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Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS

deficiencies, are caused by pathogenic variants in mitochondrial genes. However,

pathogenic variants in some of these genes can lead to clinical manifestations which

overlap with other neuromuscular diseases, which can be caused by pathogenic variants

in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in

the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial

function. We have performed a two-step next-generation sequencing approach in a

cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could

likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial

disorder, according to established clinical and biochemical criteria. The other 31 patients

had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is

present, but a non-mitochondrial genetic cause is more likely. All patients were screened

for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome

sequencing (WES). Variants were filtered for being pathogenic and compatible with an

autosomal or X-linked recessive mode of inheritance in families with multiple affected

siblings and/or consanguineous parents. Non-consanguineous families with a single

patient were additionally screened for autosomal and X-linked dominant mutations in

a predefined gene-set. We identified causative pathogenic variants in the mtDNA in

20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of

68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes

in both groups with, obviously, a higher number of mitochondrial genes affected in
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mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing

genes in the mitochondrial patient group were not included in the MitoCarta database,

and therefore would have been missed with MitoCarta based gene-panels. We conclude

that WES is preferable to panel-based approaches for both groups of patients, as the

mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary.

Also, clinically and genetically heterogeneous disorders would require sequential use of

multiple different gene panels. We conclude that WES is a comprehensive and unbiased

approach to establish a genetic diagnosis in these patients, able to resolve multi-genic

disease-causes.

Keywords: mitochondrial disease, next-generation sequencing, mtDNA sequencing, whole-exome sequencing,

diagnostic yield

INTRODUCTION

Mitochondrial disorders are clinically highly heterogeneous, with
a broad variety of neurological and muscular symptoms involved
and having significant clinical overlap with other neuromuscular
disorders. Although, mitochondrial disorders are characterized
by deficiencies in the oxidative phosphorylation (OXPHOS) and
ATP production, biochemical deficiencies are not always detected
in the lab. Besides, OXPHOS deficiencies can be a secondary
phenomenon in neuromuscular or multi-system disorders with a
non-mitochondrial cause (Pyle et al., 2015; Niyazov et al., 2016).
Mitochondrial disorders are also genetically heterogeneous, as
different gene defects can result in a similar phenotype and
both the nuclear and mitochondrial genomes are involved
(Rotig and Munnich, 2003; McFarland et al., 2010). These
features complicate the establishment of a genetic diagnosis in
mitochondrial patients (Koenig, 2008).

For pathogenic variants in the multi-copy mtDNA, which
contains 37 genes and is exclusively maternally inherited, the
mutation load of the so-called heteroplasmic pathogenic variants
also affects the clinical presentation (Thorburn and Dahl, 2001;
Hellebrekers et al., 2012). The estimated number of nuclear genes
involved in mitochondrial function is around 1500 (Prokisch and
Ahting, 2007; Calvo and Mootha, 2010), of which only > 250
genes have been shown to be involved in mitochondrial disease
(Alston et al., 2017). In mitochondrial disorders (patients in
group 1), OXPHOS deficiencies are often due to genetic defects
in the OXPHOS complexes (subunits and assembly factors),
or, more indirectly, in processes such as mitochondrial protein
translation and degradation, mtDNA maintenance, fusion and
fission, substrate transport, or phospholipid metabolism. Still,
mitochondrial dysfunction can also be a more secondary defect
in genetic syndromes or neuromuscular disease (Hui et al.,
2006). Also, in patients with neuromuscular symptoms that are
not specific for a mitochondrial disease (patients in group 2),
pathological variants in mitochondrial genes have been reported
in addition to other non-mitochondrial genetic causes.

Genetic diagnosis of mtDNA-disorders requires screening
of all 37 mtDNA genes and determining the heteroplasmy
levels of the variants, being either point mutations or large
rearrangements. In addition, mtDNA copy-number is being

tested to identify mtDNA depletions. mtDNA analysis in
diagnostic setting commonly started with screening for a few
relatively common point mutations using mutation-specific
restriction enzymes or qPCR based methods (Fan et al., 2006;
Wang et al., 2011). In case common pathogenic variants were
not detected, the entire mitochondrial genome was analyzed
by Sanger sequencing or chip-based methods (van Eijsden
et al., 2006; Finsterer et al., 2009). However, these methods
are non-quantitative, requiring a second molecular test to
determine the mutation load. Besides, chip-based methods
have difficulties in detecting small indels (Tang and Huang,
2010; Xie et al., 2011; McCormick et al., 2013). For the large
mtDNA deletions, it was time-consuming to determine the
exact breakpoints, which could be important for prognosis
(He et al., 2002; Wong et al., 2003). The application of next-
generation sequencing has greatly increased the possibilities
for detecting, characterizing and quantifying point mutations,
and rearrangements across the complete mitochondrial genome
with one single technology (Li et al., 2010; Huang, 2011;
Cui et al., 2013). Although, accurate determination of the
heteroplasmy levels of large mtDNA deletions still requires
quantitative PCR analysis. The first tissue tested is blood, but
this is extended to muscle or urine in case the mtDNA could
have been missed in blood (Koenig, 2008). If no pathogenic
variants in the mtDNA were present, then moving into the
analysis of nuclear genes traditionally relied on (stepwise) Sanger
sequencing of nuclear candidate genes which were selected based
on clinical and biochemical features or linkage/homozygosity
mapping. Again next-generation sequencing methods have
made this approach obsolete, as whole exome sequencing
(WES), enabled the detection of the majority of the genetic
variations in the coding part of the genome (Wortmann
et al., 2015). An unbiased and complete genetic analysis is
important, especially in heterogeneous mitochondrial disease,
where genotype-phenotype relations can be indistinct and novel
genes involved.

We have performed a complete next-generation sequencing
strategy, analysing the mtDNA and exome in a cohort of
86 patients with mitochondrial disease (group 1) and 31
neuromuscular patients in whom a pathogenic variant in a
mitochondrial gene could possibly be involved (group 2). The
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latter group includes heterogeneous neuromuscular patients with
disease symptoms that are not specific for mitochondrial disease,
but in which a mitochondrial genetic cause has been identified
in a minority of cases. The results were obtained over a 4-year
period from 2012 to 2016. Patients were tested for pathogenic
variants in the mtDNA by next-generation sequencing and, if
negative, further analyzed by WES. WES-variants were filtered
according to the presumed genetic model of disease inheritance,
allele frequencies, conservation, and the predicted effect of the
variant. With this approach, we identified in 68% of our patients
a causative pathogenic variant in new and known disease genes,
which were either inherited or de novo.

MATERIAL AND METHODS

Patients
One hundred and seventeen patients, from consanguineous and
non-consanguineous families, in this study were under treatment
at ErasmusMC,Maastricht UMC+, Leiden UMC, UMCUtrecht,
AMC Amsterdam (The Netherlands). The patients had a clinical
phenotype that could be caused by a mitochondrial defect.
The age of disease onset in the cohort varied from birth to
approximately 50 years old. As 77% of our patients was below 18
years at the age of diagnosis we used the mitochondrial disease
criteria (MDC) for children (Morava et al., 2006). The MDC
include clinical signs and symptoms (max 4 points), metabolic
abnormalities and neuroimaging (max 4 points) and histologic
anomalies (max 4 points). Score 1: mitochondrial disorder
unlikely; score 2 to 4: possible mitochondrial disorder; score 5
to 7: probable mitochondrial disorder; score 8 to 12: definite
mitochondrial disorder. In group I patients were included, in
whom the diagnosis of a mitochondrial disease was probable
or definite (MDC > 5). Patients not meeting these MD-criteria
(MDC < 5, group 2) had neuromuscular symptoms that are not
specific for mitochondrial disease, but in which a mitochondrial
genetic cause has been identified in a minority of cases. All
parents were unaffected. Subjects gave written informed consent
for WES analysis in accordance with the Declaration of Helsinki.
Research was prospectively reviewed and approved by the local
ethical committee of the Maastricht University Medical Centre.

mtDNA Analysis
Sequencing of the mtDNA was performed using the Illumina
MiSeq platform. Enrichment of the entire mtDNA was
performed by a single long-range PCR using Phusion Hot Start
DNA polymerase II kit (Thermoscientific) and 100 ng of total
genomic DNA, according to the manufacturer’s instructions.
Library preparation was performed by the Illumina Nextera
XT kit according to the manufacturer’s instructions. Twelve
indexed DNA libraries were equimolarly pooled and sequenced
in a single lane of 1 MiSeq flow-cell with a 2 × 300
bp paired-end chemistry. Data demultiplexing was performed
with Illumina CASAVA software (v.1.8.4.) and reads were
aligned against the revised Cambridge mitochondrial reference
sequence (but without the gap at position 3107) by BWA
software (v.0.5.9.) (Li and Durbin, 2009). For both variant
and small indel identification, Python 2.6.6., Python package

pysam 0.7.8. and SAMTools 0.1.19 software were used (Li
et al., 2009). Large deletions were identified by alignment
with the Smith and Waterman algorithm and the EMBOSS
water program (v.6.5.7.). Annotation and filtering of mtDNA
variants and indels were performed using in-house build Perl
tools and a MySQL annotation database. Calculation of the
heteroplasmy level at any nucleotide position was performed
by the read depth of the mutant vs. reference nucleotide.
We have validated the detection and quantification accuracy
of our NGS strategy by analysing DNA samples with varying
heteroplasmy levels of different substitution variants, small indels
and large deletions, as previously determined byMitoChip, RFLP
and PCR/Southern blotting (Supplementary Data Tables S1–S5;
SRA submission SUB4444333). The entire mtDNA, excluding
the highly polymorphic D-loop, was analyzed using a 2%
heteroplasmy cut-off for known pathogenic point mutations
and a 5% cut-off for the remaining positions and small indels.
If no mtDNA mutations were detected in blood of the MD-
patient (group 1) and a mtDNA disease was highly likely,
this was confirmed on muscle or urine DNA. To test for
mtDNA depletions, qPCR quantification was performed on
DNA extracted from available muscle biopsies, using SensiMix
SYBR (Bioline), where mtDNA copy-number (based on the
mitochondrial ND1 gene) was normalized to the nDNA copy-
number (based on the nuclear B2M gene).

Homozygosity Mapping and WES
Homozygosity mapping and CNV analysis was performed
by HumanMapping 250K array (Affymetrix, Santa Clara,
California) and Genotyping console 4.0 (Affymetrix).
Homozygosity or hemizygosity regions were defined by the
“Homozygosity” mapper (Seelow et al., 2009), with a cutoff of
5MB. Exons were captured with SureSelect version 5 exome
enrichment kit (Agilent Technologies, Santa Clara, California),
including untranslated regions. Sequencing was performed on
a HiSeq2000 platform (Illumina, San Diego, California), using
a 2 × 100 bp paired-end setting. Bcl2fastq 1.8.4 (Illumina)
allowed Basecalling and demultiplexing, and Burrows-Wheeler
Aligner 0.5.9 (Broad Institute, Cambridge, Massachusetts) was
used for read alignment against human reference genome hg19.
Duplicate reads were removed by Picard software suite 1.77
(Broad Institute, Cambridge, Massachusetts) and variant calling
was performed with GATK 2.1-8 (Broad Institute).

Exome data of consanguineous families or families consisting
of > 1 patient was filtered for recessive homozygous, compound
heterozygous, and X-linked (XLR) pathogenic variants. Variants
with allele frequencies < 1% (dbSNP151 Exome Aggregation
Consortium) were evaluated, covering missense variants,
indels, nonsense mutations, and splice variants. Non-annotated
variants were maintained, unless allele frequencies exceeded
5% prevalence in our in-house patient database. Pathogenicity
of nonsynonymous missense variants was estimated by
Polymorphism Phenotyping-2 (PolyPhen-2; Harvard, Boston,
Massachusetts), Sorting Intolerant From Tolerant (J. Craig
Venter Institute, Rockville, Maryland), Protein Variation
Effect Analyzer (PROVEAN; J. Craig Venter Institute), and
MutationTaster (NeuroCure Cluster of Excellence/Berlin
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Institute of Health, Berlin, Germany). Nonsense, frameshift,
and splice-site variations were maintained. WES data of single
patients from non-consanguineous families were additionally
filtered for heterozygous variants in known (OMIM (Online
Mendelian Inheritance in Man) disease genes with known
dominant and/or de novo pathogenic variants. All identified
pathogenic variants were checked for their inclusion in the
MitoCarta build 2.0 database for mitochondrial localized
proteins.

All variants that are listed in this manuscript were assigned
as “most probably disease causing” (class 4) or “disease
causing” (class 5). “Disease causing” (class 5), based on previous
publications reporting patients with a similar phenotype, possibly
with functional prove, or, in case of unpublished variants,
classified as “most probably disease causing” (class 4), according
to the diagnostic standards and guidelines of the American
College of Medical Genetics and Genomics (ACMG) (Richards
et al., 2015). The ACMG criteria take into account, among
others: allele frequencies in control databases (missense variants),
amino-acid conservation, Grantham score, functional domains,
and splice predictions and nucleotide conservation in case of
intronic variants. Pathogenic variants were only included if these
segregated correctly with the disease in the family.

RESULTS

Diagnostic Yield
A cohort of 117 patients from unaffected parents, was subject
to a two-step next-generation sequencing approach (Figure 1).
The age of disease onset in the cohort varied from birth to
approximately 50 years old, 77% (90/117) were patients < 18
years of age. We solved 20% of the cohort with a disease-causing
mtDNA defect, involving 23MD-patients from group 1 and none
from group 2. SubsequentWES analysis solved an additional 49%
(57 patients) of the cohort, consisting of 39 patients of group 1
and 18 patients from group 2. With this strategy, we achieved
an overall diagnostic yield of 68%, with comparable yield in the
group of inherited disease cases (69%) compared to the single
patients from non-consanguineous families (68%).

mtDNA Next-Generation Sequencing
mtDNA sequencing resulted in the identification of a disease-
causing pathogenic variants in 20% (23/117) of the patient
cohort (Figure 1), solving 5% (2/42) of the inherited disease cases
(consanguineous, > 1 patient) and 28% (21/75) of the single
patients from non-consanguineous families. As shown inTable 1,
all cases with amtDNAdefect wereMD-patients (group 1) and all
23 identified mtDNA defects involved known mtDNAmutations
in typical mtDNA disorders, like LHON (Leber’s hereditary optic
neuropathy), MELAS (mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes)/MIDD (maternally inherited
diabetes mellitus and deafness), Leigh syndrome and CPEO
(chronic progressive external ophthalmoplegia)/Kearns-Sayre
syndrome. 39% (9/23) of the mtDNA mutations were, mostly
homoplasmic (8 out of 9), LHON mutations (m.11778G>A and
m.14484T>C), clinically manifesting with optic atrophy. Only
one LHON patient carried 80% heteroplasmy. The m.3243A>G

FIGURE 1 | The diagnostic yield of mtDNA and whole exome sequencing in a

patient cohort consisting of 117 patients. 20% of the patients were solved with

a mtDNA defect and 49% with a nuclear DNA defect, implying an overall

diagnostic yield of 68%.

mutation covered 30% (7/23) of the mtDNA defects, and
explained both MELAS (2 patients) and MIDD (5 patients)
phenotypes. Another mutation was identified in the ND5 gene
(m.13513G>A), as a cause of Leigh syndrome. 26% (6/23) of the
mtDNA defects were large single deletions, of which the 4,977
bp deletion (breakpoints 8482:13460) was detected in 4 patients.
These patients had CPEO, sometimes in combination with
additional symptoms of Kearns-Sayre syndrome (pigmentary
retinopathy, cardiac conduction abnormalities). Patients with
multiple mtDNA deletions or mtDNA depletion (not included in
Table 1) were further analyzed by WES, as being suggestive of an
underlying nuclear DNA defect in the mtDNA maintanance or
replication genes.

Whole Exome Sequencing
In the remaining 94 patients, prior to whole exome analysis, the
DNA were subject to SNP-array analysis, using the Affymetrix
GeneChip Human Mapping 250K, to detect copy number
variations (CNV) and homozygosity regions. No CNVs were
detected. In patients from consanguineous families, mapping
of the homozygous regions provided an additional filtering
criterion to select the most promising genetic variants from
the exome data. When multiple affected siblings were present,
the entire family, if available, was analyzed by means of SNP-
arrays. This approach significantly increased the efficiency of
interpreting WES results. WES identified a disease-causing gene
defect in 49% (57/117) of the complete patient cohort (Figure 1).
In an additional 7% of the cohort, WES analysis identified a
genetic variant which could explain the patient’s phenotype,
but for which definite evidence is currently lacking. Further
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TABLE 1 | Disease-causing pathogenic variants identified by mtDNA sequencing.

Family Patients Pediatric/adult Symptoms Mutation % Mutant mtDNA

(in blood)

Gene

Cons., >1 patient MD Non-

consanguineous

2 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous

2 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous,

1 patient

MD Non-

consanguineous

1 a MELAS m.3243A>G 24% (32 y.o.) MT-TL1

Non-

consanguineous

1 p MELAS m.3243A>G 41% (18 y.o.) MT-TL1

Non-

consanguineous

1 a MIDD, ptosis,

macular

degeneration

m.3243A>G 25% (36 y.o.) MT-TL1

Non-

consanguineous

1 a MIDD m.3243A>G 26% (27 y.o) MT-TL1

Non-

consanguineous

1 a MIDD m.3243A>G 10% (62 y.o.) MT-TL1

Non-

consanguineous

1 a MIDD, macular

degeneration

m.3243A>G 7% (69 y.o.) MT-TL1

Non-

consanguineous

1 a MIDD,

cardiomyopathy

m.3243A>G 40% (28 y.o.) MT-TL1

Non-

consanguineous

1 p Leigh syndrome m.13513G>A 72% MT-ND5

Non-

consanguineous

1 a LHON m.11778G>A 80% MT-ND4

Non-

consanguineous

1 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous

1 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous

1 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous

1 a LHON m.11778G>A Homoplasmic MT-ND4

Non-

consanguineous

1 a LHON m.14484T>C Homoplasmic MT-ND6

Non-

consanguineous

1 a LHON m.14484T>C Homoplasmic MT-ND6

Non-

consanguineous

1 p CPEO de novo: single 8284

bp deletion

(7462:15747)

n.d. covers 22 mtDNA

genes

Non-

consanguineous

1 p CPEO de novo: single 6277

bp deletion

(9514-15792)

n.d. MT-CO3, MT-ND3,

MT-ND4L, MT-ND4,

MT-ND5, MT-ND6,

MT-CYB, tRNA’s (Leu,

Ser, His, Gly, Arg, Glu)

Non-

consanguineous

1 p CPEO de novo: single 4977

bp deletion

(breakpoints

8482:13460)

n.d. MT-ATP8, MT-ATP6,

MT-CO3, MT-ND3,

MT-ND4L, MT-ND4,

MT-ND5, tRNA’s (Leu,

Ser, His, Gly, Arg)

Non-

consanguineous

1 p CPEO de novo: single 4977

bp deletion

(breakpoints

8482:13460)

n.d. MT-ATP8, MT-ATP6,

MT-CO3, MT-ND3,

MT-ND4L, MT-ND4,

MT-ND5, tRNA’s (Leu,

Ser, His, Gly, Arg)

(Continued)
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TABLE 1 | Continued

Family Patients Pediatric/adult Symptoms Mutation % Mutant mtDNA

(in blood)

Gene

Non-

consanguineous

1 p CPEO de novo: single 4,977

bp deletion

(breakpoints

8482:13460)

n.d. MT-ATP8, MT-ATP6,

MT-CO3, MT-ND3,

MT-ND4L, MT-ND4,

MT-ND5, tRNA’s (Leu,

Ser, His, Gly, Arg)

Non-

consanguineous

1 p Kearns-Sayre

syndrome

de novo: single 4977

bp deletion

(breakpoints

8482:13460)

n.d. MT-ATP8, MT-ATP6,

MT-CO3, MT-ND3,

MT-ND4L, MT-ND4,

MT-ND5, tRNA’s (Leu,

Ser, His, Gly, Arg)

mtDNA point mutations and deletions were detected and quantified by mtDNA next-generation sequencing in a cohort of 117 patients. All patients with a mtDNA defect were classified

as mitochondrial (group 1).

TABLE 2 | Whole-exome sequencing analysis.

WES filtering strategy Total % solved Group 1 %

solved

Group 2 %

solved

Consanguineous and/or

>1 patient

- Autosomal recessive (AR)

- X-linked (XLR)

68% (27/40) 65% (17/26) 71% (10/14)

Non-consanguineous, 1

patient

- Autosomal recessive (AR)

- X-linked (XLR and XLD)

- Autosomal dominant (AD)

56% (30/54) of

which 15% de

novo (8/54)

59% (22/37) 47% (8/17)

94 patients were subject to WES analysis. WES-data was filtered according to the

presumed pattern of disease inheritance, where consanguinity or involvement of >1

patient were indicative of a recessively inherited disorder and non-consanguineous

families with a single patient were likely to cover both, recessively inherited and dominant

de novo mutations.

studies should reveal which of these pathogenic variants could
be classified as disease-causing.

WES-data filtering was based on the presumed genetic mode
of inheritance. We applied a variant selection strategy for
autosomal recessive (AR) and recessive X-linked (XLR) disorders
to the inherited disease cases (consanguinity, >1 patient). As
shown in Table 2, this group consisted of 40 families, where
WES identified of a genetic defect in 68% (27/40) of the cases,
covering homozygous, compound heterozygous and X-linked
pathogenic variants (Tables 3, 4). In group 1 (MD patients),
65% (17/26) of the cases were solved, and in group 2 a disease
causing gene defect was found in 71% (10/14). As expected, a
broad spectrum of genes with relatively few genes with a literature
reported mitochondrial function [20% (2/10)] was identified in
group 2 (Table 4) compared to the proportion of such genes
in group 1 [76% (13/17)] (Table 3). In 54 non-consanguineous
families with a single patient, we applied a variant selection
strategy for autosomal recessive (AR), X-linked (XLR and XLD)
and single heterozygous pathogenic variants, expected to be
dominant de novo variants. In order to limit the huge amount of
heterozygous variants for dominant disease-causing mutations,

variant interpretation was restricted to genes that have previously
been reported in dominant disease based on the OMIM database.
With this approach, we unraveled the genetic cause in 56%
(30/54) of these families (Table 2), 15% of which were single
dominant pathogenic variants. Follow-up investigations in the
parents revealed that the pathogenic variants either occurred de
novo in the patients or were present in one of the parent, who
displayed subclinical symptoms upon further investigation. The
diagnostic yield was 59% (22/37) in patient group 1 and 47%
(8/17) in group 2, where respectively, 86% (19/22) (Table 3) and
13% (1/8) (Table 4) of the defects were located in a gene with
reported mitochondrial function.

Overall, we saw that 31% (13/42) of the disease-causing genes

in the mitochondrial patients (group 1) were not included in
the MitoCarta database for mitochondrial localized proteins at
the time we identified the genetic defect (Table 3). Surprisingly,

this included 3 genes with a literature reported function in
mitochondrial metabolism, in which pathogenic variants are a
well-known cause of mitochondrial disease (RRM2B, c19orf12,
TAZ). Furthermore, we identified 2 different genes (SLC19A3
(2x), SLC16A2) for which a role in mitochondrial OXPHOS
is still unclear. Although a mitochondrial function cannot be
excluded, it has been suggested that the OXPHOS deficiencies
in the corresponding patients, might be secondary (Niyazov
et al., 2016; de Beaurepaire et al., 2018). Furthermore, 5 different
genes with no reported function in mitochondrial metabolism
(IER3IP1, IARS, CHRNE, BICD2, HPS1) have been identified.
These genes require further functional testing to reveal a possible
“novel” role in mitochondrial functioning or to demonstrate a
secondary respiratory deficiency. In the patient with the multi-
genic cause (BICD2 and HPS1), an additional, third, gene defect

might have been missed. Two additional genes that were lacking
in the MitoCarta database were not related to the mitochondrial

symptoms of the patients, as these genes encode proteins with no
mitochondrial function, but were together with a mitochondrial

gene defect part of a complex multi-genic disease phenotype,
in which more than a single gene defect is involved (ACY1,
ANTXR2).

Genes identified in group 1 (MD-patients) were clustered
according to their function (Table 5). Most genetic defects were
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TABLE 5 | Mitochondrial gene functions affected in mitochondrial patients (group 1).

Gene Function References

Mitochondrial substrate metabolism

AMACR Alpha-methylacyl-CoA racemase Mubiru et al., 2004

Mitochondrial protein metabolism; translation and degradation

AARS2 alanyl-tRNA synthetase Götz et al., 2011

MTFMT (2x) Mitochondrial methionyl-tRNA formyltransferase Takeuchi et al., 1998

MTO1 tRNA modification and protein synthesis Ghezzi et al., 2012

KARS lysyl-tRNA synthetase Targoff et al., 1993

QRSL1 glu-tRNA synthetase Nagao et al., 2009

TRMU Mitochondrial tRNA modification Yan and Guan, 2004

C12ORF65 Release proteins from ribosomes Antonicka et al., 2010

SPG7(2x) Part of the m-AAA metalloproteinase complex Warnecke et al., 2007

Mitochondrial phospholipid metabolism

SERAC1* Phosphatidylglycerol remodeling Wortmann et al., 2012

TAZ Cardiolipin remodeling Acehan et al., 2011

ETC subunits, assembly factors, cofactors

NDUFA12 Complex I subunit Triepels et al., 2000

NDUFS7 Complex I subunit Visch et al., 2004

NDUFV2 Complex I subunit de Coo et al., 1997

COQ7 Coenzyme Q biosynthesis Freyer et al., 2015

TMEM126B Complex I assembly factor Andrews et al., 2013

ATPAF2 Complex V assembly factor Wang et al., 2001

NDUFAF5 Complex I assembly factor Sugiana et al., 2008

NDUFAF4 Complex I assembly factor Karp et al., 2004

TMEM126A Complex I assembly factor Wessels et al., 2013

mtDNA maintenance, replication and nucleotide metabolism

RRM2B Ribonucleotide reductase Bourdon et al., 2007

FBXL4 (2x) Phosphorylation-dependent ubiquitination Bonnen et al., 2013

PYCR2 Pyrroline-5-carboxylate reductase Kuo et al., 2016

Twinkle (C10ORF2) mtDNA helicase Spelbrink et al., 2001

POLG1 (2x) mtDNA polymerase Lestienne, 1987

Mitochondrial fusion and fission

SLC25A46 Interacts with mitochondrial fusion machinery Janer et al., 2016

MFN2 Mitochondrial fusion Santel and Fuller, 2001

Mitochondrial localization

C19orf12 Function unclear Landoure et al., 2013

No mitochondrial localization or function reported

SLC19A3 (2x) Transmembrane thiamine transporter Vernau et al., 2015

IER3IP1 Function unclear Yiu et al., 2004

SLC16A2 Transporter of thyroid hormones Wrutniak-Cabello et al., 2001

CHRNE Acetylcholine receptor subunit Witzemann et al., 1996

IARS Isoleucyl-tRNA synthetase Kopajtich et al., 2016

BICD2, HPS1(multi-genic) dynein-mediated transport, forms lysosomal complex Martina et al., 2003; Neveling et al., 2013b

Disease causing nuclear genes, identified in patients with a mitochondrial disorder (group 1), clustered according to their function in mitochondrial metabolism. *ACY1 and ANTXR2

were excluded.

detected in genes related to mitochondrial protein metabolism
(protein translation and degradation) and OXPHOS function
(ETC subunits, assembly factors, and cofactors). The first
group mainly consisted of mitochondrial tRNA synthethases,
transferases, and modification enzymes, where the resulting
defects in mitochondrial protein synthesis (AARS2, MTFMT,

MTO1, QRSL1, TRMU, C12ORF65) especially manifested with
combined OXPHOS deficiencies (not measured for KARS).
Among the group of OXPHOS-associated genes, defects
in complex I subunits and assembly factors (NDUFA12,
NDUFS7, NDUFV2, TMEM126A, TMEM126B, NDUFAF4,
NDUFAF5) were most prevalent, all resulting in a significant
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complex I deficiency at the biochemical level. NDUFS7
resulted in an additional complex III deficiency. Defects in
NDUFS7, NDUFA12 and NDUFAF5 caused Leigh-syndrome or
a Leigh-like-phenotype. The third largest group represented
genes involved in mtDNA metabolism, required for mtDNA
maintenance, replication and nucleotide metabolism. The
RRM2B defect resulted in mtDNA depletion, whereas pathogenic
variants in the RMM2B interacting protein PYCR2 did not reveal
any mtDNA abnormalities. Furthermore, pathogenic variants in
POLG1, twinkle (c10orf2) and DNA2 displayed multiple mtDNA
deletions in muscle. Interestingly, we found the mitochondrial
localized, but functionally uncharacterized, c19orf12 gene to
be associated with mtDNA depletion (mtDNA copy-number,
normalized to nDNA, was 10–30% of healthy control samples).
Among the mitochondrial patients (group 1), we identified
pathogenic variants in 5 genes without a reported mitochondrial
function or localization, but reported to result in a comparable
phenotype as in our patient. 4 genes, functional in different
cellular processes, including the transporter proteins SLC19A3
(thiamine) and SLC16A2 (thyroid hormones), tRNA-synthetase
IARS, and acetylcholine receptor subunit CHRNE, were likely to
underlie the OXPHOS deficiencies measured in these patients,
although some of these genes have been related to possible
secondary OXPHOS deficiency (SLC19A3 and SLC16A2). In
an additional patient, the functionally uncharacterized IER3IP1
gene was likely to explain a seemingly mitochondrial disease
phenotype, yet no OXPHOS measurement was performed in
this patient. As indicated in Table 6, in patient’s from group 2,
4 mitochondrial gene defects were identified, SLC25A32, CLPP,
ACAD8, and DNA2 (multi-genic disease cause).

DISCUSSION

We used a next-generation sequencing strategy in a cohort
of 86 patients with a likely mitochondrial disease (group 1),
as these cases met the criteria for MD, and 31 patients, who
did not meet the criteria for MD, but where a mitochondrial
defect could possibly cause the disease symptoms. In 68% of
the patients we identified a disease causing genetic defect, of
which 20% was solved by mtDNA sequencing and 49% by
subsequent WES analysis. Compared to conventional Sanger

sequencing methods, which only solved 11% (Neveling et al.,
2013a), primarily due to limitations on the number of genes being
sequenced, this is a major step forward. Selective sequencing of
targeted gene panels in two studies, including 1,598 and 1,034
mitochondrial disease genes, resulted in respectively 22% (102
suspected mitochondrial patients) (Lieber et al., 2013) and 24%
(42 mitochondrial patients) (Calvo et al., 2012) diagnostic yield.
This is less than in our study, which might in part be explained
by an incompleteness of the panels (more details below).
In a previous next-generation sequencing-based study, which
included 113 pediatric patients with suspected mitochondrial
disease, screening both the mtDNA and the exome, resulted
in a diagnostic yield of 59% (Pronicka et al., 2016). Another
study performing WES in 109 pediatric and young adult patients
with suspected mitochondrial disease, established a genetic
diagnosis in 39% of the patient cohort (after exclusion of mtDNA
mutations) (Wortmann et al., 2015). Our pediatric patient
group consisted of 90 patients, for which we could establish
a genetic diagnosis in 66% (8 mtDNA and 51 nuclear gene
mutations). Our higher yield could be caused by a complete
analysis of both the mtDNA and the exome, with a strong
selection for genetic cases, and follow-up investigations in case of
an unknown gene. The relatively high number of patients from
consanguineous parents could in part explain the high diagnostic
yield, as a genetic cause is highly likely. As consanguineous
parents have an increased risk of having children that suffer
from multiple genetic diseases, WES data should always be
completely analyzed and, preferably, parents should be offered
preconception genetic testing. Different from previous studies on
mitochondrial cohorts, we have included a more heterogeneous
patient group (group 2), in which a relatively small portion is
likely to be caused by a mitochondrial gene defect. In conclusion,
our data shows that mtDNA sequencing followed by a complete
whole exome analysis is the preferred strategy to identify the
genetic basis in heterogeneous neuromuscular patients with a
likely or possible mitochondrial disease cause.

As the mtDNA genome is relatively small, NGS allows cost
effective and efficient testing of many patient samples within
a single run, with sufficient sensitivity on blood DNA. Yet, as
mtDNA mutations may disappear from blood during life, in
cases where an mtDNA disorder is likely, DNA from muscle (or

TABLE 6 | Mitochondrial gene functions affected in patients from group 2.

Gene Function References

Mitochondrial substrate import

SLC25A32 Mitochondrial folate transporter Haitina et al., 2006

Mitochondrial protein metabolism; translation and degradation

CLPP Mitochondrial proteolytic complex Jenkinson et al., 2013

Mitochondrial substrate metabolism

ACAD8 Isobutyryl-CoA dehydrogenase Nguyen et al., 2002

mtDNA maintenance, replication and nucleotide metabolism

DNA2 mtDNA replication, mtDNA base-excision repair Ronchi et al., 2013

Disease causing nuclear genes were classified according to their function in mitochondrial metabolism.
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urine for the m.3243A>G) should be tested to prevent missing
a diagnosis. Also for prognosis mutation levels in muscle are
preferable. Where traditionally several complementary methods
had to be used for detection and quantification of mtDNA
mutations (e.g., RFLP, ARMS-qPCR, sanger sequencing, Mito-
CHIP, Southern blot analysis), NGS can be used as a single
method for identifying point mutations and indels, large
deletion breakpoints and quantifying heteroplasmy levels of
point mutations and small indels with high sensitivity and
specificity (Tang and Huang, 2010). Only to accurately measure
heteroplasmy levels of large mtDNA deletions and mtDNA
depletions, additional qPCR based quantification is required.
NGS of the mtDNA solved 20% of our patient cohort (all
mitochondrial patients), mainly, but not only, consisting of
patients with early disease onset (77% pediatric patients). In
the pure pediatric subgroup with mitochondrial disease (group
1), mtDNA mutations accounted for 19% (8/43) of the genetic
defects, which is in line with earlier reports that estimated
involvement of a mtDNA defect in < 20% of the pediatric
mitochondrial patients (Schaefer et al., 2008). In our adult
subgroup with mitochondrial disease (group 1), mtDNA defects
accounted for 75% (12/16), which is comparable to the previously
estimated 70–75% (Schaefer et al., 2008; Gorman et al., 2015).
As shown in Table 1, most mtDNA patients carried LHON and
MIDD/MELAS causing mutations, which was also likely based
on the clinical presentation. Both MIDD and MELAS symptoms
were caused by the m.3243A>G mutation, in line with what has
been reported before (deWit et al., 2012). Yet, as indicated by the
heteroplasmy levels (24–41% in MELAS and 7–40% in MIDD),
variation in symptommanifestations among these patients could
not solely be explained from the differences in heteroplasmy level
in blood, complicating prognostic predictions.

Using WES, we identified a disease-causing variant in an
additional 49% of the patient cohort, where we applied a
variant selection strategy fitting the presumed genetic mode
of disease inheritance. In a group with likely inherited disease
(consanguineous and/or multiple patients), filtering for recessive
pathogenic variants solved 68% of the patients. A group of single
patients from non-consanguineous parents was also screened
for heterozygous variants in known (OMIM) AD disease genes,
which resulted in an overall genetic diagnosis in 56% of the
patients, of which 15% of the identified variants were de novo.
To reduce the huge amount of potential dominant pathogenic
variants, we have restricted our heterozygous variant selection
to OMIM-reported dominant disease genes, and therefore might
have missed some de novo cases. This could be overcome byWES
trio-analysis. Additionally, the higher likelihood of an inherited
genetic cause, the availability of homozygosity mapping data and
of exome data of affected siblings might have contributed to a
higher diagnostic yield in the first group. Our strategy did not
result in large differences in diagnostic yield between patients
from group 1 and patients from group 2. In an additional 7% of
the WES cohort we found a genetic variant (variant of unknown
significance) with a clear lead to the patient’s phenotype (data
not shown). For these cases, further laboratory testing or patient
screening should reveal which genes can be classified as disease
causing.

In 82% (32/39) of the likely mitochondrial patients (group
1), symptoms were caused by a gene with a reported
mitochondrial function or localization. As expected, this was
significantly lower in patient group 2 [17% (3/18)]. Our results
showed that in patients with mitochondrial disease, most
genetic defects were associated with mitochondrial protein
metabolism and OXPHOS function, where a majority of the
OXPHOS defects were found in complex I genes. In line with
previously reported complex I deficient patients, we found that
defects in NDUFS7, NDUFA12, and NDUFAF5 caused Leigh-
syndrome or a Leigh-like-phenotype (Rahman and Thorburn,
1993). Although NDUFV2 defects have also been reported
in association with Leigh syndrome (Cameron et al., 2015),
our patient exclusively expressed symptoms of white matter
degeneration (encephalopathy). Also, we identified TMEM126A
as an underlying cause of isolated complex I deficiency, therewith
supporting co-migration studies that characterized TMEM126A
as an early assembly factor of complex I (Wessels et al.,
2013). Patients with mtDNA abnormalities carried pathogenic
variants in RRM2B, twinkle (c10orf2) and DNA2, which were all
functionally related to mtDNA maintenance, and presented as
the third largest group. Interestingly, we also found pathogenic
variants in the c19orf12 gene in a patient with an mtDNA
depletion. The link between this gene and the mtDNA depletion
remains to be established.

In 6 mitochondrial patients (group 1), we identified a
causal gene for which no direct mitochondrial function or
localization has been reported. This included 6 genes involved in
different cellular processes (SLC19A3, SLC16A2, IARS, CHRNE,
BICD2, and HPS1). In two families with classical Leigh-
syndrome we identified a defect in the thiamine transporter
SLC19A3, where despite a decrease in mitochondrial oxygen
consumption, complex activities seemed normal in muscle, and
skin tissue (Gerards et al., 2013). Thiamine-diphosphate, the
active form of thiamine, has been reported as an essential
cofactor for several mitochondrial enzymes, including the
pyruvate dehydrogenase complex (Ortigoza-Escobar et al., 2014).
A second transmembrane transporter defect was found in the
thyroid hormone (T3/T4) transporter SLC16A2, in a patient
with Allan-Herndon Dudley syndrome, which resulted in a
CII and CIV deficiency, where triiodothyronine (T3) has been
suggested as an important regulator of mitochondrial activity
(Wrutniak-Cabello et al., 2001). However, a role for SLC19A3,
but also SLC16A2 as mitochondrial genes is under debate, as
defects in these genes have been suggested to cause possible
secondary respiratory chain deficiency (Niyazov et al., 2016;
de Beaurepaire et al., 2018). In such case, patients might
possibly get a false positive classification as mitochondrial
(group 1) based on biochemical criteria Still, concerning
SLC19A3, either being primary or secondary, this gene should
be tested in patients with Leigh syndrome, and should be
in all MD panels, because it is a treatable condition, even
though, having a secondary effect, it may not have been
included in the MitoCarta database. Furthermore, we found a
pathogenic variant in the cytoplasmic located aminoacyl-tRNA
synthetase IARS to cause complex I deficiency in skin and
muscle tissue of a patient with a multi-system disorder, and
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a defect in the acetylcholine receptor subunit epsilon CHRNE
associated with CII deficiency, COX negative muscle fibers
and abnormally shaped muscle mitochondria in CPEO with
myopathy. Also we measured a complex IV deficiency in a
patient with a multi-genic cause, where either the identified
BICD2 or HPS1 defect causes the deficiency, or a possible
third defect was missed. In another patient, who was classified
as mitochondrial based on the classical mitochondrial disease
symptoms involved, the functionally uncharacterized IER3IP1
gene was identified. Although, no OXPHOS measurements
were performed in this patient, knockdown of IER3IP1 was
reported to affect mitochondrial function by decreasing the
mitochondrial membrane potential and increasing cytochrome
C release (Sun and Ren, 2017). The genetic defects in these
patients need further functional characterization to prove or
exclude a mitochondrial function, the involvement of secondary
respiratory chain deficiencies, or perhaps the presence of an
additional gene defect that has been missed by WES.

31% of the disease-causing genes identified in our
mitochondrial patients (group 1) were not included in the
MitoCarta database at the moment of identification, and could
therefore be missed with panel-based sequencing approaches
that rely on the MitoCarta database. In addition to the 5 genes
described above, this also involved some genes with a reported
function in mitochondrial metabolism, indicating that it can
be difficult to keep databases or panels up to date with recent
discoveries. Also, the contribution of non-mitochondrial disease
genes to complex multi-genic mitochondrial disease might
be missed when applying targeted sequencing methods, as
illustrated by two of the mitochondrial patient cases, in which
defects in more than a single gene were involved. Our data
shows that WES is the most suitable approach to characterize
the causative gene defect in both groups, patients with most
likely a mitochondrial disease, as according to the consensus
criteria for MD (group 1), and patients in who a mitochondrial
gene defect could possibly be involved (group 2). With respect
to group 1, we show mitochondrial gene panels are still not
complete, and that a strict preselection based on the consensus
criteria for MD could result in the missing of mitochondrial
gene defects (SLC25A32, CLPP, ACAD8, DNA2). Also in group
2 WES will be the preferred method, because of the genetic
heterogeneity, targeted approaches can easily result in inefficient
and sequential use of different gene panels, and still miss the

complete picture in multi-genic disease. WES is a comprehensive
and unbiased approach to establish a genetic diagnosis in
heterogeneous mitochondrial disease, able to resolve complex
multi-genic disease manifestations. Obviously, a disadvantage
of WES in diagnostics settings will be the identification of
novel, non-reported gene defects that often require extensive
experimental setups to validate a possible role in mitochondrial
disease. Embedding within or contact with a specialized research
group should therefore be preferable. Identification of the
genetic defect is not only important for diagnostics, but also for
therapeutic interventions. Patients with SLC25A32, SLC19A3,
and TMEM126B defects showed improvement upon treatment
with respectively riboflavin, biotin/thiamine and high fat-diet
(Gerards et al., 2013; Hellebrekers et al., 2017; Theunissen et al.,
2017a). Yet, despite the significant improvements in the genetic
diagnosis of mitochondrial disorders, the development of novel
therapies is lagging behind.
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