
Network Topology Transformation for Fault
Tolerance in SpaceWire Onboard Networks

Irina Lavrovskaya, Valentin Olenev
Saint-Petersburg State University of Aerospace Instrumentation

Saint Petersburg, Russia
{irina.lavrovskaya, valentin.olenev}@guap.ru

Abstract—The paper presents a network transformation
algorithm for fault tolerance in SpaceWire onboard networks
which is implemented in SANDS computer-aided design system.
We give general notions on fault tolerance for onboard networks,
introduce our algorithm for network transformation and give
several examples of running the algorithm on different
topologies.

I. INTRODUCTION

Nowadays there are a lot of computer-aided design
systems (CAD) but none of them is intended for SpaceWire
networks. According to our review in [1] there are several
network simulation tools for SpaceWire such as MOST [2],
Sandia National Laboratories simulator [3], VisualSim [4] and
DCNSimulator [5]. However, these are just simulation tools
without any functionality for network design and analysis of
structural and fault tolerance characteristics of the designed
topology. We are currently working on development of a
SpaceWire Automated Network Design and Simulation
(SANDS) computer-aided design system which will support
full onboard network design and simulation flow, which
begins from the network topology design and finishes with
getting the simulation results, statistics and different diagrams.

Such computer-aided design system is highly-demanded as
evolution of microelectronics has led to the growth of the
onboard networks and systems sizes. The onboard networks
for spacecraft and avionics require good fault tolerance
characteristics in order to continue their operation in case of
faults and failures. One of the most popular spacecraft onboard
technologies is SpaceWire [6]. It is a technology which is
being actively integrated into new generation spacecraft.

This paper is a logical continuation of our previous paper
[7] where we introduced a fault-tolerance analysis algorithm
for SpaceWire onboard networks. The problem we address in
the current paper is network topology transformation for
achieving required by user fault tolerance in onboard
networks. We propose an algorithm which uses already
implemented functionality of network topology fault tolerance
evaluation.

The paper is organized as follows. In section II we start
with a brief description of a new computer-aided design
system for SpaceWire onboard networks SANDS. Section III
gives general notions on fault tolerance for onboard networks.
Then in section IV we review the current state-of-art in the
field of network topology transformation and reconfiguration.

In section V we describe our algorithm of network topology
transformation for fault tolerance. Section VI deals with a
problem of transformation of a network consisting of several
regions. Then, in section VII we give several examples of
network transformation in SANDS. Finally, section VIII
concludes the paper.

II. SPACEWIRE AUTOMATED NETWORK DESIGN AND
SIMULATION

In [1], [7] we proposed a concept of SANDS, which will
provide wide functionality for onboard network design.
Implementation of such kind of a design and simulation toolset
will give an ability for spacecraft designers to design the
onboard network with all its technical characteristics and
features, distribute the data flows and simulate it taking into
account real latencies, different errors, etc. We plan to
implement a flexible system, with possibility of addition new
protocols. Currently, we plan to include in SANDS
implementation of the SpaceWire protocol and two transport
layer protocols: RMAP [8] and STP-ISS [9].

SANDS architecture includes four main components:

Component #1: A component for onboard network
topology design and evaluation of its structural
characteristics;
Component #2: A component for tracking of the routes
for the data transmission in a network;
Component #3: A component for generation of the
scheduling table for the STP-ISS transport protocol for
the transmission of the data with Scheduled quality of
service;
Component #4: A component for simulation of the
network operation with all the data that component got
from other 3 components and graphical user interface
(majorly redesigned DCNSimulator) [5].

Visualization and graphical interface will be taken from the
VIPE project [10]. Graphical user interface (GUI) will provide
the visual network composition and management capabilities.
It will allow designing SpaceWire network topology in visual
interactive way from components. The component library is a
replenish set of network nodes and switches relevant to
physical devices that are available for network building. The
graphical user interface to work with the Component #1 is
shown in Fig. 1.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201552153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. SANDS graphical user interface

In this paper we focus on the Component #1 which is
responsible for the following tasks:

network topology design;
evaluation of structural characteristics of the designed
topology;
network topology transformation for achieving required
fault-tolerance.

Network topology design assumes creation of a network
topology by means of GUI and setting up parameters for
nodes, switches and links. Fault-tolerance is a very important
characteristic for onboard networks, especially for the domain
of long-term satellites. It is a common practice when the
network topology contains redundant nodes and links.

Nowadays, sizes of the network topologies increase with
the growing demands of industry. That is why it is so
important to have an opportunity for an automated network
topology modification to achieve the required by the user fault
tolerance.

III. FAULT TOLERANCE IN ONBOARD NETWORKS

In designing or selecting a topological structure of onboard
networks for a system, one of fundamental considerations is
the fault-tolerance [11]. In the context of this paper we will
assume that fault tolerance is a property that enables a system
to continue operating properly in the event of the failure or one
or more faults within some of its components. Basically, any
system containing redundant components or functions has
some of the properties of fault tolerance [12].

Systems such as communication onboard networks have
many nodes representing processors, sensors, control units,
memory, etc. that desire to communicate and also have several
links providing a number of interconnected pathways. These
many interconnections increase reliability and topology
complexity. As all these devices are connected to such a
network, a failure or fault affect many people; thus the
reliability goals must be set at a high level especially in the
domain of spacecraft and avionics.

Generally, the onboard network is assembled from three
main types of elements: terminal nodes, routers and links.
Each of these elements can fail so that it cannot be repaired in
any considerable time. However, a fault-tolerant system
should continue its proper operation. This can be achieved by
adding redundancy to the onboard network. For example, one
terminal node can be represented by two or three redundant
units. When one of redundant units fails another unit continues
to operate properly, replacing the failed one.

IV. RELATED WORK

The problem of network transformation and reconfiguration
in onboard communication networks with irregular topology is
not widely covered in related studies. However, there are some
works which discuss similar problems in the domain of
networks-on-chip and wireless networks.

In [13] the authors solve a problem of generation of a
topology such that all communicating cores of the application
can transmit data to each other over the network with at least
two alternative paths and with minimal energy consumption.
Fault-Tolerant Topology Generation (FTTG) algorithm,
presented in this paper, has two main phases:
1) generating non-fault-tolerant irregular topology using a
minimum number of routers and links, and 2) adding extra
routers and links to obtain a fault-tolerant version of the
topology. FTTG algorithm generates topologies such that each
router of the topology can be reached from any router with at
least two alternative paths. The generated topology can be
used to tolerate at least one link failure by applying the
packet’s alternative routings.

There are some works on similar problems in the domain of
wireless networks. In [14] Sitanayah et al. address the problem
of finding a minimal set of relays which ensures k node-
disjoint paths for each sensor. The authors propose GRASP-
ARP, a local search algorithm based on greedy randomized
adaptive search procedure (GRASP) [15], to be run as a
centralised offline algorithm during the initial topology design,
i.e. prior to network deployment and operation. GRASP is a
metaheuristic intended to capture the good features of pure
greedy algorithms and of random construction procedures. The
algorithm requires repeated counting of the number of node-
disjoint paths for each node, for which a dynamic
programming procedure is used.

Another related work is [16]. Kashyap et al. consider a
problem of constructing a fault-tolerant backbone wireless
network using additional relay nodes. They give O(1)-
approximation algorithms for 2-edge and 2-vertex connectivity
in terms of the number of relay nodes required. The algorithms
also work for achieving k-connectivity for higher values of k.
In the presented algorithm the number of additional relay
nodes depends on the weight of the edges in the spanning tree
graph. Placing of relay nodes in the graph is followed by
optimization phase. Optimization is performed by one by one
removing added relay nodes. K-edge connectivity is checked
after each removal. If the graph is still k-edge connected,
repeat for another relay node, else put back the current node
and corresponding edges, and repeat with the next relay node.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 132 --

There is only one research result, that considers fault
tolerance for SpaceWire networks, is available for public -
[17]. In that paper the authors propose the methodology and
toolset for SpaceWire network design. This methodology
allows generating fault tolerant networks with variable level of
tolerance.

V. NETWORK TOPOLOGY TRANSFORMATION ALGORITHM
FOR FAULT TOLERANCE

The problem we address in this paper is network topology
transformation for increasing fault tolerance in the network.
Modern onboard networks consist of a huge number of
computers, telemetry, radio-transmitting and data transmitting
devices. The bigger and more complex the onboard network is,
the easier for a network topology designer to make a mistake
in fault-tolerance structure. Therefore, we propose to apply
computer aided network topology transformation to achieve a
required fault tolerance. This feature is included to the
Component #1 in SANDS.

The problem can be described as follows. Given a network
topology, place additional redundant units for terminal nodes,
additional routers and communication links to achieve the
required by user fault tolerance.

We propose to solve the stated problem in two stages which
are described below.

Stage 1: Initialise a topology of a network with required
fault tolerance f.
Stage 2: Iterative improvement of the topology obtained
on the stage 1.

Below we will give a general description of these two
stages.

. Stage 1. Creation a topology with required fault-tolerance
1) Step 1. Fault tolerance analysis. Firstly, it is necessary to

evaluate fault tolerance of the initial network or its part. In
case of fault tolerance of the initial network is less than
required fault tolerance, then we move to the Step 2.
Otherwise, there is no need to run the algorithm.

2) Step 2. Addition of redundant units to terminal nodes.
This step checks the required number of units in terminal
nodes in order to provide required fault tolerance. If it is
necessary, additional redundant units should be added to
terminal nodes. This step should be performed only when the
initial network or its part contains terminal nodes.

All terminal nodes shall be checked one by one. For each
node we propose to calculate the number of missing ports
which are needed to provide required fault tolerance. The
calculation is performed according to the formula below:

,
where need_ports – is a number of missing ports in a terminal
node, F – required fault tolerance of the network,
current_ports – current number of ports in a terminal node. If
need_ports is more than 1, it means that it is necessary to add
redundant units to the node.

When redundant units are added to the terminal nodes,
these units should be connected to routers. Just before
connecting redundant units and routers, we should check if
there are enough free ports in routers to connect all redundant
units. If there are not enough free ports in routers, then move
to Step 3. Otherwise, connect redundant units to routers. Each
unit of a terminal node should be connected to different
routers in order to increase fault tolerance of a network.

If all ports of all terminal nodes are connected to routers,
then it is necessary to evaluate fault tolerance of the resulting
network or its part. The network transformation can be
considered as completed if new fault tolerance corresponds to
the fault tolerance required by the user. If this is not the case,
move to Step 3.

3) Step 3. Addition of redundant communication links and
routers. This step checks the number of routers in the network
or its part, adds new communication links and new routers to
the network topology. This can be done in the following ways:

connecting all routers in the initial network structure
through additional links.
replicating an initial network structure with all routers
and links (except nodes) and then by connection of
replicas into one network structure. Connection of
replicas is performed by adding links between the
routers’ replicas.

Different actions should be performed in dependence on the
number of routers in the network or its considered part. Two
main cases should be considered on this step:

The number of routers is more than the required fault
tolerance;
The number of routers is less or equal to the required
fault tolerance.

Let us firstly consider the case, when the number of routers
in a network or its considered part is more than the required
fault tolerance. First of all, the routers should be connected
with each other by additional links according to the rule
below:

There are free ports available in considered routers;
These routers are not already connected by a direct
communication link.

We should add only one link between each pair of routers.
Addition of links between routers can impact the connectivity
of the network and, consequently, increase its fault tolerance.

It is important to note that new links can be added not for
all pairs of routers, as some of routers do not have enough free
ports. Furthermore, new links can even not be added, due to
free ports lack. New links can be added between only
particular routers, just for those that provide free ports and
were not connected in the initial network topology.

Provided that new links were added, it is necessary to
evaluate fault tolerance of the resulting network or its part. If
the evaluated fault tolerance corresponds to the required by the
user fault tolerance, then the algorithm moves to the Stage 2.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 133 --

Otherwise, it is necessary to introduce new routers to the
network or its considered part.

New routers are introduced by replicating an initial network
structure or its part with all routers and links (except nodes).
The number of replicas shall be calculated as a difference
between the required fault tolerance and current fault tolerance
of the network or its considered part. For example, if the
required fault tolerance Freq = 1 and current fault tolerance
Fcur = 0, then 1 replica should be created.

Replicating shall be performed in accordance with the
following rules:

A copy for each router in the network or in its part shall
be created;
The network structure replica shall contain similar links
as the initial network structure;
Nodes are not included into replicas;
Connections to nodes shall not be replicated.

The replicas of network structure should be connected with
each other and with the initial network structure. If the initial
network structure contains a router R and a replica of the
network structure contains a copy R' of this router, then R and
R' should be connected by a link. This is done in order to
increase network connectivity. However, providing that there
is a small quantity of ports in router, R and its copy R' can be
left unconnected.

Finally, if there are unconnected ports in terminal nodes,
they should be connected to routers. When all terminal nodes
ports are connected, the algorithm moves to Step 4.

4) Step 4. Fault tolerance analysis of the transformed
network. The final step of Stage 1 evaluates the fault tolerance
of resulting network structure which was obtained after
previous steps. If the resulting fault tolerance is equal or even
more than the required fault tolerance, then the algorithm
moves to the Stage 2. If this is not the case, it means that the
particular initial network topology cannot be transformed to
obtain the required fault tolerance. This can occur when
network routers have a very small number of ports.

This is the final step of stage 1 which is followed by
stage 2.

B. Stage 2. Iterative improvement of the topology obtained on
the stage 1.

Improvement consists in one by one removing added
routers and links and then checking fault tolerance of the
modified network. Addition of new links and routers can cause
excessive redundancy. This excessive redundancy can be
unnecessary for achieving required fault tolerance. For the
purpose of reducing hardware costs, we need to remove extra
routers and links.

The algorithm of iterative improvement of the topology is
defined below:

1. The resulting network shall be represented as a graph.
While graph creation it is necessary to take into account that
the network structure can be of arbitrary topology and may

contain redundant nodes. We have set up a rule for graph
construction (see Fig. 2):

All redundant units of a node shall be associated with
only one vertex of the graph.
All routers shall be represented by separate graph
vertices.
All links shall be represented by graph edges.

Fig. 2. Transformation of network topology to a graph

SpaceWire standard provides bidirectional links, so each
link shall be represented by a pair of edges with opposite
orientations (see Fig. 3). We use the digraph for the k-
connectivity analysis because we should apply maxflow
algorithms which work in directed graphs.

Fig. 3. A digraph of a network topology

2. Specify a set of graph vertices Vr which correspond to
newly added routers.

3. Specify a set of graph edges El which correspond to
newly added communication links.

4. If set Vr is not empty, perform the following actions for
each vertex from Vr:

a. Remove the current vertex and all its incident
edges.

b. Check fault tolerance of the modified network.

If the router removal leads to deletion of links
with one or more terminal nodes, then the
current router with all corresponding edges
shall be put back to the network topology.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 134 --

If the modified network is still k-connected,
then continue with the next router.
Otherwise, put the removed router with all
corresponding edges back to the network
topology.

c. Stop when all added routers have been considered.

5. If set El is not empty, perform the following actions for
each edge from El:

a. Remove the current edge from the graph. It should
be mentioned that one communication link is
represented in a graph by two edges with opposite
directions. Consequently, removal of one
communication link leads to deletion of two edges
in a graph.

b. Check fault tolerance of the modified network.

If the modified network is still k-connected,
then continue with the next link.
Otherwise, put the removed edges back to the
graph and continue with the next link.

c. Stop when all added links have been considered.

6. Finally, the resulting network should be passed to the
graphical user interface and presented to the user.

The network topology transformation algorithm can be
applied either to the whole network or its part, defined by the
user. This feature makes possible to provide different fault
tolerance for different parts of a network. The user should
perform network transformation sequentially for particular
parts of the network.

The proposed algorithm is able to increase fault-tolerance
for almost any network structure or its part. However, there
are particular cases in which the transformation could not be
performed – network topologies with routers with small
amount of ports and big amount of nodes.

VI. TRANSFORMATION OF A NETWORK WITH REGIONS

SpaceWire network can consist of a large number of
terminal nodes, so the network is better to be divided into a set
of special network regions. Each region can consist of routers
and nodes. The problem of network transformation for such a
network is more complex than for a single region SpaceWire
network. Providing that the initial network consists of several
regions, network transformation shall be done in the following
way:

1) Perform transformation for each network region
separately (Stage 1, Stage 2). Region transformation shall be
done similarly to transformation of a network part.

2) Perform transformation for terminal nodes and
routers which are not included into regions (Stage 1, Stage 2).

3) Connect all routers by additional links. New links
shall be added only for those pairs of routers which are located
in different regions or out of regions. Routers which belong to

one network region shall not be connected by additional links.
Then perform Stage 2 of the general algorithm.

VII. EXAMPLES OF NETWORK TRANSFORMATION
IN SANDS

The presented algorithm of network topology
transformation for achieving the required fault tolerance was
implemented as a part of Component #1 in SANDS. It is
implemented in C++ and uses the functionality of fault
tolerance evaluation described in [7]. In this section we
present the results of implemented algorithm work. Firstly, we
show examples for network topologies without regions, and
then, we present an example of transformation of a network
with regions.

A. Example without regions
The first example is a network, which consists of two

terminal nodes and five routers (see Fig. 4). This initial
network topology is not fault-tolerant, as the correspondent
graph is 1-connected.

Fig. 4. Example 1, initial topology

We ran our algorithm so that the network can tolerate 2
faults. The result of network transformation is shown in Fig. 5.
All new links are shown in heavy lines and extended nodes are
shown in dark frames.

Fig. 5. Example 1, transformed topology

Our network transformation algorithm added redundant
units to the terminal nodes N1 and N2. After transformation
each terminal node contains two units – A and B. Each unit of
a terminal node contains two SpaceWire ports which are
connected to different routers in order to increase
fault tolerance. The algorithm added 6 additional
communication links. The resulting network topology is
2-fault-tolerant.

Next example initial topology is shown in Fig. 6.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 135 --

Fig. 6. Example 2

This network topology consists of three terminal nodes with
multiple redundant units (units correspond to letters A, B and

 in N1, N2, and N3), two routers and it is 1-fault-rolerant.

Similarly to the previous example, we ran our algorithm to
obtain a network which is 2-fault-tolerant. The result of
network transformation is shown in Fig. 7. All new links are
shown in heavy lines and new routers are shown with dark
frames.

Fig. 7. Example 2, transformed topology

The network transformation algorithm added two routers
and a number of new links. In order to increase fault tolerance,
the algorithm disconnected all terminal nodes ports except
one, added one routers structure replica and connected nodes’
ports with a new set of routers. In order to reduce redundant
links during the stage 2 of the algorithm 5 communication
links were removed. The transformed network topology is 2-
fault-tolerant.

B. Example with regions
Finally, let us show an example of algorithm application to

a network with regions (see Fig. 8). The initial network
topology consists of three regions. The whole network is not
fault-tolerant, however, Region 3 is 1-fault-tolerant, because
of cross-connections between nodes’ units and routers R3
and R4.

Fig. 8. Example 3

We ran our algorithm to obtain a network which is 1-fault-
tolerant. The result of network transformation is shown in
Fig. 9. All new links are shown in heavy lines and new routers
are shown with dark frames.

Fig. 9. Example 3, transformed topology

Our network transformation algorithm added additional
redundant ports to the terminal nodes N1, N2, N3 and N4 for
cross-connections. Each terminal node in Region 1 and
Region 2 contains two SpaceWire ports which are connected
to different routers in order to increase fault tolerance.
Moreover, we can observe two new routers R1_1 and R2_1,
which were added to increase fault tolerance in Region 1 and
Region 2. The algorithm added 5 additional communication
links. In order to reduce redundant links during the stage 2 of
the algorithm 7 communication links were removed (not
shown in Fig. 9). Region 3 was not transformed as it was
originally 1-fault-tolerant. The resulting network topology is
1-fault-tolerant.

VIII. CONCLUSION

In the current paper we address the problem of network

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 136 --

topology transformation to achieve required by the user fault
tolerance. Firstly, we introduced SANDS – a toolset for
SpaceWire Automated Network Design and Simulation
intended for SpaceWire networks. SANDS is designed for
solving important tasks, which developers face with during
implementation of onboard systems and networks. SANDS
consist of four main functional components. One of the key
features of Component#1 in SANDS is network topology
transformation for fault tolerance.

Our contribution is a proposal of an algorithm for network
transformation for required fault tolerance. This algorithm
uses already implemented in Component #1 functionality of
network topology fault tolerance evaluation. Network
transformation can be done either for the whole network
topology or for its part. Moreover, we specified a solution for
a network consisting of several SpaceWire network regions.

We are still working on improvement of implementation
performance. Moreover, we plan to make an additional study
on optimization of the resulting network topology to decrease
the number of additional routers.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation under the contract RFMEFI57816X0214.

REFERENCES

[1] Sheynin Y., Olenev V., Lavrovskaya I., Korobkov I., Kochura S.,
Shkolniy V., Dymov D. "Computer-Aided Design System for On-
board SpaceWire Networks Simulation and Design", in Proceedings
of the 20th Conference of Open Innovations Association FRUCT,
LETI University, St. Petersburg, Russia, 2017, pp. 398-405.

[2] B. Dellandrea, B. Gouin, S. Parkes, D. Jameux, “MOST: Modeling of
SpaceWire & SpaceFiber Traffic-Applications and Operations: On-
Board Segment”, Proceedings of the DASIA 2014 conference,
Warsaw, 2014.

[3] B. van Leeuwen, J. Eldridge, J. Leemaster, “SpaceWire Model
Development Technology for Satellite Architecture”, Sandia Report,
Sandia National Laboratories 2011, 30 p.

[4] Mirabilis Design, “Mirabilis VisualSim data sheet”, 2003. 4 p.
[5] A. Eganyan, E. Suvorova, Y. Sheynin, A. Khakhulin, I. Orlovsky,

“DCNSimulator – Software Tool for SpaceWire Networks
Simulation”, Proceedings of International SpaceWire Conference
2013, 2013, pp. 216-221.

[6] ECSS, SpaceWire — Links, nodes, routers and networks (ECSS-E-
ST-50-12C). Noordwijk: ESA Requirements and Standards Division,
July 2008.

[7] Lavrovskaya I., Olenev V., Korobkov I. “Fault-Tolerance Analysis
Algorithm for SpaceWire Onboard Networks” in Proceedings of the
21st Conference of Open Innovations Association FRUCT, University
of Helsinki, Helsinki, Finland, 2017, pp. 217-223.

[8] ESA. Standard ECSS-E-ST-50-52C, SpaceWire — Remote memory
access protocol. Noordwijk : Publications Division ESTEC, February
5, 2010.

[9] Y. Sheynin, V. Olenev, I. Lavrovskaya, I. Korobkov, D. Dymov
“STP-ISS Transport Protocol for Spacecraft On-board Networks”,
Proceedings of 6th International SpaceWire Conference 2014
Program; Greece, Athens, 2014. pp. 26-31.

[10] Syschikov, A., Sheynin, Y., Sedov, B., Ivanova, V. “Domain-specific
programming environment for heterogeneous multicore embedded
systems”, International Journal of Embedded and Real-Time
Communication Systems, Volume 5, Issue 4. 2014, pp. 1-23.

[11] Junming Xu “Topological Structure and Analysis of Interconnection
Networks”, Kluwer Academic publishers, Netherlands, 2001, 350 p.

[12] Martin L. Shooman, “Reliability of Computer Systems and Networks.
Fault Tolerance, Analysis, and Design”, Wiley, New York, 2002,
551 p.

[13] S. Tosun, V. B. Ajabshir, O. Mercanoglu and O. Ozturk, "Fault-
Tolerant Irregular Topology Design Method for Network-on-Chips,"
2014 17th Euromicro Conference on Digital System Design, Verona,
2014, pp. 631-634.

[14] L. Sitanayah, K. N. Brown and C. J. Sreenan, "Fault-tolerant relay
deployment for k node-disjoint paths in wireless sensor
networks," 2011 IFIP Wireless Days (WD), Niagara Falls, ON, 2011,
pp. 1-6.

[15] T. Feo and M. Resende, “Greedy Randomized Adaptive Search
Procedures,” Journal of Global Optimization, vol. 6, pp. 109–133,
1995.

[16] A. Kashyap, S. Khuller and M. Shayman, "Relay Placement for
Higher Order Connectivity in Wireless Sensor
Networks," Proceedings IEEE INFOCOM 2006. 25TH IEEE
International Conference on Computer Communications, Barcelona,
Spain, 2006, pp. 1-12.

[17] Alexey Syschikov, Elena Suvorova, Yuriy Sheynin, Boris Sedov,
Nadezhda Matveeva, Dmitry Raszhivin, “Toolset for SpaceWire
Networks Design and Configuration”, in Proceedings of the 5th
International SpaceWire Conference 2013, 2013, pp.149-153.

__PROCEEDING OF THE 22ND CONFERENCE OF FRUCT ASSOCIATION

-- 137 --

