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Abstract—The paper presents a network transformation 
algorithm for fault tolerance in SpaceWire onboard networks 
which is implemented in SANDS computer-aided design system. 
We give general notions on fault tolerance for onboard networks, 
introduce our algorithm for network transformation and give 
several examples of running the algorithm on different 
topologies.  

I. INTRODUCTION

Nowadays there are a lot of computer-aided design 
systems (CAD) but none of them is intended for SpaceWire 
networks. According to our review in [1] there are several 
network simulation tools for SpaceWire such as MOST [2], 
Sandia National Laboratories simulator [3], VisualSim [4] and 
DCNSimulator [5]. However, these are just simulation tools 
without any functionality for network design and analysis of 
structural and fault tolerance characteristics of the designed 
topology. We are currently working on development of a 
SpaceWire Automated Network Design and Simulation 
(SANDS) computer-aided design system which will support 
full onboard network design and simulation flow, which 
begins from the network topology design and finishes with 
getting the simulation results, statistics and different diagrams.  

Such computer-aided design system is highly-demanded as 
evolution of microelectronics has led to the growth of the 
onboard networks and systems sizes. The onboard networks 
for spacecraft and avionics require good fault tolerance 
characteristics in order to continue their operation in case of 
faults and failures. One of the most popular spacecraft onboard 
technologies is SpaceWire [6]. It is a technology which is 
being actively integrated into new generation spacecraft.  

This paper is a logical continuation of our previous paper 
[7] where we introduced a fault-tolerance analysis algorithm 
for SpaceWire onboard networks. The problem we address in 
the current paper is network topology transformation for 
achieving required by user fault tolerance in onboard 
networks. We propose an algorithm which uses already 
implemented functionality of network topology fault tolerance 
evaluation. 

The paper is organized as follows. In section II we start 
with a brief description of a new computer-aided design 
system for SpaceWire onboard networks SANDS. Section III 
gives general notions on fault tolerance for onboard networks. 
Then in section IV we review the current state-of-art in the 
field of network topology transformation and reconfiguration. 

In section V we describe our algorithm of network topology 
transformation for fault tolerance. Section VI deals with a 
problem of transformation of a network consisting of several 
regions. Then, in section VII we give several examples of 
network transformation in SANDS. Finally, section VIII 
concludes the paper. 

II. SPACEWIRE AUTOMATED NETWORK DESIGN AND 
SIMULATION

In [1], [7] we proposed a concept of SANDS, which will 
provide wide functionality for onboard network design. 
Implementation of such kind of a design and simulation toolset 
will give an ability for spacecraft designers to design the 
onboard network with all its technical characteristics and 
features, distribute the data flows and simulate it taking into 
account real latencies, different errors, etc. We plan to 
implement a flexible system, with possibility of addition new 
protocols. Currently, we plan to include in SANDS 
implementation of the SpaceWire protocol and two transport 
layer protocols: RMAP [8] and STP-ISS [9].  

SANDS architecture includes four main components: 

Component #1: A component for onboard network 
topology design and evaluation of its structural 
characteristics; 
Component #2: A component for tracking of the routes 
for the data transmission in a network; 
Component #3: A component for generation of the 
scheduling table for the STP-ISS transport protocol for 
the transmission of the data with Scheduled quality of 
service; 
Component #4: A component for simulation of the 
network operation with all the data that component got 
from other 3 components and graphical user interface 
(majorly redesigned DCNSimulator) [5]. 

Visualization and graphical interface will be taken from the 
VIPE project [10]. Graphical user interface (GUI) will provide 
the visual network composition and management capabilities. 
It will allow designing SpaceWire network topology in visual 
interactive way from components. The component library is a 
replenish set of network nodes and switches relevant to 
physical devices that are available for network building. The 
graphical user interface to work with the Component #1 is 
shown in Fig. 1.
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Fig. 1. SANDS graphical user interface 

In this paper we focus on the Component #1 which is 
responsible for the following tasks: 

network topology design; 
evaluation of structural characteristics of the designed 
topology; 
network topology transformation for achieving required 
fault-tolerance. 

Network topology design assumes creation of a network 
topology by means of GUI and setting up parameters for 
nodes, switches and links. Fault-tolerance is a very important 
characteristic for onboard networks, especially for the domain 
of long-term satellites. It is a common practice when the 
network topology contains redundant nodes and links.  

Nowadays, sizes of the network topologies increase with 
the growing demands of industry. That is why it is so 
important to have an opportunity for an automated network 
topology modification to achieve the required by the user fault 
tolerance.

III. FAULT TOLERANCE IN ONBOARD NETWORKS

In designing or selecting a topological structure of onboard 
networks for a system, one of fundamental considerations is 
the fault-tolerance [11]. In the context of this paper we will 
assume that fault tolerance is a property that enables a system 
to continue operating properly in the event of the failure or one 
or more faults within some of its components. Basically, any 
system containing redundant components or functions has 
some of the properties of fault tolerance [12]. 

Systems such as communication onboard networks have 
many nodes representing processors, sensors, control units, 
memory, etc. that desire to communicate and also have several 
links providing a number of interconnected pathways. These 
many interconnections increase reliability and topology 
complexity. As all these devices are connected to such a 
network, a failure or fault affect many people; thus the 
reliability goals must be set at a high level especially in the 
domain of spacecraft and avionics. 

Generally, the onboard network is assembled from three 
main types of elements: terminal nodes, routers and links. 
Each of these elements can fail so that it cannot be repaired in 
any considerable time. However, a fault-tolerant system 
should continue its proper operation. This can be achieved by 
adding redundancy to the onboard network. For example, one 
terminal node can be represented by two or three redundant 
units. When one of redundant units fails another unit continues 
to operate properly, replacing the failed one. 

IV. RELATED WORK

The problem of network transformation and reconfiguration 
in onboard communication networks with irregular topology is 
not widely covered in related studies. However, there are some 
works which discuss similar problems in the domain of 
networks-on-chip and wireless networks. 

In [13] the authors solve a problem of generation of a 
topology such that all communicating cores of the application 
can transmit data to each other over the network with at least 
two alternative paths and with minimal energy consumption.
Fault-Tolerant Topology Generation (FTTG) algorithm, 
presented in this paper, has two main phases:  
1) generating non-fault-tolerant irregular topology using a 
minimum number of routers and links, and 2) adding extra 
routers and links to obtain a fault-tolerant version of the 
topology. FTTG algorithm generates topologies such that each 
router of the topology can be reached from any router with at 
least two alternative paths. The generated topology can be 
used to tolerate at least one link failure by applying the 
packet’s alternative routings. 

There are some works on similar problems in the domain of 
wireless networks. In [14] Sitanayah et al. address the problem 
of finding a minimal set of relays which ensures k node-
disjoint paths for each sensor. The authors propose GRASP-
ARP, a local search algorithm based on greedy randomized 
adaptive search procedure (GRASP) [15], to be run as a 
centralised offline algorithm during the initial topology design, 
i.e. prior to network deployment and operation. GRASP is a 
metaheuristic intended to capture the good features of pure 
greedy algorithms and of random construction procedures. The 
algorithm requires repeated counting of the number of node-
disjoint paths for each node, for which a dynamic 
programming procedure is used. 

Another related work is [16]. Kashyap et al. consider a 
problem of constructing a fault-tolerant backbone wireless 
network using additional relay nodes. They give O(1)-
approximation algorithms for 2-edge and 2-vertex connectivity 
in terms of the number of relay nodes required. The algorithms 
also work for achieving k-connectivity for higher values of k.
In the presented algorithm the number of additional relay 
nodes depends on the weight of the edges in the spanning tree 
graph. Placing of relay nodes in the graph is followed by 
optimization phase. Optimization is performed by one by one 
removing added relay nodes. K-edge connectivity is checked 
after each removal. If the graph is still k-edge connected, 
repeat for another relay node, else put back the current node 
and corresponding edges, and repeat with the next relay node.  
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There is only one research result, that considers fault 
tolerance for SpaceWire networks, is available for public - 
[17]. In that paper the authors propose the methodology and 
toolset for SpaceWire network design. This methodology 
allows generating fault tolerant networks with variable level of 
tolerance. 

V. NETWORK TOPOLOGY TRANSFORMATION ALGORITHM 
FOR FAULT TOLERANCE

The problem we address in this paper is network topology 
transformation for increasing fault tolerance in the network. 
Modern onboard networks consist of a huge number of 
computers, telemetry, radio-transmitting and data transmitting 
devices. The bigger and more complex the onboard network is, 
the easier for a network topology designer to make a mistake 
in fault-tolerance structure. Therefore, we propose to apply 
computer aided network topology transformation to achieve a 
required fault tolerance. This feature is included to the 
Component #1 in SANDS. 

The problem can be described as follows. Given a network 
topology, place additional redundant units for terminal nodes, 
additional routers and communication links to achieve the 
required by user fault tolerance. 

We propose to solve the stated problem in two stages which 
are described below. 

Stage 1: Initialise a topology of a network with required 
fault tolerance f.  
Stage 2: Iterative improvement of the topology obtained 
on the stage 1. 

Below we will give a general description of these two 
stages. 

. Stage 1. Creation a topology with required fault-tolerance 
1) Step 1. Fault tolerance analysis. Firstly, it is necessary to 

evaluate fault tolerance of the initial network or its part. In 
case of fault tolerance of the initial network is less than 
required fault tolerance, then we move to the Step 2. 
Otherwise, there is no need to run the algorithm. 

2) Step 2. Addition of redundant units to terminal nodes. 
This step checks the required number of units in terminal 
nodes in order to provide required fault tolerance. If it is 
necessary, additional redundant units should be added to 
terminal nodes. This step should be performed only when the 
initial network or its part contains terminal nodes. 

All terminal nodes shall be checked one by one. For each 
node we propose to calculate the number of missing ports 
which are needed to provide required fault tolerance. The 
calculation is performed according to the formula below: 

,
where need_ports – is a number of missing ports in a terminal 
node, F – required fault tolerance of the network, 
current_ports – current number of ports in a terminal node. If 
need_ports is more than 1, it means that it is necessary to add 
redundant units to the node. 

When redundant units are added to the terminal nodes, 
these units should be connected to routers. Just before 
connecting redundant units and routers, we should check if 
there are enough free ports in routers to connect all redundant 
units. If there are not enough free ports in routers, then move 
to Step 3. Otherwise, connect redundant units to routers. Each 
unit of a terminal node should be connected to different 
routers in order to increase fault tolerance of a network. 

If all ports of all terminal nodes are connected to routers, 
then it is necessary to evaluate fault tolerance of the resulting 
network or its part. The network transformation can be 
considered as completed if new fault tolerance corresponds to 
the fault tolerance required by the user. If this is not the case, 
move to Step 3. 

3) Step 3. Addition of redundant communication links and 
routers. This step checks the number of routers in the network 
or its part, adds new communication links and new routers to 
the network topology. This can be done in the following ways: 

connecting all routers in the initial network structure 
through additional links. 
replicating an initial network structure with all routers 
and links (except nodes) and then by connection of 
replicas into one network structure. Connection of 
replicas is performed by adding links between the 
routers’ replicas.  

Different actions should be performed in dependence on the 
number of routers in the network or its considered part. Two 
main cases should be considered on this step: 

The number of routers is more than the required fault 
tolerance; 
The number of routers is less or equal to the required 
fault tolerance. 

Let us firstly consider the case, when the number of routers 
in a network or its considered part is more than the required 
fault tolerance. First of all, the routers should be connected 
with each other by additional links according to the rule 
below: 

There are free ports available in considered routers; 
These routers are not already connected by a direct 
communication link. 

We should add only one link between each pair of routers. 
Addition of links between routers can impact the connectivity 
of the network and, consequently, increase its fault tolerance. 

It is important to note that new links can be added not for 
all pairs of routers, as some of routers do not have enough free 
ports. Furthermore, new links can even not be added, due to 
free ports lack. New links can be added between only 
particular routers, just for those that provide free ports and 
were not connected in the initial network topology. 

Provided that new links were added, it is necessary to 
evaluate fault tolerance of the resulting network or its part. If 
the evaluated fault tolerance corresponds to the required by the 
user fault tolerance, then the algorithm moves to the Stage 2. 
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Otherwise, it is necessary to introduce new routers to the 
network or its considered part.  

New routers are introduced by replicating an initial network 
structure or its part with all routers and links (except nodes). 
The number of replicas shall be calculated as a difference 
between the required fault tolerance and current fault tolerance 
of the network or its considered part. For example, if the 
required fault tolerance Freq = 1 and current fault tolerance 
Fcur = 0, then 1 replica should be created. 

Replicating shall be performed in accordance with the 
following rules: 

A copy for each router in the network or in its part shall 
be created; 
The network structure replica shall contain similar links 
as the initial network structure; 
Nodes are not included into replicas; 
Connections to nodes shall not be replicated. 

The replicas of network structure should be connected with 
each other and with the initial network structure. If the initial 
network structure contains a router R and a replica of the 
network structure contains a copy R' of this router, then R and 
R' should be connected by a link. This is done in order to 
increase network connectivity. However, providing that there 
is a small quantity of ports in router, R and its copy R' can be 
left unconnected. 

Finally, if there are unconnected ports in terminal nodes, 
they should be connected to routers. When all terminal nodes 
ports are connected, the algorithm moves to Step 4. 

4) Step 4. Fault tolerance analysis of the transformed 
network. The final step of Stage 1 evaluates the fault tolerance 
of resulting network structure which was obtained after 
previous steps. If the resulting fault tolerance is equal or even 
more than the required fault tolerance, then the algorithm 
moves to the Stage 2. If this is not the case, it means that the 
particular initial network topology cannot be transformed to 
obtain the required fault tolerance. This can occur when 
network routers have a very small number of ports. 

This is the final step of stage 1 which is followed by 
stage 2. 

B. Stage 2. Iterative improvement of the topology obtained on 
the stage 1. 

Improvement consists in one by one removing added 
routers and links and then checking fault tolerance of the 
modified network. Addition of new links and routers can cause 
excessive redundancy. This excessive redundancy can be 
unnecessary for achieving required fault tolerance. For the 
purpose of reducing hardware costs, we need to remove extra 
routers and links.  

The algorithm of iterative improvement of the topology is 
defined below: 

1. The resulting network shall be represented as a graph. 
While graph creation it is necessary to take into account that 
the network structure can be of arbitrary topology and may 

contain redundant nodes. We have set up a rule for graph 
construction (see Fig. 2): 

All redundant units of a node shall be associated with 
only one vertex of the graph. 
All routers shall be represented by separate graph 
vertices. 
All links shall be represented by graph edges. 

Fig. 2. Transformation of network topology to a graph 

SpaceWire standard provides bidirectional links, so each 
link shall be represented by a pair of edges with opposite 
orientations (see Fig. 3). We use the digraph for the k-
connectivity analysis because we should apply maxflow 
algorithms which work in directed graphs. 

Fig. 3. A digraph of a network topology 

2. Specify a set of graph vertices Vr which correspond to 
newly added routers. 

3. Specify a set of graph edges El which correspond to 
newly added communication links. 

4. If set Vr is not empty, perform the following actions for 
each vertex from Vr:

a. Remove the current vertex and all its incident 
edges.

b. Check fault tolerance of the modified network. 

If the router removal leads to deletion of links 
with one or more terminal nodes, then the 
current router with all corresponding edges 
shall be put back to the network topology.  
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If the modified network is still k-connected, 
then continue with the next router. 
Otherwise, put the removed router with all 
corresponding edges back to the network 
topology. 

c. Stop when all added routers have been considered.

5. If set El is not empty, perform the following actions for
each edge from El:

a. Remove the current edge from the graph. It should
be mentioned that one communication link is
represented in a graph by two edges with opposite
directions. Consequently, removal of one
communication link leads to deletion of two edges
in a graph.

b. Check fault tolerance of the modified network.

If the modified network is still k-connected, 
then continue with the next link. 
Otherwise, put the removed edges back to the 
graph and continue with the next link. 

c. Stop when all added links have been considered.

6. Finally, the resulting network should be passed to the
graphical user interface and presented to the user. 

The network topology transformation algorithm can be 
applied either to the whole network or its part, defined by the 
user. This feature makes possible to provide different fault 
tolerance for different parts of a network. The user should 
perform network transformation sequentially for particular 
parts of the network. 

The proposed algorithm is able to increase fault-tolerance 
for almost any network structure or its part. However, there 
are particular cases in which the transformation could not be 
performed – network topologies with routers with small 
amount of ports and big amount of nodes. 

VI. TRANSFORMATION OF A NETWORK WITH REGIONS

SpaceWire network can consist of a large number of 
terminal nodes, so the network is better to be divided into a set 
of special network regions. Each region can consist of routers 
and nodes. The problem of network transformation for such a 
network is more complex than for a single region SpaceWire 
network. Providing that the initial network consists of several 
regions, network transformation shall be done in the following 
way: 

1) Perform transformation for each network region
separately (Stage 1, Stage 2). Region transformation shall be 
done similarly to transformation of a network part. 

2) Perform transformation for terminal nodes and
routers which are not included into regions (Stage 1, Stage 2). 

3) Connect all routers by additional links. New links
shall be added only for those pairs of routers which are located 
in different regions or out of regions. Routers which belong to 

one network region shall not be connected by additional links. 
Then perform Stage 2 of the general algorithm. 

VII. EXAMPLES OF NETWORK TRANSFORMATION 
IN SANDS 

The presented algorithm of network topology 
transformation for achieving the required fault tolerance was 
implemented as a part of Component #1 in SANDS. It is 
implemented in C++ and uses the functionality of fault 
tolerance evaluation described in [7]. In this section we 
present the results of implemented algorithm work. Firstly, we 
show examples for network topologies without regions, and 
then, we present an example of transformation of a network 
with regions. 

A. Example without regions 
The first example is a network, which consists of two 

terminal nodes and five routers (see Fig. 4). This initial 
network topology is not fault-tolerant, as the correspondent 
graph is 1-connected. 

Fig. 4. Example 1, initial topology 

We ran our algorithm so that the network can tolerate 2 
faults. The result of network transformation is shown in Fig. 5. 
All new links are shown in heavy lines and extended nodes are 
shown in dark frames. 

Fig. 5. Example 1, transformed topology 

Our network transformation algorithm added redundant 
units to the terminal nodes N1 and N2. After transformation 
each terminal node contains two units – A and B. Each unit of 
a terminal node contains two SpaceWire ports which are 
connected to different routers in order to increase 
fault tolerance. The algorithm added 6 additional 
communication links. The resulting network topology is 
2-fault-tolerant. 

Next example initial topology is shown in Fig. 6. 
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Fig. 6. Example 2 

This network topology consists of three terminal nodes with 
multiple redundant units (units correspond to letters A, B and 

 in N1, N2, and N3), two routers and it is 1-fault-rolerant. 

Similarly to the previous example, we ran our algorithm to 
obtain a network which is 2-fault-tolerant. The result of 
network transformation is shown in Fig. 7. All new links are 
shown in heavy lines and new routers are shown with dark 
frames. 

Fig. 7. Example 2, transformed topology 

The network transformation algorithm added two routers 
and a number of new links. In order to increase fault tolerance, 
the algorithm disconnected all terminal nodes ports except 
one, added one routers structure replica and connected nodes’ 
ports with a new set of routers. In order to reduce redundant 
links during the stage 2 of the algorithm 5 communication 
links were removed. The transformed network topology is 2-
fault-tolerant. 

B. Example with regions 
Finally, let us show an example of algorithm application to 

a network with regions (see Fig. 8). The initial network 
topology consists of three regions. The whole network is not 
fault-tolerant, however, Region 3 is 1-fault-tolerant, because 
of cross-connections between nodes’ units and routers R3  
and R4. 

Fig. 8. Example 3 

We ran our algorithm to obtain a network which is 1-fault-
tolerant. The result of network transformation is shown in  
Fig. 9. All new links are shown in heavy lines and new routers 
are shown with dark frames. 

Fig. 9. Example 3, transformed topology 

Our network transformation algorithm added additional 
redundant ports to the terminal nodes N1, N2, N3 and N4 for 
cross-connections. Each terminal node in Region 1 and 
Region 2 contains two SpaceWire ports which are connected 
to different routers in order to increase fault tolerance. 
Moreover, we can observe two new routers R1_1 and R2_1, 
which were added to increase fault tolerance in Region 1 and 
Region 2. The algorithm added 5 additional communication 
links. In order to reduce redundant links during the stage 2 of 
the algorithm 7 communication links were removed (not 
shown in Fig. 9). Region 3 was not transformed as it was 
originally 1-fault-tolerant. The resulting network topology is 
1-fault-tolerant.  

VIII. CONCLUSION

In the current paper we address the problem of network  
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topology transformation to achieve required by the user fault 
tolerance. Firstly, we introduced SANDS – a toolset for 
SpaceWire Automated Network Design and Simulation 
intended for SpaceWire networks. SANDS is designed for 
solving important tasks, which developers face with during 
implementation of onboard systems and networks. SANDS 
consist of four main functional components. One of the key 
features of Component#1 in SANDS is network topology 
transformation for fault tolerance.  

Our contribution is a proposal of an algorithm for network 
transformation for required fault tolerance. This algorithm 
uses already implemented in Component #1 functionality of 
network topology fault tolerance evaluation. Network 
transformation can be done either for the whole network 
topology or for its part. Moreover, we specified a solution for 
a network consisting of several SpaceWire network regions. 

We are still working on improvement of implementation 
performance. Moreover, we plan to make an additional study 
on optimization of the resulting network topology to decrease 
the number of additional routers.
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