter to create the third
dimension. The neurons receive cumulative excitation from not
only their respective line segment but also their neighboring
line segment on the same orientation in the Cartesian space.
Although our proposed algorithm here uses a similar SNN, the
voting procedure is different. Moreover we aim to present a
general procedure and not a restricted version for a particular
task.

Here, we aim to develop a systematic approach for free-form
shape detection using Hough Transform and its implementation
suitable for event-based systems. The key contributions are:

• Event based implementation of Hough Transform in Spiking
Neural Networks

• Method to suppress redundant lines using inhibitory
connections

• Extended 3D Hough Transform implementation with the
following capabilities:

– Detecting start and end points of line segments even if they
are located on a same orientation which is still lacking in the
conventional 2D Hough Transform

– Removing effect of noisy events which is a common
problem in 2D Hough Transform

– Suppressing redundant lines using inhibitory connections
applicable for 3D Hough Transform

• A novel non-linear parameter space quantization in extended
3D hough transform, to optimize the number of neurons in
the network

We focus our discussion on implementation of Hough
Transform via a two- or three-dimensional SNN to find all locally
linear elements in a video captured in an event-based input
stream (e.g., from a DVS camera). These elements can be then
utilized to obtain shape information of a free-form curve, and
to run other possible post-processing steps for shape encoding,
extraction, etc. We start with brief details of DVS camera as our
capturing hardware (event-based input stream), and continue
to discuss the necessary details of Hough Transform and its
concepts and challenges. Subsequently, we describe SNNs and its
implement of 2D and 3D Hough Transform and the associated
parameters to be considered for each application, including
neuron potential threshold and neuron potential decay rate.
Next, we discuss in details about the various types of temporal
and spacial inhibitory connections and their effects and its use
to suppress noise. Finally, we discuss in detail uniform and
non-uniform parameter space quantization and their relation to
different application settings followed by conclusion and future
works.

2. DYNAMIC VISION SENSOR

Dynamic Vision Sensor (DVS) is a recent neuromorphic device
mimicking human visual system. The main characteristic of DVS

is its high temporal capturing resolution (up to 1 microsecond).
These cameras are event-based; meaning that when there is a
variation in the intensity of a pixel, a polarized event is created in
the form of a vector. The vector of each event has three elements
(x, y, t); The coordinate (x, y) defining position of the pixel while
the term t showing time of the event. In addition, the event
polarization represents the change direction of the pixel intensity.

Figure 1 shows an example of DVS and how it operates for
a very simple shape. Let us suppose a black square is moving
from left to right on a white background. When the motion is
horizontal, two parallel vertical lines of events occur along the
left and right edges of the square. In contrast for the vertical
movement, lines of the events are horizontal, along the top and
bottom edges of the square. Note that black pixels show negative
events while white pixels show positive events. For diagonal
motion, a complete square of events occur. The hashed pixel
represents a positive event following a negative one (Scaramuzza
and Floreano, 2014). According to the explanation, DVS usually
captures the boundary of objects and outputs bipolar events from
which edge information can be extracted. In other words, the
output of DVS is directly compatible with Hough Transform
without any further stage of edge detection which is necessary
for conventional images.

TheDVSwe use in this study has a latency of 15µs in hardware
level. However, events are received with more delay because of
an USB interface mechanism which sends data in blocks. The
USB delay does not affect the content of DVS output data, and
therefore, the accuracy of the received data from DVS is assured
(Lichtsteiner et al., 2008).

Let us investigate the pattern of generated events for a moving
circle at the velocity of 10cm/s. A video of a white circle with
the radius of 5cm is generated on a black background which is
moving from the left to the right side on the horizontal mid
line of the screen. This video is played in 100FPS, and the
video is captured by a DVS while the transformation matrix is
known from real coordinates to camera coordinates based on
the camera calibration procedure. If the origin is fixed on the
circle center which is moving horizontally from left to right, we
expect positive/negative events at the right/left half of the circle
([0o, 180o]/[−180o, 0o]) as seen in Figure 2A. By receiving any
event, its distance from the circle center, as well as its angle with
respect to the vertical axis of real coordinates, are calculated and
stored in the event vector.

Figure 2B shows the distribution of events distances from the
circle center for all events. Since the circle radius is 5cm, the
events are mostly located at the distance of 5cm from the circle
center. They have exponential-like distribution (λe−λr) around
the boundary both inside and outside of the circle. It is observed
that the exponential distribution inside the circle (brighter side)
has a larger parameter λ than the exponential distribution outside
the circle (darker side).

Figure 2D shows the distribution of angles of events with
respect to vertical axis only for negative events. Negative events
are mostly located at the left half of the circle as we expected.
Figure 2C shows the distribution of angles of events with respect
to vertical axis only for positive events. Contrary to a perfect
system, positive events are located at both sides of the circle,
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FIGURE 1 | (A) A DVS camera, (B) The generated events by a moving simple square (Scaramuzza and Floreano, 2014).

FIGURE 2 | (A) A moving circle and expected events, (B) Distribution of all events over different distances from the origin, (C) Distribution of positive events over

different angles, (D) Distribution of negative events over different angles, (E) Distribution of all events over different angles not considering their polarization, (F)

Distribution of all events over different angles considering their polarization.

with the number of positive events exceeding number negative
events.

Figure 2E shows the distribution of events angles with respect
to the vertical axis for all events including negative and positive
events. Ignoring the polarization of events, the left edge of
the circle generates more events than the right edge. Other
experiments also verify that in DVS cameras, high to low
transition of intensity generates more events than low to high

transition. It is observed that low to high transition generates
only positive events while high to low transition generates both
negative and positive events although the negative events are
dominant. If the polarization of events is considered such that
any positive event cancels a negative event at the left side of
the circle, the remaining negative events at the left side will
be as many as positive events at the right side of the circle
as seen in Figure 2F. This figure also verifies that the events
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have a cosine-like distribution over the circle boundary which
is proportional to the normal velocity of the circle. The velocity
is proportional to the displacement of the object, equal to the
number of pixels spanned over by the movement of the object.
Therefore, this cosine-like distribution shows that DVS has a
uniform distribution of events over the Cartesian space.

3. HOUGH TRANSFORM

Hough Transform (HT) is useful in pattern recognition and
image processing as man-made objects have a straight line
or circular profile. Examples include buildings, tables, cars,
machines, discs, coins, buttons, biscuits etc. Moreover, the
oblique projection of these objects into 2D space can be used for
orientation estimation, as the projections of circles result in an
elliptical pattern. The parameterization of circle used in Hough
(1962); Duda and Hart (1972) is:

fc(x, y) = (x− a)2 + (y− b)2 − r2 = 0 (1)

where (a, b) denote the center and r is the radius of the circle.
Thus, each pixel in the image plane is transformed to a cone
in a 3-D parameter space, also known as the Circle HT (CHT)
(Kerbyson, 1995). It can be shown that by coding orientation
and distance information as a complex phase, one can improve
position accuracy (Kerbyson, 1995).

The general equation of an ellipse is:

x2 + b′y2 + 2d′xy+ 2e′x+ 2g′y+ c′ = 0 (2)

where b′, c′, d′, e′, g′ are constant coefficients normalized with
respect to the coefficient of x2. Based on the ellipse equation, to
detect an elliptical object using HT, a 5-D accumulator array is
needed, parameterizing location (co-ordinates of center), shape
and orientation of an ellipse.

To further discuss the concepts involved in HT, let us focus on
the detection of a straight line. Generally, we can show any line in
the Cartesian space with two parameters, slope and intersection
point with the vertical axis, y:

f (x, y) = y−mx− c = 0 (3)

The slope m and y-intersect c are used to build the parameter
space. i.e., any line in Cartesian space is transformed to a point
in parameter space. On the other hand, any point in Cartesian
space can be transformed to a line in the parameter space. These
parameters are quantized in 1m and 1c intervals to create
appropriate bins. For every pixel in Cartesian space, if it satisfies
the above line equation, the vote of the corresponding bin of
(m, c) in parameters space is incremented by one. Finally, those
bins exceeding a critical threshold are found as representing
straight lines in Cartesian space.

This method of line parameterization has a problem that the
slopem as well as the y-intersect c of the line can be any numbers
from−∞ to+∞. As a result, we need an infinite number of bins
for both parameters to cover all possible lines, even in a finite
Cartesian space. As a solution we use the angle and the normal

distance of the line from the origin to define a line since both are
limited to particular range based on the area under examination
in Cartesian space.

Let us assume a line L in Cartesian space as shown in
Figure 3A. Any line in Cartesian space is uniquely defined by
two parameters including the perpendicular distance r of the line
from the origin and the angle θ between the perpendicular line
and x-axis. The inner product of any vector p = (x, y) from origin
to the line and the unit normal direction [r̂ = (cosθ , sinθ)] results
in a fixed value which is r since the perpendicular distance of all
points on the line from the origin is fixed.

p.r̂ = r → x cos θ + y sin θ = r (4)

Equation 4 shows the transformation of any point (x, y) from
Cartesian space to a sinusoidal curve in parameter space (θ , r).
Suppose six different points on a line with six different colors as
shown in Figure 3B. Any point is transformed to a sinusoidal
curve as seen in Figure 3C with the same colors and all these
curves pass through a common point in parameter space. The
more points from line L transformed to the parameter space,
the more curves pass through this intersection point as seen
in Figure 3D. Therefore, there will be a point with high value
(peak point) in the parameter space that can be detected by a
voting procedure. The (θ , r) coordinates of this point show the
characteristics of the detected line in Cartesian space.

Standard Hough Transform (SHT) is a powerful method
that is robust against missing data and discontinuity on the
curve (Hough, 1962; Duda and Hart, 1972), but SHT has
several drawbacks. In SHT, computational and memory cost
exponentially increases with the increase in curve parameters.
Furthermore, to increase the localization accuracy in a parameter,
one should increase the resolution in that parameter, i.e.,
more bins in quantization of the parameter, that leads to even
more increase in computational and memory cost. In SHT,
this quantization is done in a uniform manner, that not only
require unnecessarily high memory and computation where high
accuracy is not needed, it also means a non-uniform precision
in detecting the curve in the Cartesian image space. Another
problem with SHT is the peak spreading near the true peak,
usually due to noise and other sources of error such as thick lines
or lines with different gradient across their width. Furthermore,
as SHT cannot detect the location of a point on the line (a.k.a
blind voting), it is not possible to differentiate between points
that truly belong to the line, and points that are caused by noise
and happen to be on the same direction (see Figure 4 for an
example). Yet again due to blind voting, if there are two or more
small line segment exactly on the same direction (see Figure 4A),
votes are accumulatively received for the corresponding point
in all of these line segments, and while the main direction can
be estimated, it is not possible to differentiate the line segments
representative of different objects. Due to the same blind voting
in SHT, it is not possible to automatically detect the end points of
line segments.

The blind voting has yet another drawback when detecting
smaller objects. As the “detection” is usually triggered based on
a threshold (bins with votes more than a certain threshold are
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FIGURE 3 | (A) A line in Cartesian space which is uniquely defined by two parameters θ and r, (B) 6 different points on a line in Cartesian space, (C) 6 sinusoidal

curves in parameter space correspond to the 6 points, (D) for more points, a peak point is visible in parameter space which defines the line characteristic in Cartesian

space. It is important to note that in all figures of this manuscript, θ is defined as the angle between the x-axis and the perpendicular distance r.

FIGURE 4 | (A) Multiple small line segments on a direction. The standard

event-based Hough transform cannot detect the position of lines on the

detected direction; (B) 7 events from a small line segment on a direction; (C) 7

events on the same direction caused by noise. The standard event-based

Hough transform cannot distinguish between these two cases.

considered a hit), to detect a small object, the threshold should
be also low, since such lines contain a small number of points
in a frame. While lowering the threshold allows detection small
line segment, it makes the detection more susceptible to noise, as
SHT cannot differentiate the concentration of supporting points
for a small line segment in Cartesian space, with noise distributed
randomly along the same direction. To illustrate the problem
better, these two scenarios are shown in Figure 4. A few points
are concentrated on a direction and form a small line segment
in the Figure 4B. On the other hand, the same number of points
are distributed randomly on the same direction which is most
likely caused by noise. If the threshold is fixed for both cases, the
procedure detects a line segment in both cases, incorrectly for the
second scenario.

The non-uniformity of projection of the parameter space
to the Cartesian space is an intrinsic problem in the 2D HT
that can severely undermine the robustness of SHT if not
carefully accounted for. One main problem that plague almost
all of the application of SHT in a fundamental level is the
resulting non-uniformity in voting: The non-uniform projection
means same-size non-overlapping spaces in the parameter space
can project to non-same-size and overlapping spaces in the
Cartesian space, and this leads to non-uniform vote allocation

from the Cartesian space to the parameter space. Thus, it is
possible that two line segments with the same size but different
locations in the Cartesian frame, producing different number
of votes in the parameter space, and detecting them requiring
two different thresholds. Non-uniform thresholding adapted to
the non-uniform projection is often ignored due to significant
complexity in implementation and computational cost.

3.1. Generalized Hough Transform (GHT)
An initial approach toward a generalized version was made
by Merlin and Farber (Merlin and Farber, 1975) by assuming
the target object to be the result of translation of the model
object. This idea was extended by Ballard (Ballard, 1981) into the
Generalized HT (GHT), a generalization of SHT, that includes
translation, rotation, and scaling of the model. GHT is a
two-phase learning-detection process to detect non-parametric
curves. In the first phase, learning, R-table is constructed from
a model object. Then by fixing a reference point and using it
as the origin, a polar co-ordinate system is established in the
model object, and the R-table stores the polar coordinates of all
template points. Finally, each row at the R-table is indexed by
the gradient directions of the edge points on the template. In
the second phase, detection, an accumulator is constructed via
a 2D array, a.k.a. the Hough Counting Space (HCS) or parameter
space. Matching gradients directions at each edge points and the
corresponding R-table entries will add a vote to the hypothetical
reference point in the HCS. The highest number of votes casted to
a cell in the accumulator array (and its corresponding reference
point), determines the image pattern matched to the model.

Compared to Merlin and Farber (1975), local information
of object edge points is incorporated in GHT, and allow faster
and more accurate execution. The local information properties
were extended in Hakalahti et al. (1984), allowing application
of stronger constraints for matches. These extensions include
contrast, position and curvature of contour points. Further
optimization of the computation is also proposed by Leavers
in Dynamic GHT (DGHT) (Leavers, 1990), using available
information on the distribution of feature points.

While GHT retains the robustness of SHT, it does not solve all
SHT drawbacks:
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• GHT cannot detect end points of line segments.
• Parallel processing of GHT requires a large number of

elements.
• Brute force search is usually applied when orientation and

scale of a new shape is unknown
• Due to brute force search, arbitrary shape extraction under

similarity or affine transformations leads to 4D and 6D
accumulator spaces, with O(n4) and O(n6) complexities,
respectively.

• Unlike rigid objects, GHT cannot adequately handle flexible
shapes that are usually found in nature such as leaves or
animals.

• The conventional GHT cannot detect perspective
transformation of planar shapes. Most images of real
world objects undergo perspective transformation.

To tackle the dimensionality problem of GHT, Tsai proposed
two-stage voting (Tsai, 1997). The first stage of the voting process
finds the matching points with the same concavity and radii,
to estimate the rotation angle of the object w.r.t the model.
The second stage then matches points having the same radii,
concavity and rotational angles to find the centroid of the object.
Another method proposing multi-staged GHT is affine GHT
in Kimura and Watanabe (2002). At the first stage, candidate
points are selected by applying 2D HT. At the subsequent second
stage, a 4-D HT is applied to determine the remaining four
parameters. Moreover, Adaptive HT (Illingworth and Kittler,
1987) is proposed for efficient estimation of the 4-D HT at
the second stage. The same concept of two-stage GHT (Tsai,
1997), but on scale and orientation is proposed in Scale and
Orientation Invariant GHT (SOIGHT) in Jeng and Tsai (1991),
where the accumulator array stores scale and orientation pairs
for the points.

GHT can be extended to recognize articulated objects. One
approach is using reference frames at joints (Beinglass and
Wolfson, 1991). Another approach is a modified GHT, HT for
Natural Shapes (HNS), that updates votes of all points on a line
segment (Samal and Edwards, 1997). This approach can be used
for natural shape recognition. An extension to HNS is proposed
in Bonnet (2002) that allows template matching from a single
sample of the object.

To achieve invariance to perspective transformation, the
method proposed in Lo and Tsai (1997) uses a Perspective-
Reference table, to store exhaustive list of perspective
transformation information of the model.

3.2. Dimensionality Reduction in SHT
HT performs mapping of each pixel in HT space, and is
therefore a time-consuming process. Moreover, the computation
required to calculate HT increases exponentially with the number
of curve parameters. The main proposed solution to address
high-dimensional computation is subsumed under divide-and-
conquer category, and either through calculating HT in sub-
images, or parameter space decomposition.

Several authors divided the original image into sub-images
(Davies, 1986; Ser and Siu, 1992, 1995; Gatos et al., 1996; Olson,
1999; Achalakul and Madarasmi, 2002; Chau and Siu, 2004)

and applied the divide and conquer technique. The proposed
methods range from single level application of HT to the sub-
images under the constraint of the curve passing through a set
of pixels (Olson, 1999), or multi-level application of HT, firstly
on sub-images, and then evaluating the contribution of each
sub-image to the HT space of the original image (Gatos et al.,
1996), or parallel running of matching sub-images of template
and the image, using master-slave technique (Achalakul and
Madarasmi, 2002). A performance boosting technique that can
be applied to all the above sub-image-based techniques is to avoid
processing of relatively empty blocks. One proposed technique
is thresholding blocks based on the block gradient magnitudes,
and applying HT only to those that pass the threshold (Ser
and Siu, 1992). Another technique estimates the contribution of
each sub-image to the HT of a specific target region, and avoids
calculating HT for the ones with low contribution. Fast HT (Li
et al., 1986; Koshimizu and Numada, 1990) is another example
that thresholds blocks based on the votes associated with each
block in contributing to the HT space, with each block divided
to sub-blocks to create low to high resolution application of HT,
by the required calculation for a certain special resolution in the
final HT.

Parameter space decomposition is the other group of
divide-and-conquer methods to overcome the problem of
dimensionality. For example, for detecting a curve, instead of
using full HT parameter space, Pao et al. (1992) proposed
decomposition of the parameter space into translation, rotation
and intrinsic spaces, and then start with searching for the
matching orientation of the curve in the rotation space, followed
by determining intrinsic curve parameters and translation of the
curve in the transformed space.

Parameter space decomposition is a popular method for
reducing the dimensionality of calculatingHT, in detecting circles
and ellipses. Particularly, because of the geometric properties in
circle and ellipse, geometric constraints can be used to avoid
exhaustive search and reduce computational complexity. The
parameter space decomposition in these cases usually start with
finding the center of circle or ellipse, and then a guided search
for candidate points that satisfy the related geometric equation.
For example, in Dyer (1983); Sanz et al. (1987), the search for
center point of the target ellipse is performed using a 2D array,
searching for lines joining two set of points with parallel tangent,
followed by a 1D array to search for candidate points of the
ellipse. This method is further developed in Wallace (1983) for
partially occluded ellipses, where the dimensionality reduction
is obtained at the expense of high storage space. In Wallace
(1983), after finding the candidate points in the second stage,
the remaining 3 parameters of the ellipse (major and minor axis
length and the orientation) are estimated using the following
equation:

x+ b′dy
dx

+ d′(x dy
dx

+ y) = 0 (5)

Another example of using geometric constraint is presented in
Muammar and Nixon (1989); Yuen et al. (1989), where the center
of ellipse is found by intersecting two lines, one line, L1, crossing
two points on the ellipse (with non-parallel tangents), and the
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second line, L2, connecting midpoint of L1 and the intersection
tangents of the two points on the ellipse. It can be shown that the
center of the ellipse lies on L2.

To provide a robust detection in the presence of noise and
occlusion, the symmetry in the ellipse is usually used as another
geometric constraint. Methods such as in Chatzis and Pitas
(1997), tackle the problem of dimensionality by firstly applying
geometric symmetry constraint to group all feature points into
different possible ellipses, and then following by searching these
groups for sets to satisfy geometric properties of the ellipse to find
the remaining 3 parameters.

Detecting circles are usually on the basis of circles being
special cases of ellipses. For example, the two-staged parameter
space decomposition of finding the center first and then other
parameters is shown in Chan (1991), using two sets of 2D
accumulators. The geometric symmetry is also used in Rad et al.
(2003), applied on gradient pair vectors, and in Ioannou et al.
(1999) using the geometric constraint that any chord passes
through the circle center. A procedure for simultaneous detection
of lines and circles using conformal geometric algebra and its
implementation using FPGA is proposed in López-González et al.
(2016) and Soria-García et al. (2017). Klefenz et al. (1993) and
Epstein et al. (2002) also present the SNN FPGA and ASIC
implementation of the Parallel Hough Transform for lines and
circles with binary weights.

Other examples of parameter space decomposition are use of
mean squares error (MSE) to estimate one parameter at a time
(Tsuji andMatsumoto, 1978), dividing the image into sub-images
by convexity of the ellipse shape (Fei et al., 2009), finding The
Fuzzy Cell HT (Chatzis and Pitas, 1996) and Randomized Fuzzy
Cell HT (Chatzis and Pitas, 1997).

4. EXTENDED HOUGH TRANSFORM

To overcome the limitations of SHT, several modifications can be
applied in different aspects of SHT. Some of these modifications
lead to significantly distinct algorithms, including Generalized
Hough Transform (GHT) (Ballard, 1981), Probability based HT
(Galamhos et al., 1999), Randomized HT (Xu et al., 1990), and
Monte Carlo HT (Bergen and Shvaytser (Schweitzer), 1991).
Here, we discuss an extension to SHT that can address multiple
SHT shortcomings at the same time.

In this extended version of SHT, we consider the third
dimension of the parameter space to be the position of points
on the detected direction. The position of a point on a line
can be described by the distance of any point on the direction
from the perpendicular line to that direction. This distance d, is
shown in Figure 12A. The distance d can be considered as the
cross product of vector p = (x, y) and unit normal direction
[r̂ = (cosθ , sinθ)] as follows:

p× r̂ =

∣

∣

∣

∣

∣

∣

î ĵ k̂

x y 0
cos θ sin θ 0

∣

∣

∣

∣

∣

∣

= (x sin θ − y cos θ)k̂ = dk̂

d = x sin θ − y cos θ (6)

We can use distance d as the third parameter beside r and θ

to build a three-dimensional Hough space as seen in Figure 5.
If a Cartesian frame contains a line, in its corresponding 2D
parameter space, there is a peak point at particular r and θ .
In contrast, in the 3D parameter space, there are many peak
points with different d values and at the same r and θ , as seen
in Figure 5B.

Using d values, one can achieve a rich set of information
about the shape. Firstly, based on the above definition, the
right/left positions of the perpendicular line are represented
by positive/negative d on the line (in example illustrated in
Figure 3A, d is a negative value). Therefore, the balance of the
points on the line can be achieved based on the sign of d values.

Furthermore, the value of d is also the negative derivative
of r (perpendicular distance r of the line from the origin) with
respect to θ (the angle between the perpendicular line and x-axis)
based on Equation 4. In other words, the slope of curves passing
through the common point in Figure 3C, shows distribution of
distances of corresponding points in the Cartesian space from
the perpendicular line. This property can be used in inspecting
the various shape slope and balance information of the line.

The third dimension in the parameter space can also address
the noise susceptibility in SHT when searching for smaller
line segments. In order to check whether a local maximum in
parameter space corresponds to a line segment, we can check
the distribution of vote values around the maximum point in the
third dimension. The voting values create equipotential contours
around the maximum point, and also affect the sharpness of
the bell-shaped peak at the maximum point. The distribution
of equipotential contours reveals the distribution of points in
the Cartesian space, i.e., a compact distribution corresponds to
a set of points close together, more likely from a line segment,
whereas a wide distribution corresponds to a set of points far
from each other, more likely from random noise that are placed
on the same direction by chance. This way, even smaller line
segments can be easily detected as densely packed patches of
high votes along the third dimension (compared with sparse
distribution of votes corresponding to noise). Figure 6 illustrates

FIGURE 5 | (A) A line (marked by red) in Cartesian space, (B) corresponding

three-dimensional Hough area consists of different bins. Red bins represent

peak points that receive more votes from Cartesian space. These bins are

substituted with spiking neurons.
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FIGURE 6 | 1st column: Cartesian Space; 2nd Column: Parameter Space; 3rd column: Equipotential contours in parameter space; i.e., the position of bins which

receive the same number of votes (20) from the Cartesian space; 4th column: Distribution of vote values around the peak point in parameter space. The horizontal axis

shows the angle and the vertical axis shows the vote values. First 3 rows represent the direction of peak spreading in parameter space for 3 different cases where the

line segment is located on the left/right sides or on the perpendicular line from the origin. The last row shows the effect of noise present on the direction of the line

segment.

these scenarios and their corresponding parameter space as
well as voting distributions along the third dimension of the
parameter space.

The same way, adoption of the third dimension as d can
address the peak spreading problem. The votes are based on the
distances of their corresponding points in the Cartesian space.
Therefore, if due to noise or other sources of error, some points
are placed in the same direction, their corresponding votes will be
distributed (usually sparsely) along the third dimension, avoiding
peak spreading to a great extent.

End points of line segments can also be detected by looking
for sudden drop in the presence of high votes in a segment along
the third dimension. The position of the drop in votes correlates
with the position of the end point of the line segment in the
Cartesian space.

Finally, by adopting d as the third dimension of the parameter
space, we can overcome the major intrinsic problem of 2D SHT,
non-uniformity in voting projection. As the third dimension,
d, is uniformly projected between the Cartesian space and the
parameter space, votes along this dimension are also uniformly
projected between these two spaces. In other words, two line
segments with the same size and direction, result in exactly
the same voting patterns regardless of their placement in the
Cartesian space.

5. SPIKING NEURAL NETWORK

In the brain, the communication between neurons of a neural
circuit is done by sending trains of action potentials, also
known as spike trains. These individual spikes are sparse in
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time, so each spike has high information content, and to a
first approximation has uniform amplitude. Thus, information
in spiking neural networks (SNNs) is conveyed by spike
timing, including latencies, and spike rates, possibly over
populations (Gerstner et al., 2014). SNNs almost universally use
idealized spike generation mechanisms in contrast to the actual
biophysical mechanisms (Hodgkin and Huxley, 1990). SNNs
offer a special opportunity in energy efficiency as spike events
are sparse in time. Spiking networks also have the advantage
of being intrinsically sensitive to the temporal characteristics of
information transmission that occurs in the biological neural
systems. It has been shown that the precise timing of every spike
is highly informative for several areas of the brain and plays an
important role in neural coding (Gollisch and Meister, 2008).
These advantages of SNNs brought these networks in the focus
of a number of recent applications in many areas of pattern
recognition such as visual processing (Arnold and Miklós, 2010;
Meftah et al., 2010; Wysoski et al., 2010), speech recognition
(Kröger et al., 2009;Wade et al., 2010; Tavanaei andMaida, 2017),
and medical diagnosis (Ghosh-dastidar and Lichtenstein, 2009;
Kasabov et al., 2014).

The simplest model proposed as an artificial neuron is Leaky-
Integrate-and-Fire (LIF) neuron. A comprehensive review of the
Leaky-Integrate-and-Fire neuron is presented in Burkitt (2006a).
The synapses are considered as electrical currents into the neuron
that increase the membrane potential continuously like charging
a capacitor with an electrical current. The membrane potential
is leaking by a fixed rate as well. When the membrane potential
exceeds some threshold, the output fires and generates a spike.
LIF neuron is the least complex model of a real neuron lacking
many actual characteristics, but on the other hand the most
suitable for hardware implementation, not requiring CPU and
additional memory. Despite the simplicity of the LIF neuron, it is
widely used, including explaining the control mechanism of the
brain (Laing and Longtin, 2003) and network stability (Burkitt,
2006b).

The main parameters in an LIF neuron are its Membrane
Potential (MP) threshold and its membrane potential decaying
rate. Referring to Figure 7A, every Spiking Neuron (SN) has
some inputs (one input is used here for simplicity) and an output.
The input is a spike train (sequence of spikes) that influences the
neuron’s Membrane Potential (MP). Every positive input spike
causes an increase of the MP which is always decaying by a fixed
rate. This rate is referred to as Membrane Potential decaying
rate. Whenever the MP exceeds a certain threshold, a spike is
generated in the output, the MP is then reset and the neuron
enters a refractory period, during which the neuron’s MP remains
zero and input spikes are ignored. The firing of other SNs can also
force this neuron to reset through lateral inhibition in a network.
We describe the refractory period and the inhibitory connections
in detail in section 6.

We can implement the Hough Transform parameter space
using a spiking neural network as described in Seifozzakerini
et al. (2016). While this article describes a 2-dimensional SNN
(and therefore parameter space), we can extend the principles
to the third dimension of HT as described in the previous
chapter. The implementation of the third dimension d using

SNN not only inherits the advantages of this new 3D HT, but
also allows additional advantages including the possibility of
implementation of the 3D HT with no requirement for CPU
or additional memory, and efficient energy consumption, and
directly using FPGAs. In addition, as the output of event-based
systems such as DVS cameras are in the form of the inputs to the
SNNs, the hardware implementation can be directly fed by a DVS
camera, providing real time applications of image processing
using the 3D HT capabilities.

Moreover, by implementing the described 3D HT using SNN,
an arbitrary shape can be represented based on its locally
linear components in the three dimensions, requiring no other
parameterization. Based on location, length, and orientation
of these small elements, important parameters like shape and
curvature can be obtained and the whole shape can be extracted.
With implementation of 3D HT using SNN, the complexity of
the shape extractor is only governed by the number of locally
linear components of the arbitrary shape, and does not increase
exponentially with shape complexity, and therefore, even for
extraction of an arbitrary shape, the SNN can be implemented
using FPGA. While it is out of scope of this text, this information
can be then used for shape encoding to be used for shape
matching and object detection.

The resolution of the shape representation in this SNN-Based
3D HT is governed by the size of associated parameter space to
each neuron in the SNN. As we use locally linear components,
this resolution can be also freely increased along one dimension
to increase the localization accuracy in that parameter, without an
increase in computational complexity or dimensionality on other
parameter space dimensions. Finally, by defining different classes
of neurons with different associations to the parameter space,
we can easily obtain a non-uniform functionality (thresholding,
binning, etc.) over parameter or Cartesian spaces, without extra
level of computational complexity in software or hardware
implementations.

The main limitation of 3D networks is the number of neurons
they need, as neurons are assigned based on the resolution of each
dimension. However, the number of neurons can be reduced by
10 times, via removing neurons that do not receive any vote from
the Cartesian space.

To explain this, let’s assume the 2D HT for a 128 × 128
frame. To cover all possible lines within a 128 × 128 frame, θ

is limited between−π
2 and π while r between 0 and 128

√
2 in the

parameter space. However, due to the characteristics of Hough
transform, the effective area in the parameter space is not a
simple rectangle. Depending on r and θ values, the corresponding
lines in the Cartesian space have variable length and different
situation inside the video frame. Figure 8 shows different line
positions in the video frame and their corresponding areas in the
parameter space. The total area covered by all possible lines in the
Cartesian frame, covers only about 60% of the rectangular frame
in the parameter space, and the remaining 40% does not receive
any voting. As a result, the number of spiking neurons can be
reduced by 40% in hardware implementation. This reduction in
the number of required neurons is even greater in 3D HT.

Note that in the 2D HT, smaller lines in the corners of
the Cartesian frame generate less votes in the parameter space,
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FIGURE 7 | The model of a spiking neuron (A) normal model, (B) the model used in this study according to events polarization.

FIGURE 8 | Different line positions in Cartesian space and their corresponding

areas in the parameter space. The color intensity in parameter space shows

the line length inside the video frame (Seifozzakerini et al., 2017).

illustrated by the color intensity in Figure 8 (Seifozzakerini et al.,
2017). Therefore, a variable threshold should be assigned in the
corresponding SNN that implements the parameter space, to
account for this non-uniform voting. However, the adoption of
d as the third dimension of the parameter space will solve this
issue by assigning uniform voting from the Cartesian frame (see
section 4).

Our experiment shows that about 40K neurons (instead of
more than 400K) are enough to build a 3D parameter space for
128 × 128 frame in Cartesian space with 1r = 3pixels and
1d = 9pixels. SNNs in this scale can be easily implemented with
current hardware technology.

While the LIF neuron model illustrated in Figure 7A is simple
to implement, when it comes to the event-based systems, this
model has a main drawback, as it ignores the polarity of DVS
output events, as described in Figure 2. In section 2 we showed
that considering the polarity of events can produce more robust
results based on the explanation in the following. According to
the observations in section 2, if we ignore the events polarization
and use the spiking neuron in Figure 7A, the neurons correspond
to the circle left side receive more excitation than the neurons
correspond to the right side; i.e., the excitations for different
neurons are imbalanced in different sides and it should be
compensated by setting different thresholds for membrane

potentials. A solution we use here is to utilize events polarizations
in neurons excitations as shown in Figure 7B. This model is
slightly different from the normal model of a spiking neuron, but
it is more robust for neurons in different situations, and does not
add significant complexity to the hardware implementation.

6. INHIBITORY CONNECTIONS

Neural inhibition is an active process that reduces or suppresses
the excitatory activity of synapses, neurons or circuits (Martin,
2006). The concept of inhibition can be referred to interruption
or blockade of activity patterns in both space and time. Proper
dynamics in neuronal networks can only be maintained if the
excitatory forces are counteracted by effective inhibitory forces.
The dynamics between excitatory and inhibitory cells to create
form or order or secure some autonomy for transiently active
groups. These inhibitory cells provide the necessary autonomy
and independence to neighboring principal cells. Additionally,
the opposing actions of excitation and inhibition often give rise
to membrane and network oscillations which, in turn, provide
temporal coordination of the messages conveyed by principal
cells (Jonas and Buzsaki, 2007).

The same principles can be implemented in Spiking Neural
Networks (SNNs) using local lateral inhibition to suppress noise
(e.g., redundant lines) from being detected. This is illustrated
in Figure 9 which shows the events generated by moving an
edge from left to right in front of the DVS sensor. The left
side of the edge is totally black while the right side is white.
All events, whether positive or negative, are shown by white
dots on a gray background. The detected lines using the SNN
without local lateral inhibition are superimposed onto the DVS
events. In Figure 9, the best fitted line, the red line, is detected
by the red neuron. However, the blue and green lines also
cover many events, causing blue and green neurons to fire in
the parameter space. These two lines can be suppressed by the
local lateral inhibition. Each neuron is laterally connected to all
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FIGURE 9 | Local lateral inhibition to suppress noise lines. (A) Without lateral

inhibition, SNN detects three lines (red, blue, and green). The best fitted one is

the red line detected by the red neuron in (B). The red neuron is expected to

fire before blue or green ones. With local lateral inhibition, when the red neuron

(the correct one) fires, it inhibits all laterally connected neurons and thus blue

and green lines can be suppressed.

its neighboring neurons that are within a window around that
neuron. These connections cause a local competition between the
neurons inside the yellow window. Whenever the first neuron
(red one in this case) fires, it resets all neighboring neurons,
prevents them from firing, and thus suppresses the noise lines.

Inhibitory connections between neurons are used for
suppressing lines which are close together. As seen in Figure 12C,
let us suppose two different lines E1 = (θ1, r1, d1) and E2 =
(θ2, r2, d2) be the best matching line elements to some existing
events in Cartesian space. The corresponding neuron to the best
matching line fires and the line is detected. We want to suppress
all other lines which are most probably capable of being wrongly
detected as redundant lines. Referring to equations 4 and 6:

{

r = x cos θ + y sin θ ⇒ 1r = (−x sin θ + y cos θ)1θ = −d1θ

d = x sin θ − y cos θ ⇒ 1d = (x cos θ + y sin θ)1θ = r1θ

(7)
Above equations show the mathematical relation between 1θ

and (1r,1d). If the objective is to suppress all redundant
lines within ±1θ range in angle, the corresponding (1r,1d)
are calculated based on above equations. Figure 10 shows a
Cartesian space and its corresponding parameter space. Neurons
on the blue curve in parameter space represent all line segments
with different orientations passing through the point (64, 64) in
Cartesian space, e.g., red, black, blue, magenta points correspond
to line segments in the same colors in Cartesian space. Inhibitory
connections are set between each neuron on the curve and
its neighboring neurons on the same curve within ±1θ range
in angle. In this study, we suppress all redundant lines in all
directions; i.e. inhibitory connections are between each neuron
on the curve and all other neurons on the same curve. It is noted
that all crossing points are removed if the lines are suppressed
in all directions. When a neuron fires, we find its corresponding
point in Cartesian space. On this point, a resetting event is
supposed, reset all affected neurons in the network.

Each output spike from SNN represents a small line segment
in Cartesian space. Therefore, an inhibitory window around the
line segment in the Cartesian space can be directly mapped to
find the necessary inhibitory connections to a neuron in the

SNN representing the parameter space. The size and shape of
the inhibitory window in the Cartesian space can be defined
based on the application, e.g., an application with high noisy level
(larger window), or another one with high accuracy requirement
(smaller window). When the parameters of this window are
decided upon for a specific application, the resulting inhibitory
connections can be easily implemented in an FPGA with the
above method.

In event-based systems such as DVS camera, inhibition can
be also applied to time, in the form of refractory period (RP) of
neurons, that resets a neuron for a specific period after it fires.
The extent of the RP can determine networks behavior in slow
or fast pacing environments, with a longer RP preventing the
network from providing false positives when the environment is
slow, and shorter RP enabling the network to detect fast moving
object.

7. PARAMETER SPACE QUANTIZATION

In a real application, the parameter space should be quantized
along all dimensions. Normally, a uniform quantization is
applied such as in Seifozzakerini et al. (2016), due to it simplicity.
But this should not mask the substantial effect of the quantization
method of parameter space on the quality and accuracy of the
implementation. As the HT is not a uniform projection, uniform
quantization of the parameter space is not the best choice. For
example, as seen in Figure 11, if a line element is located near
to the perpendicular line, a small change in θ results in a small
displacement of the line element. But the same amount of change
in θ for the elements far from the perpendicular line causes a large
displacement of the elements.

Instead, with the adoption of d as the third dimension, we can
use a uniform quantization for r and d while the quantization of
θ is optimized for better performance. Quantization over d, 1d,
can be at least a few times larger than, quantization over r, 1r,
since for a line segment, the length should be several times larger
than the width.

Let us consider a small linear element E1(θ , r, d) as seen in
Figure 12B. By fixing r and d of this element, a small change 1θ

of the angle results in a new position at E2(θ + 1θ , r, d). The
displacement from E1 to E2 consists of two radial and tangential
displacement. The radial part is approximately d1θ and the
tangential part is r1θ . To cover all over the frame in Cartesian
space and not to have redundant elements simultaneously, E1
and E2 should not intersect each other in the frame and there
should be no space between them. As a result, the tangential
displacement should be smaller than the element length and the
radial displacement should be smaller than the element thickness
as follows:

r1θ < 1d ⇒ 1θ <
1d

r
(8)

d1θ < 1r ⇒ 1θ <
1r

d
(9)

To find out which one of above conditions is more restrictive,
we should compare 1d

r and 1r
d

to see which one is smaller. By
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FIGURE 10 | (A) Cartesian space and (B) its corresponding parameter space. Red, black, blue, magenta points correspond to line segments in the same colors in

Cartesian space. Inhibitory connections are set between neurons on the blue curve in parameter space to suppress redundant lines passing through the point (64, 64)

in Cartesian space.

FIGURE 11 | The effect of uniform quantization of parameter space. Two line

elements with the same distance of 1θ in Hough area, although (A) the

elements can be near or (B) the elements can be far in Cartesian space.

defining stretch ratio, SR = 1d
1r for line elements; if d is smaller

than r
SR , condition 8 is more restrictive than condition 9 and vice

versa. The stretch ratio is a value greater than one defined by r
and d quantization which can be fixed for each application. For

a specific value of r and d, if d <
r

SR
the angle θ is quantized

uniformly while for greater values of d, the quantization of θ

should be finer by increasing d.
Based on the above parameter space quantization technique,

we can avoid the non-uniform quantization of the Cartesian, as
in the SHT.

Here, just as a proof of concept, we apply our extended
event-based Hough Transform on 3D HT, together with
SNN implementation incorporating inhibitory connections and
parameter space quantization. The objective of this experiment
is to show how the extended event-based Hough Transform can
remove the noise and clean videos, and can be applied on any
arbitrary shape e.g., circle, to recognize its boundary as a series of
small lines, by automatically detecting all small line segments in
the frame and removing events caused by noise.

We have chosen two noisy scenes in Figure 13 to show
the capability of the algorithm in cleaning noisy videos. Please

note that representing out events of an event-based system and
comparing it to frame-based systems is difficult. We had to
compress all the events produced in a time window, into a single
frame and present it in the figures. In this way it would be
easier to compare results from standard event-based HT and
the extended event-based HT. Please note that all the processing
for the event-based HT is performed in the original event-based
space. The removal of noise has a direct relationship with the pre-
selected size of the line segment. In an application where only
the main structure is required, one can select larger line segment
size, whereby more details would be removed from the events
(e.g., removal of events associated with keys on the keyboard in
Figure 13). But if the application requires details of the scene,
then a smaller line segment limit should be chosen. Therefore, as
the definition of noise depends on the application, the “goodness”
of event removal using the proposed quantization also depends
on the application. Figure 13, is only to show the concept. The
exact outcome can be tuned to meet the need of the application.

Another example is detection of a moving circle in Figure 14.
A synthetic video is displayed in a 13.3-inch MacBook Air with
the resolution of 1440×900 and aspect ratio of 16:10. Therefore
the display area is 28.65×17.90 cm2 and there are about 50 pixels
per centimeter. The synthetic video shows a white circle of radius
5cmmoving horizontally from left to right on a black background
with the velocity of 10cm/s and passes the center point of the
screen, with a frame rate of 100 frames/second. The test video is
displayed and the DVS captures that. The analysis is performed at
the instant the circle approaches the center of the display. As we
have extracted the transformation matrix from real coordinates
to camera coordinates, we know the exact position of the circle
center and we can calculate events distance from the circle
center. Figure 14 shows the circle before and after applying the
extended event-based Hough transform algorithm. The plotted
events’ distance distribution from the circle center presented
in Figure 14, shows the distribution is narrower around 5cm
(circle radius) after cleaning the video. The circle boundary is
recognized as a series of small lines. The lines distance from the
circle center is 5.10 ± 0.16cm. Moreover, the error of these lines
orientation with respect to the ground truth is 3o. In future, we
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FIGURE 12 | (A) Each line element is uniquely defined by three parameters θ , r, and d. (B) For fixed values of r and d, a small change in θ cause a radial displacement

of d1θ and a tangential displacement of r1θ in the element position. (C) Redundant lines are located at the same place with a small difference in their orientations.

These lines are suppressed by lateral inhibitory connections within the network.

FIGURE 13 | The result of Standard Event-based Hough Transform (SEHT) and Extended Event-based Hough Transform (EEHT) on two noisy scenes. The result of

both algorithm contains less noise compared to the algorithm input. SEHT keeps only major directions in a scene while EEHT keeps more details. As a result, SEHT

can be misleading for some streams e.g., building here.

FIGURE 14 | A video of a moving circle with radius of 5cm. The extended event-based Hough transform is applied to detect the circle as a series of small lines. Forty

spikes correspond to 40 small lines are received from the spiking neural network. The result shows more narrow distribution of events around the circle boundary.
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use extracted line elements to detect any arbitrary shapes and
their parameters e.g., curvature.

8. CONCLUSION

In this paper we systematically discussed efficient
implementation of Hough Transform (HT) for event-based
systems, the concepts that should be considered for each
application, and the challenges. We discussed DVS as the
hardware basis of our system, and how HT has interesting
intrinsic properties suitable for image processing on such event-
based systems. As the Standard HT (SHT) cannot be readily
applied to event-based systems, as it is structured for frame-based
input streams (i.e. conventional cameras). We firstly discussed
an extended HT, adopting of a specific third dimension for the
parameter space, can address multiple shortcomings of SHT, and
make it suitable to be implemented for event-based systems. We
also discussed an intrinsic problem of SHT, the non-uniformity
of projection between the Cartesian space and the parameter
space, that leads to several further challenges in implementation
and usage of HT, and how this intrinsic problem can be solved
using this third dimension. The described extended 3D HT
significantly improve application of HT by allowing detection
of line segments with specific length and location, detecting
end points of each segment, differentiating noise and real line
segments, and extracting important shape information such as
locally linear components and curvature. We then moved to
describe how Spiking Neural Networks (SNNs) can implement
the parameter space of 2D and 3D HT. SNNs can be easily
implemented in hardware via FPGA and therefore the entire 3D
HT can be performed on the output of a DVS camera, with no
requirement for CPU or additional memory. Furthermore, the
increase in complexity of the shape, or accuracy over a specific
parameter does not increase the computational complexity and
the entire transformation and detection can be still implemented
in FPGA.With the extended 3DHT in picture, we then discussed
the main aspects of SNNs for different applications including
thresholding, decay rate, network inhibitory connections in
space and time, and parameter space quantization. While we
discussed the most important aspects and pitfalls for each of
these concepts, each one of the parameters can be investigated in
significantly more details for a specific set of applications.

The proposed method without any further post-processing is
useful to extract the framework of objects in event-based videos
and remove those events caused by either noise or the complex
texture of the object. The advantage of this algorithm compared

to other similar algorithms for cleaning noise is that the amount
of details which is removed is completely controllable. The
algorithm keeps only those events that can potentially create a
small line segment and omits all other events. As a result, the
stream retains only those events which most likely come from a
real edge of an object, not the texture details of that.

If we aim to detect a shape, the proposed method will
need a post-processing layer as well. In applications like shape
encoding, this layer should perform an exhaustive search in the
3D parameter space to find any arbitrary shapes. Although to the
best of our knowledge, in most applications e.g., shape detection,
a presumption on the desired shape is usually needed. If the
algorithm is meant to find a particular shape in the stream,
the search area in parameter space will be highly limited. For
example, the search area for detecting all line segments in a frame,
is vertical lines in parameter space which have a fixed r and θ . In
other words, each line segment in Cartesian space generates some
spikes from successive spiking neurons which are in red color in
Figure 5. It is noted that the post-processing for detecting shapes
as a part of our future work is out of this manuscript scope.

We hope that this comprehensive discussion can help
researchers in understanding the underlying factors, avoid
pitfalls, and adapting suitable parameters to meet the need of
their applications. We also hope that through extended use
of Hough Transform, computer vision approaches applicable
to event-based systems can be elevated to a higher level
of complexity, closing the gap between these systems and
conventional frame-based cameras.

Some possible future works include shape encoding through
projection of the template to the 3D HT, invariant template
matching given the encoded shape, and detection and tracking
of object in multi-views.
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