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Abstract—Any orthogonal transformation of the digital
grayscale image can be represented by a set of images to be an
orthonormal basis. For such representation digital data scattering
was considered that is important in applications, particularly
for the robust watermarking techniques. We introduce a block
matrix, elements of which are basis images. This matrix is found
to be useful for representation of multi-dimensional arrays, that
can describe a set of digital images. This representation has new
features concerning the data scattering. A steganographic scheme
for frequency domain watermarking based on this representation
is considered.

I. INTRODUCTION

The article is devoted to one of the most intensively devel-
oping area of information protection — computer steganog-
raphy. In this paper we continue our topic devoted to the
applications of the basis images in digital watermarking [1],
[2] and propose a new steganographic scheme.

Information is important for a human and plays an impor-
tant role, as well as the problem of its protection. However,
none of the great number of proposed methods of protecting in-
formation give full guarantee. Absence of universal methods is
a source of permanent search of new solutions, among which is
digital steganography using computer technologies [3]. Besides
of that it is necessary to expand the application area of known
mathematical methods of the digital image representation and
its transforms.

An image given in a digital form can be processed using
orthogonal transformations. The transformations are often used
for extracting of the redundancy from the frequency represen-
tation of the digital image. The redundancy can be achieved
by orthogonal transformations, which concentrate the energy,
the square of the brightness of the pixel. As a result, the
image in the frequency domain in a small neighborhood will
be assembled with pixels containing almost the entire energy
of the image. By setting the threshold, pixels with small energy
can be deleted, and return to the spatial domain, however
without a noticeable loss of quality. This scheme relies to the
lossy compression [4].

Two-dimensional unitary transformation of the original
digital image has different goals. Besides of the performing of
the compression methods this transform is widely used for the
coding of the image and extracting necessary characteristics
of the image. Despite the fact that in the frequency domain
the image acquires an unusual form, it can demonstrate its

useful properties. In the paper [5] partial unitary transforms
are described and a set of the basis images is obtained for such
unitary transforms as WHT (Walsh-Hadamard Transform) and
Haar transform. The size of given basis matrix is N × N ,
and the paper considers an example for N = 8. The set
of the basis images for the two-dimensional DCT (Discrete
Cosine Transform) is illustrated in the monograph [6]. The
basis images were considered as well for the DST (Discrete
Sine Transform), WHT, Haar transform. Note that there are
also exist nonstandard wavelet type transforms [7], [8] based
on decomposition of the space of linear splines with irregular
partition on closed segment.

The orthogonal transformations of the digital images with
using block representations have various applications. The
topic is not limited by image processing for compression
methods, now it has also interdisciplinary applications, such as
biomedicine, robotics, watermarking techniques in steganogra-
phy. The papers [9], [10] rely to analysis of the bottom of the
eyeball in the frequency domain for the glaucoma diagnosis
purpose using DWT (Discrete Wavelet Transform) and DOST
(Discrete Orthogonal Stockwell Transform).

In the robotics block matrices are used for the modeling
kinematics of the arms of the manipulating robotic [11].

Orthogonal transformation is used for masking when the
image is converted to a noise-like signal before transferring
over communication link or wireless line. At the paper [12]
quasi-orthogonal matrices for bilateral masking are used.

Images are stored in a compressed form, they can be
edited by means of resizing, rotation without transforming into
the spatial domain. It is possible to make a search using a
representation in the frequency domain. For this purpose, a
special DCT transform with blocking techniques is proposed.
In the papers [13], [14] the modification sets of the DCT matrix
blocks are obtained. Other orthogonal transforms also can be
modified, for example, Walsh-Hadamard, Karhunen-Loeve and
others.

The embedding into frequency domain using algorithms
QIM (Quantization Index Modulation) is presented in [15].
The algorithms are based on the controlled requantizing. Initial
data, which can be taken from the frequency domain are
quantized with a step S. In a simple case the bit is embedded
into a cell with size S by means of adding or extracting
the value equal to S/4 from the coordinate of the center.
A variety of the dots appears, the distances between them
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are divisible by S/2. The using of the special correlation-
stable functions, which reduce the correlation between bits of
the digital watermarks and single pixels of the image, make
the algorithms stable to the statistical attacks, but having low
stability to the JPEG compression.

The watermarking schemes using wavelet orthogonal trans-
form are also available. The technique uses two orthogonal
transformations, for example, DCT-SVD [16]–[18]. SVD (Sin-
gular Value Decomposition) is conversion of a rectangular ma-
trix into a block-diagonal matrix. Embedding can be performed
using the coefficients of the orthogonal SVD transform, which
operates frequency wavelet blocks LL, LH, HL, HH. DWT
transform is not necessarily a one-level [19], [20]. A useful
calculation tool is IWT (Integer Wavelet Transform) [21]. In
this transform, the accuracy of calculations is limited, then the
brightness values of the image pixels and transform coefficients
are recorded in the same integer encoding. This eliminates the
loss of rounding and creates reversibility at least in part of
integer encoding. The method with two orthogonal transforms
is stable to attacks such as JPEG compression, cropping, noise
adding, Gaussian and median filtering. At the analysis, the
stability measure was the degree of correlation between the
initial and extracted watermarks [22].

II. BASIS IMAGES

Being a set of numbers the digital image can be represented
using matrices to be an orthonormal basis.

A. Orthogonal tramsform

Let U be a square matrix with real elements and have the
following properties

UUT = UTU = I,

where I is the identity matrix.

The columns um and the rows uT
n of U form the orthonor-

mal bases
〈um, un〉 = δmn,

〈uT
m, uT

n 〉 = δmn,

where brackets denote scalar product, δmn is the Kronecker
symbol. The matrix U is called orthogonal [23].

Any digital arrays can be transformed with the help of
the orthogonal matrices. Such orthogonal transformation keeps
metrics, particulary Euclidian distance known also as Root
Mean Square Error. This transformation is reversible and
conserves the Shannon information.

B. Scattering and concentrating

Considering the orthogonal transformation of digital data
two properties may be made about data distributing. They are
scattering and concentrating to be attractive for the image pro-
cessing problems. The next example illustrates these features
for a 1-D array.

Let f := {fk}, k = 1, . . . , N be a vector and let U :=
{Uij}, i, j = 1, . . . , N be an orthogonal matrix. Taking into
account that f = If = UUT f, we find

f = Ug,

g = UT f,
(1)

where a new vector g = {gk}, k = 1, 2, . . . N is called a
representation of f . In literature g is often called the frequency
representation of f. We use this definition for the data in the
spatial domain. We introduce these terms to distinguish the
arrays. Equations (1) can be written in the form

fk =
∑
p

Ukpgp,

gp =
∑
k

Upkfk.

It results in data scattering. Consider an item fk of the
vector f . Assume it was obtained by embedding a bit of mes-
sage by a steganographic technique. Orthogonal transformation
distributes it in all items of g with its weight Ukp, where
p = 1, 2, . . . , N . By this way data scatters across the digital
volume of frequency domain. To retrieve the fk it needs to
know all items of vector g. When all items in frequency domain
transform into one it can be considered as concentrating. As
result two above properties can be written in the form

fk � {g1, g2, . . . , gN}. (2)

Indeed the presented observation concerns digital data
however it has a simple physical analog. So in the optics a
lens that can focus a light beam is described by a spatial
Fourier transform. This is the orthogonal transform generalized
to complex number.

Another example that illustrates scattering and concentra-
tion includes orthogonal transformation of a unit vector. Let f
have only one nonzero item fk = δka. Then its transform Uf is
equal to a matrix U vector row uT

a = {Uap}, p = 1, 2, . . . , N .
In the case of 2-D array this example refers to basis images.

C. Representation over basis images

Let F be a M×N matrix, that describes a grayscale image.
To get orthogonal transform of F it needs two orthogonal
matrices U and V of size N × N and M ×M . Then taking
into account that F = UUTFV V T the orthogonal transform
takes the form

F = UGV T ,

G = UTFV.
(3)

where G is a rectangle M × N matrix to be representation
of F . In accordance with the introduced terms the matrix G
is assumed to be an image in the frequency domain and F
is the image in the spatial domain. In the frequency domain
image may look senseless. But the information is not lost and
the orthogonal transform will allow us to return back to the
original.

Using the matrix form of (3)

Fxy =
∑
k,p

UxkGkpV
T
py =

∑
k,p

(uk ⊗ vp)xyGkp,

we introduce a representation over the basis matrices to be a
tensor product of matrices U and V , denoted by ⊗. Thus,
if uk is column-vector uk = (U1k, U2k, . . . , UNk)

T and
vk = (V1k, V2k, . . . , VNk)

T , then uk ⊗ vp := uk v
T
p and

(uk ⊗ vp)xy = uxk vyp.
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We will consider a particular case U = V , when all
matrices are N × N arrays. Then orthogonal transform (3)
can be written as

F =
∑
k,p

Gkp akp,

G =
∑
x,y

Fxy dxy,

where matrices akp and dxy are tensor products of columns
and rows of the orthogonal matrix U

akp := uk ⊗ up,

dxy := uT
x ⊗ uT

y .
(4)

These matrices are called the basis images. It follows from
the definition that element (x, y) of matrix akp denoted by
akp(x, y) and element dkp(x, y) can be rewritten as

akp(x, y) = UxkUyp,

dkp(x, y) = UkxUpy.

Each of two basis image sets has N2 elements to be the N×N
matrices.

D. Properties of the basis images

Two sets of basis images given by (4) are orthonormal
bases. They have the similar properties. The principal proper-
ties are the following.

• The matrix product of two basis images is an another
basis image

akp amn = aknδpm. (5)

• Basis images are orthonormal items in the sense that

〈akp, amn〉 = δkmδpn, (6)

where the scalar product of matrices is denoted by
〈A,B〉 = ∑

m,n
AmnBmn.

• The sum of the diagonal items is∑
k

akk = I, (7)

∑
k

akk(x, y) = δxy,

∑
x

akp(x, x) = δkp.

The presented properties result in the representation of any
grayscale image in the form

F =
∑
k,p

Gkp akp, (8)

where Gkp = 〈F, akp〉.
The are two ways how to create basis images. The first

of them follows from the definition (4). It needs to know
orthogonal matrix U . The second way requires the result of
transform only. The reason is that calculations sometimes can
be done by the algorithms that do not use U directly. The

well known example is DWT. All calculations are based on
the filter function bank. Now we consider the second way.

Let F = aab in the representation (8). Then according to
property (6) we get Gkp = δakδbp. It means that G has one
nonzero pixel, which position is (a, b) and brightness is equal
to 1. In another words, orthogonal transform of the basis image
is a binary matrix of single brightness. We denote such matrix
as

I(ab)(k, p) := {δkaδpb}.
We enumerate matrices I(ab) by the lower subscript ab in
brackets to avoid confusing with matrix elements.

The following equations are valid

aab = UI(ab)U
T , (9)

I(ab) = UT aabU,

dab = UT
I(ab)U, (10)

I(ab) = UdabU
T .

These equations allow us to get the various wavelet basis
images using the Matlab tools directly without referring to the
orthogonal matrix U [2], [24].

E. Basis wavelet images

Some examples of the basis wavelet matrixes were dis-
cussed in the papers [2], [24]. However they have particular
features thanks to the block structure of the orthogonal matrix
U . For one level DWT, j = 1, it has two blocks L and
H , known also as Low and High frequency bands. It results
in block structure of the wavelet basis images, that can be
obtained using (9).

Assume G is a frequency representation of a N × N
grayscale image F = UGUT . In what follows we will use the
Matlab notations and write DWT and IDWT (inverse DWT)
in the form

G = dwt(F ) =

[
cA cH
cV cD

]
,

F = idwt(cA, cH, cV, cD).

where cA, cH , cV and cD are wavelet coefficients known as
the approximation coefficient, the horizontal, the vertical and
the diagonal detail blocks or LL, LH , HL and HH frequency
bands. The matrix G can be considered as a 3d array Gkpz ,
where k, p = 1, . . . , N/2 and item z = 1, 2, 3, 4 denotes block
cA, cH , cV , or cD respectively. For example, Gkp4 = (cD)kp.

Assume (k, p) ∈ cD, then we find a set of the basis images

E(kpD) = idwt(O,O,O, Ikp),

where O is a zero matrix N ×N . The subset ED = {E(kpD)}
has N2/4 basis images of dimension N ×N . By this way the
following set can be achieved

{{EA}, {EH}, {EV }, {ED}}.
This set includes four blocks labeled by A, H , V , and D as
approximation, horizontal, vertical and diagonal details. The
images from the blocks are basis images of the a-type (9).
Fig. 1 presents the basis images for N = 6, the wavelet ‘sym6’.
There are 9 items in each of blocks E(kpz), k, p = 1, 2, 3,
z = 1, 2, 3, 4. Indeed the images from the H , V and D blocks
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Fig. 1. Basis images for N = 6, ‘sym6’

have the characteristic lines in the appropriate direction. Also
block A has its particular features.

Four basis images E(1,1,A), E(1,1,H), E(1,1,V ) and E(1,1,D)

are shown at Fig. 2. There are black pixels that illustrate the
structure of the blocks.

The next basis of the d-type given by (10) can be obtained
as

J(xy) = dwt(Ixy) =

[
J(xyA) J(xyH)

J(xyV ) J(xyD)

]
.

In this set each of basis images has the block structure, so
items consist of four blocks that refer to the A, H , V and
D frequency bands. Fig. 3 shows basis images for N = 6,
wavelet ‘db6’. Each of the 36 items consists of four blocks as
it is presented in J(55).

III. BLOCK REPRESENTATION

With the help of the basis images a block matrix can be
introduced for the representation of images.

A. Block matrix

Consider a square N × N block matrix b (consisted of
blocks). Let each block of b is a basis image bmn := anm.

Being matrices elements of b does not commute and the
properties of b are defined by the basis images. The introduced
block matrix is a 4-D array of size (N×N)× (N×N), items
of which are

Kkpxy = akp(x, y) = UxkUyp.

The following property is valid

bb = I. (11)

Really from the definition and the properties (5) and (7)
we find

(bb)mn =
∑
k

bmkbkn =
∑
k

akmank =

δmn

∑
k

akk = δmn.

It follows from (11) that

〈bTm, bn〉 = δmn.

Is the matrix b orthogonal? In the case of a block matrix this
question is not trivial because it needs the transposing opera-
tion that is not well defined here. Nevertheless we can consider
vectors consisting of rows and columns of the basis image.
Introduce a block row rk items of which are bk1, bk2, . . . , bkN
or basis images a1k, a2k, . . . , aNk. By selecting a row x of all
basis images we get a row rkx. Similarly we can get a column.
Then we find that such rows and columns are orthonormal
vectors. This is a reason to call the block matrix b orthogonal.

B. The block vector representation

Consider a block vector f (consisted of blocks). Using (11)
we have

f = bbf = bg,

g = bf,
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Fig. 2. Basis images for E(1,1,z), z = 1, 2, 3, 4

Fig. 3. Basis wavelet images for N = 6, ‘db6’
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where vector g is a representation of f .

Rewrite these equations in the matrix form taking into
account that bmn = anm, we have

fk =
∑
k

gp apk,

gp =
∑
k

fk akp.
(12)

Note that the block matrix b results in the block vectors f
and g, where f = (f1, f2, . . . , fN ) and g = (g1, g2, . . . , gN ),
where each items fk, gp may be chosen as a vector, a matrix
and so on.

The introduced block representation has the form of (2)
however it involves more degree of freedom and it has some
new properties as for data scattering.

Let each of items fk and gp be a 4-D array denoted by the
four integers x, y, α, β. Such array f can be described by a
(N ×N )-matrix, which elements are (N ×N )-matrices, i. e.
the size of f is (N ×N)× (N ×N). Assume that fk depends
on α and β only

fk = δxyψk(α, β),

gp = gp(x, y, α, β).

For this case equations (12) take the form

I ⊗ ψk =
∑
p

(apk ⊗ I)gp,

gp =
∑
k

akp ⊗ ψk, (13)

where I ⊗ ψk = fk.

C. Scattering

It follows from (13) that gp has the form

gp(x, y, α, β) = a1p(x, y)ψ1(α, β) + a2p(x, y)ψ2(α, β)+

· · ·+ aNp(x, y)ψN (α, β).

Instead of fk this array is not factorized over variables x, y and
α, β. From mathematical point of view this is a non separable
array. It means that there are two degrees of freedom or two
arrays to be correlated. Then by affecting one of the array we
can change another one. So using the scalar product of basis
images (6) we have∑

x,y

akp(x, y)gp(x, y, α, β) = ψk(α, β)

or
〈akp ⊗ I, gp〉 = ψk.

These equations illustrate a main feature of the block
representation as for digital data scattering. It means that item
ψk scatters into all gp with its weight given by a basis image
akp. However in contrast to (2) it can be established from any
of gp

ψk → {g1, g2, . . . , gN},
ψk ← gp.

(14)

This result can be useful for applications.

IV. WATERMARKING SCHEME

The block representation results in some new detection
algorithms in frequency watermarking.

A. The scheme

Referring to image processing we will call the arrays f and
g the data in the spatial and frequency domain representation.
For frequency embedding it needs the following steps.

1) Transform the data into frequency domain f → g
and embed a message M with the help of the chosen
algorithm g → gM = emb(g,M,K), where K is a
parameter including possible secrete key.

2) Transform data into spatial domain and send it to a
receiver.

3) Extract the embedded information by a chosen detec-
tion algorithm fM → M = det(fM ,K).

All chain of transforms looks as follows

f → g → gM → fM → gM → M.

In the scheme the transform gM → fM scatters the em-
bedded data into all spatial domain. It results in robustness of
the watermark to some degradations and attacks when sending
information. Indeed the sending may include some transform
of the cover work fM , particulary JPEG lossy compression
when the image is stored in a graphical format. By scattering
the degradation may be decreased.

This is a common feature of the frequency embedding
scheme and the following conclusions may be maid about the
block representation.

The introduced representation allows us to process a set
of images or database as an input array. But what is more
important it is the detection algorithm. In contrast to usual
solutions the embedded information can be extracted more
effective thanks to scattering features (14).

V. CONCLUSIONS

Orthogonal transformation has some attractive features
for applications. It can be performed by various ways and
it processes various type of digital data. We introduce a
transformation based on basis images. It involves the multi-
dimensional arrays, that can be presented for example by a set
of images. Operating by such arrays results in a new features as
for digital data scattering is important for robust watermarking
schemes. Moreover, introduced block representation leads to
effective algorithms of block parallelization.
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