
Design and Implementation of the First Aid

Assistance Service Based on Smart-M3 Platform

Nikolai Lebedev⋆, Ivan Timofeev⋆∗, Iuliia Zavialova⋆

⋆Petrozavodsk State University (PetrSU), Petrozavodsk, Russia
∗P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

{lebedev, yzavyalo}@cs.petrsu.ru, skat.set@gmail.com

Abstract—Smart technologies may be successfully applied in
healthcare for creation of an IoT-enabled proactive pre-hospital
and first aid assistance mobile services. A variety of smart services
for the m-Health scenarios may be constructed by interaction
of multiple knowledge processors (software agents) running on
devices of the IoT environment. Thus, IoT-enabled m-Health
applications should provide connection with smart space. It is
possible to build such kind of services with Smart-M3 platform.
The ontology describes interaction rules and the high-level design
of the service. The first aid assistance scenario was chosen as a
basic one. According to this scenario, sympathetic people provide
first aid to patients in case of emergency. The study is focused
on the implementation of the first aid assistance service consists
of knowledge processors running on Linux servers and Android
mobile devices. Such service should be scalable with adding new
modules, sensors or participants. The purpose is to evaluate
a possibility of application of a smart spaces approach for
implementation mobile first aid services. Besides, implementation
issues of server and client sides are discussed.

I. INTRODUCTION

According to recent heart disease and stroke statistics,
the survival rate for out-of-hospital cardiac arrest (OHCA)
is extremely low and amounts from 7 to 11 in developed
countries [1], [2]. Therefore, the sudden cardiac death is an
important public health problem and the efforts of governments
are directed to increase survival rates after cardiac arrest. In
particular, one of the objectives of governmental healthcare de-
velopment program in Russian Federation is the enhancement
of the emergency care.

It is proven that the survival from OHCA is utterly time-
sensitive and in case of immediate treatment the chance of
survival is roughly 67%. However, it rapidly decreases and
after 12 minutes the patient dies almost inevitably [3]. Due
to the hospital locations, traffic conditions and lack of free
ambulance staff, the ambulance response time may vary over
a wide range.

Nevertheless, the first pre-doctor aid in emergency situation
can generally be provided by sympathetic people nearby, in
other words, by the volunteers. According to law, first aid
is defined as a set of simple actions which any person can
take regardless of education level or a special training. Laws
also affirm the right to provide first aid even without medical
training in case of trauma and emergencies directly at the place
of the accident before the arrival of medical personnel.

Modern mobile technologies and, particularly, location
features provide a decelopment of patients’ location control
system. It makes possible to introduce a sending panic signals

automation, e.g. in cases, when patient feels bad or has no
opportunity to send an alarm by himself. Such kind of automa-
tion provides more effective care because of the rate of pre-
doctor first aid increasing. As an example of this functionality,
CardiaCare application was developed in Petrozavodsk State
University [4]. To provide this automation, wearable devices
and environment sensors are used. Besides, the data may be
collected from big variety of such sensors. [5]

Moreover, the first aid quality may be improved by using
the personalize treatment. To provide this feature, the first aid
service may be extended by using electronic health records
(EHR) and electronic medical systems (EMS) [6]. In case
of medical personnel involving to the smart first aid service,
EHR communicated with EMS allows to get quick access to
patients’ personal data. According to this data, medical care
may be more efficient and amount of medical errors may
decrease. Consequently, set of location control system, EHR
and EMS allow to build the service that provides a complex
first medical aid and a first pre-doctor aid.

All properties described before may be successfully imple-
mented with the idea of IoT and smart spaces approach [7].
The concept was researched and proposed in [8]. But this
concept is necessary to be checked for the possibility of an
implementation. Moreover, it would be better to provide smart
space’s participants independence on the OS and devices.
In this paper the basic scenario is investigated, the detailed
architecture and the implementation approach is proposed.

In Section II, the evolution of the concept of the first aid
service based on smart spaces approach, high-level design
and needed instruments are described. Section III exposes
ontological model which contains shared information and
describes the relationship between smart space participants. In
Section IV the architecture, its advantages and drawbacks are
discussed. In Section V implementation details and difficulties
of KPs work in Android applications are considered. In Section
VI the conceptual advantages of the proposed architecture and
present future work related to this project are described.

II. THE SMART M-HEALTH SERVICE CONCEPT

EXTENDING

The concept of the smart m-Health service was presented in
[8]. According to it, there are several basic scenarios with an
evident application of the smart approach. Summarizing, smart
m-Health services support a personalized digital assistance in
emergency cases for mobile patients.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201552325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The most evident scenario to be implemented is when
volunteers help needed patients. A patient can ask for a help
by pushing a panic button manually or sending a panic signal
automatically (in case of some wearable devices for health
state control usage). This scenario is more suitable for an
implementation because of the difficulties with the service
deployment in a real environment if the medical personnel is
involved. The goal of such implementation trying is to develop
a basic model of the first aid service that may be extending
with necessary modules.

The design of the first aid service is based on the smart
spaces approach [7]. In general, it is a set of interacting
program agents called “knowledge processors” (KP) and the
semantic information broker (SIB) that provides the required
interaction. In substance, every KP may be implemented as
an independent application or it is possible to use a group
of KPs in a single program. The platform that provides such
functionality is called Smart-M3 [9]. According to it, the
interaction goes through the separation of a content represented
by the RDF model (Resource Description Framework) [10].
Smart-M3 supports an operation of subscription [11]. It is the
constant request to SIB for tracking changes of the data. Also,
it provides one-off operations with RDF-triples (read, insert,
change, delete) and search queries using SPARQL [7].

The first aid service is assumed to describe a big variety of
triples for different situations. The way-out is to use ontologies.
The structure of the proposed service ontology is described in
the Section III. The library that allows to work with ontologies
in a smart space is called SmartSlog [12]. SmartSlog is a
software development tool for programming KPs and their
interaction in a smart space. It allows easier constructing the
program code. It is easy to think in agent domain ontology
terms (classes, relations and individuals) instead of RDF
triples, as it happens in the low-level development approach
of Smart-M3. Besides, SmartSlog Double Api library provides
both high level (classes) and low-level (triples) interfaces.

These studies laid the foundation for the implementation
of the smart first aid service. In [6] four models of first aid
health services are proposed. They provide different high-level
architectures of first aid services in depends on infrastructure
and relation between Hospital Information System (HIS) and
Emergency Medical Systems (EMS). In this paper, the second
model is more interesting where HIS and EMS implemented
in single organization and can directly communicate with each
other. It allows to reduce time for patient medical record
retrieving and, hence, reduce time of first aid provision. Also,
in [6] authors provide base use case scenario which describes
aspects of communication between HIS and EMS in details.

To sum up, the smart m-Health service is developed using
ontology and KPs. It’s necessary to define the backbone of the
service describing basic classes, properties and applications.
According to the chosen scenario, there are two participants
roles in the service. The first role is a patient and the second
one is a volunteer. All participants are suggest to be a real
people, so the applications are mobile. As the first platform to
examine proposed design the Android OS was chosen. Because
the first aid requires special responsibility in the volunteers
selection, the authentication provision is necessary. Finally, it’s
needed to provide a mapping of patients that sent panic signals

to free volunteers. The architecture of the service is shown
in Fig. 1.

Patient

KP
KP

Volunteer

KP KP

Dispatcher Authenticator

SIB

Fig. 1. Architecture of the first aid service

III. ONTOLOGICAL MODEL

To describe and use the proposed scenario in KP agents the
ontologies are used. Ontology [13] is the convenient way to
present the architecture and use cases of the service. It allows
to build a semantic representation and a mapping in the smart
space of complex parameters of a patient’s health and medical
services to the distribution of powers of access to personal
medical data service. It represents a data structure that contains
all the relevant classes of objects, their links, adopted in the
field of a subject domain.

Ontology unites the smart space participant’s information:
authentication, help requests and responses, locations and
other necessary information. It describes relationships between
program agents KP. All the features of the service are displayed
in the ontology. Classes, subclasses, data properties and object
properties of the ontology are shown in Fig. 2.

As a result, the virtual integral representation of current
state and processes for patients and volunteers are created in
smart space. The information exchange is made possible by the
first aid assistance service construction in case of an emergency
delivery.

First of all, the aim is to define participants’ roles in KPs,
to provide their connection and authentication in smart space.
Each user has their own personal profile. Profile is represented
by two ontological classes Person and Profile. Class Person
contains the general information about the user. It is based on
the ontological model FOAF: name, status, img (picture), age,
e-mail, phone number.

Class Profile provides system information about service’s
users. It defines user’s presence status in the service (online /
offline). Username and password properties are used to users
authentication.

The next set of ontological classes allows to describe users
roles: Patient, Volunteer. Each role is presented as a separate
Person’s subclass. Consequently, the ontology and the service
may be extended by adding new classes similar to these ones.
Thus, the power access distribution to personal medical data
is implemented directly at the ontological level.

Fig. 2. Ontology

To provide safety of patients data and to control a qual-
ification level of volunteers an authentication methods are
necessary. Class AuthRequest is required for user authenti-
cation. User classes establish the contact with them through
the property passAuth. Authenticator agent subscribes to a
publishing this property in a smart space. Property UID is
a unique key, which is checked by “Authenticator” KP. After
checking the property authRequestStatus is set to “PASSED”
or “NOT PASSED”.

The general use case of first aid service is when patient
publishes a panic signal and volunteer gets notification about
this. So, “Emergency detection” event is described by class
Alarm. It is associated with the class Patient — patient who
have an emergency. The property alarmTime is a time when
the emergency situation has arisen, and the message about the
incident is provided by the alarmStatus property.

The Location class presents location in the form of geo-
graphical coordinates. It is represented by properties latitude
(lat) and longitude (long) and correspond W3C Geo. Ontol-
ogy defines the location of every user and links Person and
Location classes by hasPersLocation property. The location
definition is necessary for providing an oportunity of route
building and for simple distribution of patients in need between
volunteers.

Certainly, to provide correct distribution classes and prop-
erties for interaction of a patient and a volunteer are crucial.
It’s needed to provide a choise opportuity to a volunteer.
He can confirm or reject a panic signal, then alarm should
be forwarded to another KP. According to this scenario the
helpProvidingStatus and the helpProvidingStatus properties
were introduced.

Volunteer can deliver helpfulness status helpProvidingSta-

tus with the following possible values “READY TO HELP”,
“HELP REQUEST”, “CONFIRMED”, “REJECTED”. It is
necessary to search for the nearest volunteer. It is selected
volunteers who set property helpProvidingStatus with a value
of “READY TO HELP”. This property value is changed to
“HELP REQUEST” in the case of assistance request and
the agent “Dispatcher” chooses this volunteer. Also, class
Volunteer communicates with the Alarm through response-
ToAlarm property. Volunteer sets the value of this property
to “CONFIRMED” in case of confirmation, and in case of
failure sets “REJECTED”.

The domain ontology has been represented in the OWL
language. The ontology contains 7 classes (concepts), 15 data
properties and 5 object properties which indicate the relation-
ships among the 7 classes. From the OWL-representation the
ANCI C ontology source code may be generated with the
SmartSlog CodeGen instrument. The ontology file in ANCI C
contains all classes and properties definitions in the form
of SmartSlog structures. This way is used for further KPs
implementation described in the next Section.

IV. THE SERVICE DESIGN

First aid assistance service use cases are referred in [8].
They are based on the model of the problem domain according
to the ontological model described in the Section III. All
applications of the mobile service may be divided to server
side applications and client side ones. Server side applications
are run on the local machines. Their functions are to provide
authentications of all client agents and to distribute patients
between volunteers. Client agents work on mobile devices for
a provision of a continuous monitoring of a participant state.
Next, every side of the mobile service is considered more.

A. General program agent‘s workflow

The scenario of every program agent of a first aid assistance
service consists of several basic steps. Firstly, it’s necessary to
get smart space access identifier calling smart space connec-
tion initializing function. If the authentication is successful,
user’s profile (ID, name etc.) is published into a smart space.
Secondly, a program agent needs to publish its location data
to smart space. So the user’s location initializing function is
called. This function receives coordinates of an user’s mobile
device, converts them to text format for further transmission
to the shared storage SIB. Besides, locations may be updated
when “onLocationChanged” is generated. It’s important to
update locations permanently to provide a correct work of a
mapping patients between volunteers algorithm.

Thirdly, programming agent do some actions that it needs
according to its purpose. For example, it may be a subscribing
for some properties of another agents. For patients it may
be a connecting with some sensors. For volunteers it may be
an interaction with medical personnel. Finally, before a client
application is stopped, a program agent needs to call the smart
space connection closing function to close all subscriptions and
remove its unnecessary data from SIB.

B. Server applications

The main purpose of server applications in the first aid
assistance service is to provide interaction of distributed par-
ticipants using via some common KPs. First of all, server

applications are for a making decisions about this interaction,
e.g. “what volunteers should help this patient”. At present,
server application consists of two KP agents: “Authenticator”
and “Dispatcher”.

An architecture of the server-side applications is shown
in Fig. 3. The main component of the applications is a handler
module. It reacts on new events and performs corresponding
actions. A handler uses functions from utils module. This
module is common for both server applications and contains
high-level function to simplify work with smart space. Detailed
description of behaviour for each of server-side application is
discussed in next sections.

Server applications

SmartSpace
util module

Generated
ontology module

Uses

Handler module

Uses

Subscriptions

Add/remove
subscriptions

Sends notification
about data changes

SmartSlog

Uses

Fig. 3. Design of a server application

Applying a presented architecture approach of building
server-side applications new server KPs may be implemented
to extend the first aid service functions. It is worth noting that
such approach may be applied not only for first aid services:
e.g. an authentication provision in multi-agent systems is an
important task, but SmartSlog library or SIB doesn’t imple-
ment this function. Also, intellectual distribution of notification
between participants may be applied in another smart services.

1) “Authenticator”: In the start of operation the agents
initialize subscriptions: the agent “Authenticator” subscribes
for “AuthRequest” class instance adding and the agent “Dis-
patcher” subscribes for “Alarm” class instance adding. Cor-
responding handler is called, when another agent adds new
instance of these classes.

To authenticate “Volunteer” and “Patient” agents service
applies the following algorithm: firstly, volunteers publish a
request for authentication and the unique identifier (UID).
The agent “Authenticator” subscribes for “AuthRequest” class
instance adding. Then it verifies the identity against a list of
valid UIDs. If the identifier is found, the agent “Authentica-
tor” confirms the passage of the agent. Otherwise, the agent
“Authenticator” exposes the authentication request property to
the state “Failed”. The detailed diagram of the authentication
process is presented in Fig. 4.

Client agent

Client agent

Authenticator agent

Authenticator agent

Send authenticator request

with UID

Validate UID

alt [Successful validation]

Send "PASSED"

authentication status

[Unsuccessful validation]

Send "NOT PASSED"

authentication status

Fig. 4. Authentication process

2) “Dispatcher”: The service implements a publishing and
a subscription to assistance requests algorithms. In the start of
operation agent Dispatcher subscribes for Alarm class instance
adding.

When a patient reports about feeling unwell, agent “Dis-
patcher” checks clients authentication during the process of
a request for help. If the client has been authenticated, the
agent “Dispatcher” continues working with it, otherwise skips
the client. Next, “Dispatcher” absorbs information about free
volunteers, then determines the nearest volunteer , who is more
suitable to come to the patient. After that, “Dispatcher” agent
sends a help request to the selected volunteer. Then he can
accept an invitation to go for help or refuse it. In case of
positive response, a volunteer is reserved for a patient who
called for help. Then volunteer receives the coordinates of this
patient.

In the case of the volunteer’s consent agent “Dispatcher”
finishes work. Volunteer may be busy or helps to other patient,
the “Dispatcher” agent continues search for the next nearby
volunteer and repeat the above procedure. If there are no free
volunteers, the “Dispatcher” agent completes its work.

C. Client applications

The client application in the first aid assistance service is a
set of KP agents (one or many) to provide an interaction of a
participant of the first aid treatment scenario with other ones.
It may be a patient, a volunteer, an ambulance, a pharmacy
application and others.

Actually, both of client-side applications are very similar,
except of some specific functions. Every client-side application
has a module responsible for location control, because each
participant of first aid scenario should publish its coordinates
into a smart space. To provide basic security methods function
for publishing and receiving authentication requests should be
implemented in any client application.

Besides, every KP should interact with a smart space
according to a defined scenario that was described above,
so basic procedures for working with SIB are similar. In
this way, such abstract design of client application for first
aid assistance service may be applied not only in existing
programs, but in any new ones. Two client applications for the
first aid service were developed using the described techniques.
At present, prototypes of a “Volunteer” application and a
“Patient” one were developed. They are respectively based on
KP agents “Volunteer” and “Patient”. Next, every application
is considered more. The current model of a client application’s
architecture is shown in Fig. 5.

Fig. 5. Design of a client application

1) “Patient”: The “Patient” application based on the sce-
nario of a help signal sending from a patient to a volunteer.
There are two specific modules in this application. The first
one is the “Help request” module. This module is responsive
for publishing of a help request to a smart space when an
“Alarm” button was clicked. Secondly, it is a “Help response”
module. When an “Alarm” button is clicked with help request
published to smart space, KP need to subscribe to a volunteer’s
response. According to the threads model described above, it
is needed to create a function for handling response receiving.

2) “Volunteer”: The “Volunteer” application has a more
complex structure because of different background tasks with
subscriptions. Firstly, “volunteer” agent has to subscribe to
help requests. When the help request is received, the “vol-
unteer” agent needs to publish his response. If the response
is positive, agent has to get a patient’s location. Also, it’s
needed to subscribe to location’s changes. Finally, the route
is generated using the Location Service of a “volunteer”
application. This route is rebuilt when patient’s location is
changed.

V. THE CLIENT APPLICATIONS IMPLEMENTATION

DETAILS

In general, each of client applications consists of Java
part and native part. All user interfaces methods, location’s
control function are implemented in Java part. All KP logic
is implemented in the native part. Android NDK and ANSI C
to develop native parts of clients applications are used. Now
Android SDK with NDK provides tools for editing, running
and debugging C and C++ code, but with some issues.

Certainly, a KPs development for Android OS is associated
with some difficulties. Two main issues that were investigated
are the code organizing to provide KPs cross-platform and
scalability, and working with subscriptions as a background
tasks. Next, these problems are discussed more.

A. Integration of KPs into Android application

The smart space interaction functions are provided with a
native library of a client application. The native library is a
set of several modules. Every module implements a group of
functions, e.g. “connection to smart space” or “handling alarm
subscription”. All functions are divided between modules
depending on their purposes.

Besides, KP’s logic is placed in several files too. The
main file contains all needed function to work with a smart
space using SmartSlog library. All handlers for subscriptions
are described in another file. So, if it’s needed to change an
application behaviour after subscription’s notification.

One of issues of the implementation of a Smart-M3
platform-based application for Android is keeping some iden-
tifiers permanently while the application is running. For ex-
ample, it may be a JVM pointer, some global references to
Java Methods or some SmartSlog identifiers such as the smart
space Node ID. It is convenient to keep such kind of variables
as global ones in separate file.

Last module plays role a JNI wrappers above KP’s Logic.
So, in this way all KP’s behaviour is coded on pure ANCI C
and it may be use detached from Java part. Moreover, this
method of building KPs for Android OS is convenient for
further testing of application methods. All in all, a scalability
is also provided and it is important feature, because first aid
service may be extended by new modules implementation, e.g.
for wearable devices or environment sensors support.

In this way, an instrument to compile all of this modules
to get a dynamic library is needed. This problem was solved
with describing all files and catalogues in Android.mk file
and running “ndk-build tool”. It’s not the best way, but the
Gradle plug-in cannot manage compiling of library consisted
of several files correctly in current version of “Android Studio”.

B. Subscription control

There is another important problem in the developing of
a client application for smart spaces using JNI. It is needed
to provide an optimal way to subscriptions control. On the
one hand, it is needed to implement a separate thread to
work with subscriptions in Java code. On the other hand, the
SmartSlog library provides callbacks to handle notifications of
subscriptions. Such callbacks or handlers are run in separate

thread too. As a result, there are some issues with correct
controlling of threads described in C and in Java independently.
For example, subscriptions handlers run by SmartSlog library
in native part can’t get an access to JVM instance and Java
methods pointers. Also, Java callbacks called from SmartSlog
handlers are run not in UI thread, so there are threads collision
and application error as a result. Some ways to solve this
problem were analysed.

The first and the easiest way is to call subscription func-
tions directly from User Interface (UI) thread. Obviously, such
method is not appropriate, because almost every subscription
generate an infinity loop that hangs application out. This way
is suitable just to get some data from shared space once.

The second way is to use the Android AsyncTask. The
concept of this way is to describe a new AsyncTask instance for
every subscription. This way is not appropriate either because
it is impossible to run various AsyncTask’s instances without
an additional controlling mechanism. This method is used for
only to 1-2 subscriptions. Then it can control their switching.

The third way is to use an Android Background Service.
This method is the preferable but it’s the most labor-intensive
task. In the production mode of application all subscription
should be implemented in this way because a patient and a
volunteer need to be on-line every time to send and receive
panic signals. On the other hand, his way requires to investigate
a power consumption when several subscriptions are run.

The temporary trade-off was found to solve a problem of
synchronous work of a several subscriptions in a background.
The solution is shown in Fig. 6. Handlers both in Activity (Java
handler) and native part of a client application are created. The
C-handler is linked as a callback to a subscription using Smart-
Slog library functions. When C-handler is initialized, it calls
a Java-handler. Further, it calls “runOnUIThread()” method
in Java-handler and do other actions. A “runOnUIThread()”
method is needed here to avoid errors with running UI tasks
out of a context. This method doesn’t provide an application
work in a background but it works well for a prototype.

User Interface thread

User Interface thread

Subscription thread

Subscription thread

Initialize subscription

Set handler

Initialize handler

Call Java callback

Switch to UI thread

Close subscription

Fig. 6. Threads interaction in client applications

The experience described before may be implemented in

Android applications based on Smart-M3 platform. Depending
on the way of receiving data from a smart space, any of
methods above may be used, but for long-term tasks the using
of a background service is the preferable one.

VI. CURRENT RESULTS AND FUTURE WORK

Design of mobile smart applications based on KP agents
and their interaction with server-side ones was developed.
Program agents were written on ANSI C language and may
be compiled and launched at any Linux-powered machine with
use of the GCC compiler. However, the agents may be used
in any other platform and be compiled by another compiler.

The ontological model prototype was developed and inte-
grated into the service. At present, all KPs have to use the static
variant of an ontology file to provide a mutual compatibility.
The program agents use generated ontology module where
relations between ontology classes present.

It is assumed that smart spaces development approach
based on Smart-M3 platform provides an extending possibility
with new KP agents implementation. KP agents may be a
health information systems, wearable sensors or other par-
ticipants of this interaction, e.g. pharmacies. To provide new
agents’ correct work the ontology scaling is required. It may
be due to some problems such as all parts updating of the
service with new ontology module. It’s needed to research a
problem of a dynamic ontology provision.

Besides, it is necessary to investigate working with wear-
able devices. The main purpose of using such kind of devices
is an automatic panic signal sending when patients can’t do
it by themselves. But there are some problems that needs to
analyse. For example, it is a limit of a number of devices
connected to smartphone via bluetooth at the same time and
ways to avoid collisions. Also, it’s important to provide a plug
and play way of wearable devices usage.

Server-side applications may be improved either. For ex-
ample, agent “Dispatcher” may provide a hospital coordinates
publishing for ambulance workers. To get it done, the “Dis-
patcher” should choose appropriate hospital. As noted in [6],
there are several parameters of hospitals which should be
reviewed: a location, a specialization, an availability of beds,
equipment etc. Moreover, new agent should be implemented
in a health information system (e.g. in a hospital) to provide
patient’s medical records for ambulance workers during first
aid provision. According to this data, it’s needed to make a
mapping algorithm improvements to take into account such
information as road traffic, a severity of a patient’s health state,
etc.

In “Authenticator” agent’s turn, it may be improved
by modernizing algorithm of token’s distributions to avoid
chances of non authorized access and several kinds of col-
lisions when the server will be loaded with participants. For
example, two patients try to authorize at the same time. Also, a
situation takes place when a participant wants to use not only
one device to use the service. Another example of collision
may be a scenario when an user try to authorize in the service
with UID used before or with another device.

Testing and conducting experimental research of KPs pro-
totypes is planned. Finally, the described prototype of the first

aid assistance service requires an approbation in live situations
(or in situations closed to it). On the one hand, it will allow
to detail hardware and system requirements of the service
for further deployment in a real environment. On the other
hand, it will give an opportunity to get a patients’ and medical
personnel’s feedback to improve usability of the service in
future.

VII. CONCLUSION

This paper presents the ongoing work that is conducting
for the development of the first aid assistance service based on
Smart-M3. The main purpose of this service is to provide an
interaction of different participants of first aid treatment such
as patients or volunteers. In this paper it is aimed at developing
design of mobile smart applications based on KP agents run
on Android devices and their interaction with server-side ones.
As a result, 4 prototypes were developed. Further work is
required for scaling current ontology by adding new classes.
The development of the existing KPs will be continued too
by adding new modules, sensors support implementation and
approbation in a real environment.

ACKNOWLEDGMENT

This research is financially supported by the Ministry of
Education and Science of the Russian Federation within project
14.574.21.0060 (RFMEFI57414X0060) of Federal Target
Program “Research and development on priority directions of
scientific-technological complex of Russia for 2014–2020”.

The study is financially supported by Russian Foundation
for Basic Research 16-07-01289.

REFERENCES

[1] D. Mozaffarian, et al. “Executive Summary: Heart Disease and Stroke
Statistics2015 Update A Report From the American Heart Association”,
Circulation, 2015, pp. 434-441.

[2] European Society of Cardiology, “Out-of-hospital cardiac arrest survival
just 7 percent.”, ScienceDaily. ScienceDaily, 1 September 2013.

[3] B. Sund, “Effect of response times on survival from out-of-hospital
cardiac arrest: using geographic information systems”, 2010.

[4] A. V. Borodin, A. Pogorelov and Y. V. Zavyalova “CardiaCare. Mobile
System for Arrhythmia Detection”, in Proc. of 13th Conf. Open Innova-

tions Association FRUCT, Petrozavodsk, Russia, 22-26 Apr. 2013

[5] A. V. Borodin, Y. V. Zavyalova, A. Zaharov, I. Yamushev “Architectural
Approach to the Multisource Health Monitoring Application Design”, in
Proc. of 17th Conf. Open Innovations Association FRUCT, by ITMO
University, Yaroslavl, Russia.

[6] I. V. Paramonov, A. V. Vasilyev A., I. A. Timofeev, “Communication
Between Emergency Medical System Equipped With Panic Buttons and
Hospital Information Systems: Use Case and Interfaces”, in Proc. of the
AINL-ISMW FRUCT, Saint-Petersburg, Russia, 9-14 November 2015.

[7] D. G. Korzun, S. I. Balandin, A. V. Gurtov “Deployment of Smart Spaces
in Internet of Things: Overview of the design challenges”, in Internet of

Things, Smart Spaces, and Next Generation Networking, Springer Berlin
Heidelberg, 2013. pp. 4859.

[8] D. G. Korzun, A. V. Borodin, I. A. Timofeev, I. V. Paramonov,
S. I. Balandin “Digital Assistance Services for Emergency Situations
in Personalized Mobile Healthcare: Smart Space based Approach”, in
Biomedical Engineering and Computational Technologies (SIBIRCON),
2015, pp. 62-67.

[9] D. G. Korzun, S. I. Balandin, V. Luukkala, P. Liuha, A. V. Gurtov.
”Overview of Smart-M3 principles for application development.” Proc.

Congress on Information Systems and Technologies (IS&IT11), Conf.

Artificial Intelligence and Systems (AIS11). Vol. 4. 2011.

[10] O. Lassila, R. R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation, February 1999.

[11] A. A. Lomov, D. G. Korzun, “Subscription operation in Smart-M3”.
Proc. 10th Conf. of Open Innovations Association FRUCT and 2nd
FinnishRussian Mobile Linux Summit, 2011, pp. 83-94.

[12] A. A. Lomov, D. G. Korzun “Evaluation of Program Code of Smart-M3
Knowledge Processors Developed Using the SmartSlog Tool”, in Proc.
of the 16th Conference of Open Innovations Association FRUCT, ITMO
University, St-Petersburg, Russia.

[13] D. Korzun, A. Lomov, P. Vanag, J. Honkola and S. Balandin, Generating
Modest High-Level Ontology Libraries for Smart-M3, UBICOMM 2010.
Florence, Italy, October 2010. pp. 103-109.

	Introduction
	The smart m-Health service concept extending
	Ontological model
	The service design
	General program agent`s workflow
	Server applications
	``Authenticator''
	``Dispatcher''

	Client applications
	``Patient''
	``Volunteer''

	The Client Applications Implementation Details
	Integration of KPs into Android application
	Subscription control

	Current results and future work
	Conclusion
	References

