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ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two 
artificial intelligence-based models along with conventional multiple linear regression model were used to 
predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in 
India. The data used are dissolved oxygen, pH, biological oxygen demand and water temperature at upper, 
middle and downstream of the river. To predict outlet of dissolved oxygen of the river in each station, 
considering different input combinations as i) 11 inputs parameters for all three locations except, dissolved 
oxygenat the downstream ii) 7 inputs for middle and downstream except dissolved oxygen, at the target 
location and lastly iii) 3 inputs for downstream location. To determine the accuracy of the model, root 
mean square error and determination coefficient were employed. The simulated results of dissolved oxygen 
at three stations indicated that, multi-linear regression is found not to be efficient for predicting dissolved 
oxygen. In addition, both artificial intelligence models were found to be more capable and satisfactory 
for the prediction. Adaptive neuro fuzzy inference system model demonstrated high prediction ability as 
compared to feed forward neural network model. The results indicated that adaptive neuro fuzzy inference 
system model has a slight increment in performance than feed forward neural network model in validation 
step. Adaptive neuro fuzzy inference system proved high improvement in efficiency performance over multi-
linear regression modeling up to 18% in calibration phase and 27% in validation phase for the best models. 

KEYWORDS: Adaptive neuro fuzzy inference system (ANFIS); Feed forward neural network (FFNN);        
                       Multi-linear regression (MLR); Dissolve oxygen (DO); Water quality; Yamuna river.

INTRODUCTION
The issue of water quality (WQ) management 

has an essential role to play in respect to river basin 
planning and control of water pollution. The likeliness 
of industrial and municipal waste discharge into river 
is of immense concern particularly to those utilizing 
water diverted from rivers. Dissolve oxygen (DO) 
is the dissolved form of the amount of oxygen; it 

is among the best variables that indicate the health 
status and quality of the ecosystem (Sharma and 
Kansal, 2011). Ensuring DO concentration within the 
acceptance range which differ according to national 
and international standards is important. However, 
it can range from 0 up to 18 parts per million. With 
less DO, the lives of aquatic animals in the receiving 
environment are likely to be lose (Jain et al., 2014). 
DO served as a major indicator of the river WQ and 
has been given several considerations in the literatures 
recently (Sharma and Kansal, 2011). At initial stage, 
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rivers are free from any form of impurities and are 
regarded as the cleanest in the entire globe but rapid 
increase in industries, urban and human development 
causes imposing pollutants into water bodies. For the 
maintenance of sustainable development, assessment 
of WQ is of immense significance (Jain et al., 2014). 
Due to crucial role of WQ parameters in hydro-
environmental studies, there is a need to develop 
reliable prediction methods for these parameters. In 
several studies, linear models have been applied to 
determine different variables of WQ by examining 
WQ characteristics (Mirbagheri et al., 2010; Karbassi 
and Pazoki, 2015). However, complex and dynamic 
behaviours of system define the inability of the linear 
methods to withstand the interactions and processes 
in stream water body that is taking place. On the other 
hand, non-linear Artificial Intelligence (AI) models 
are crucial and play and essential role in simulation 
of complex and non-linear processes. As such AI 
based models for example, artificial neural network 
(ANN), Adaptive Neuro Fuzzy Inference System 
(ANFIS), could lead to accurate and reliable results 
in modeling and estimating the trend of non-linear 
hydrological processes (Quej et al., 2017). Feed 
Forward Neural Network (FFNN), and ANFIS have 
their own advantages and limitations. Despite, ANN 
plays a crucial part of ANFIS, it can learn from the 
data but the results are not easily interpretable. On 
the other hand, ANFIS has the potential to derive 
the advantages of both fuzzy inference system (FIS) 
and ANN which could reduce their weaknesses, but  
it is more complex and only supports the Takagi-
Sugeno-Kang (TSK) inference (Mamdani 1974). 
Recent works indicate that, the applications of the 
AI based models have been successful in modelling 
and prediction of WQ parameters. ASCE Task 
Committee, 2000 discussed in detail the FFNN-based 
modelling of hydrological phenomena. Nevertheless, 
the determination and prediction of DO have been 
carried out by some researchers. Areerachakul et al., 
2011 employed the application of ANN to estimate 
DO of a river the obtained result indicates that ANN 
provide high accuracy than experimental model. Feed 
forward neural network (FFNN) utilized using back 
propagation algorithm was applied by Singh et al., 
2009 to estimates biological oxygen demand (BOD) 
and DO level in the Gomti River of India, the results 
justified the robustness of ANN in the prediction of 
WQ parameters. Rankovic´ et al., 2010 tested FFNN 

capabilities in predicting DO by applying many 
water quality variables; as revealed by the obtained 
results, pH and water temperature are the most 
effective variables in predicting DO. Ay and Kisi, 
2011 applied and examined the performance accuracy 
of RBNN and MLP algorithms in modeling the DO 
concentration in Foundation Creek, Colorado, the 
obtained result indicates high merit of RBNN and also 
demonstrates better performance of two ANN than the 
linear multi-linear regression (MLR) model. Olyaie et 
al., 2017 presented various computational intelligence 
techniques e.g., MLP, radial basic function (RBF), 
linear genetic programming (LGP) and support vector 
machine (SVM), to estimate DO Concentration. 
Highly encouraging results were obtained from the 
study which suggested that in modelling DO, SVM 
and ANNs approaches are promising. Wen et al., 2013 
examined the performance accuracy of the ANNs for 
DO modelling in the Heihe River. The proposed ANN 
model with limited information of WQ parameters 
being preferable choice for DO levels modelling. 
The literature survey shows that the multi-station 
prediction of DO has not been gotten proposal to 
investigate the impact of different segments of the 
river on the outputs. Such multi-station modelling is an 
important task in hydrological modelling (eg. in river 
flow modelling) (Turan and Yurdesev, 2009). There is 
a room to be applied for modelling WQ parameters 
of the rivers (e.g. DO as well). In this study, AI based 
multi-station WQ modelling is proposed and applied 
to the Yamuna River in India. For this propose, DO, 
biological oxygen demand (BOD), pH, and water 
temperature (WT) from 3 different stations of the river 
with different input combinations are imposed into 
FFNN and ANFIS models. In addition, the classical 
linear MLR are employ for comparison. The crux of 
selecting pH, DO, BOD and WT parameters to simulate 
the WQ based on the DO concentration is that, these 
variables are usually utilized to categorize the rivers 
according to the usage. pH is the concentration of 
hydrogen ions that indicates the acidic and basic level 
of solution. DO is a good indicator which comprises 
of temperature, volume and velocity of flowing water 
that allows water bodies to withstand aquatic life. 
WT is an essential factors for the survival of aquatic 
organism in which their lives is dependent on the 
vicinity temperature  (Verma and Singh, 2013). BOD 
is the amount of oxygen required to oxidize organic 
matter presents in a sample by the actions of micro-



441

Global J. Environ. Sci. Manage., 4(4): 439-450, Autumn 2018

organisms (Jain et al., 2014; Sharma and Kansal 
2011). The aim of this study is to apply AI based and 
regression models to simulate dissolved oxygen at 
downstream of three Mathura sample stations in India 
during 1999-2012.

MATERIALS AND METHODS
Study region and data 

The biggest tributary of River Ganga is Yamuna 
River, this river is as sacred and prominent as the 
immense River Ganga itself. It was being widely 
acknowledge as a holy river in various pilgrimage 
centres across India and in Indian mythology e.g. 
Allahabad, Baleshwar, Vrindavan and Mathura (all 
in Uttar Pradesh), Paonta Sahib (Himachal Pradesh), 
Yamunotri (Uttaranchal) are situated at the banks 
of this river. Covering 1,376 km, almost 57 million 
residents of North part of India rely upon it. A total 
catchment area of Yamuna is 366,223 km2  which 
comprises of 42 percent of the Ganga basin area in 
the Indian Territory. Delhi as capital territory received 
almost 70 percent of its drinking water from Yamuna 
River while discharges almost 10,000 m3/s yearly. But 
due to urbanization and inadequate water treatment 
plant, the River leaves Delhi as polluted water (Singh 
et al., 2005). The upstream was monitored to evaluate 
the WQ of Yamuna before it enters Vrindavan – 
Mathura, while, the downstream site shows the effect 
of wastewater discharges from Mathura. The standard 
assessment and monitoring of the river administered 
by Central Pollution Control Board (CPCB) under 

the National WQ Monitoring Program (NWQMP) 
and National River Conservation Program (NRCR). 
Fig. 1 shows the location of the Yamuna River basin 
in India and the stations. The daily WQ data were 
obtained from the CPCB for years 1999 to 2012. In 
order to remove the noise from the obtained raw data, 
data processing was initially carried out for all the 12 
parameters namely, DO, BOD, pH and WT for all 3 
stations using the method of regression analysis. Table 
1 shows the descriptive statistical analysis of each 
parameter. 

Proposed methodology
In this study, FFNN, ANFIS and MLR models 

were proposed for multi-station modelling of DO in 
a river, data set were partitioned into two parts, 75% 
of the data were employed for the calibration phase 
and the 25% of the data for validation purposes 
from a total of 168 records. Selection of dominant 
inputs parameters is one of the important parts in any 
AI based modeling. As such, a key and preferable 
parameter combination for   FFNN, ANFIS and MLR 
are selected using sensitivity and correlation analysis 
(Table 2). For development of the models, 11, 7, and 
3 input combinations were considered for modelling 
in the upper, middle and downstream of the river, 
respectively. The mathematical expressions of the 
multi-station modelling are presented in Eqs. 1-5. 
MATLAB 9.3 (R2017b) was used for the analysis of 
FFNN and ANFIS while MLR model and correlation 
coefficient were developed using regression tool of 

 

 
 

 
Fig. 1: Geographic location of the study area of Mathura along Yamuna River 

   

Fig. 1: Geographic location of the study area of Mathura along Yamuna River
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EViews software 9.5 version.
      
𝐷𝐷𝐷𝐷𝑢𝑢 = 𝑓𝑓𝑢𝑢( 𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑢𝑢)                                             (1)

𝐷𝐷𝐷𝐷𝑚𝑚 = 𝑓𝑓𝑚𝑚 (𝐷𝐷𝐷𝐷𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑚𝑚 ,𝑊𝑊𝑊𝑊𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑚𝑚 )    (2)

𝐷𝐷𝐷𝐷𝑑𝑑 = 𝑓𝑓𝑑𝑑(𝐷𝐷𝐷𝐷𝑢𝑢 ,𝐷𝐷𝐷𝐷𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑚𝑚 , 𝑝𝑝𝑝𝑝𝑑𝑑 ,𝑊𝑊𝑊𝑊𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑚𝑚 ,𝑊𝑊𝑊𝑊𝑑𝑑)  
               𝐷𝐷𝐷𝐷𝑑𝑑 = 𝑓𝑓𝑑𝑑(𝐷𝐷𝐷𝐷𝑢𝑢 ,𝐷𝐷𝐷𝐷𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑚𝑚 , 𝑝𝑝𝑝𝑝𝑑𝑑 ,𝑊𝑊𝑊𝑊𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑚𝑚 ,𝑊𝑊𝑊𝑊𝑑𝑑)                    

(3)

𝐷𝐷𝐷𝐷𝑑𝑑 = 𝑓𝑓𝑑𝑑(𝐷𝐷𝐷𝐷𝑢𝑢 ,𝐷𝐷𝐷𝐷𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑚𝑚 ,𝑊𝑊𝑊𝑊𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑚𝑚) (4)

𝐷𝐷𝐷𝐷𝑑𝑑 = 𝑓𝑓𝑑𝑑(𝐷𝐷𝐷𝐷𝑢𝑢 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢 ,𝑝𝑝𝑝𝑝𝑢𝑢 ,𝑊𝑊𝑊𝑊𝑢𝑢)                                  (5)

The DO at upper and middle stream were modelled 
for comparison to DO at downstream, based on the 
functions of the parameters as given in Eqs. 1 and 2. 

Where, DOu, DOm, DOd are dissolve oxygen at 
upper, middle and downstream, fu, fm, fd donate the 
functions of upper, middle and downstream, BODu, 
BODm, BODd are biological oxygen, WTu, WTm, WTd 
are water temperature and pHu, pHu, pHu are pH at 
upper, middle and downstream respectively.

From the Table 1, the range of pH of the upper 
stream is higher than both the middle and downstream 
which could be due to the discharge of industrial 
pollution located at the upper stream. The average WT 
is almost equal in all the 3 stations, also the minimum 
DO and BOD at the upper stream is higher than that of 
middle and downstream.

Multi-linear regression (MLR)
The variables input and output correlation level 

are generally estimated by regression models which 
determine their relationships form. The correlation 
coefficient ranges between -1 and +1 and quantifies 
the direction and strength of linear relationship 
between two variables. The most commonly used 
regression is MLR, which correlated the value of 
dependent variable with values of independent 
variables. Ordinarily, correlation level between two 
or more predictors (independent variables) and one 
response variable (dependent variable) are estimated 
by MLR. MLR model that correlates the given output 
(Y) to input variables (X) are defined in the Eq. 6. The 
assumption of Y as dependent and X as independent 
are considered in MLR (Dogan et al., 2008).

𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ⋯𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖                                  (6)                          

Where, xi, is the value of the 𝑖th predictor, b0 is the 
regression constant, and bi is the coefficient of the 𝑖th 
predictor.

Feed forward neural network (FFNN)
An ANN  is a model designed synaptic weight and 

learning process to resembles brain by processing 
information based on a mathematical model (Hsu et 
al., 1995; Gaya et al., 2014). FFNN is used to find 
the non-linear relationship among the residuals of the 
fitted linear model (Nourani et al., 2011). ANN can 
be classified in terms of objective function, flow of 
information and learning method. Among different 
classes of ANN, FFNN with back propagation (BP) 
algorithm is the most common and widely used 
technique. In BP, each input training data flows via 

Table 1. Descriptive statistics of each parameter 
 

Station Parameters Min. Max. Median 𝑥̅𝑥 Variance S.D. 

U
pp

er
 S

tre
am

 
(M

at
hu

ra
) DO (mg/L) 1.0 17.2 6.5 6.92 9.14 3.02 

pH 6.9 9.3 7.8 7.81 0.16 0.41 
BOD (mg/L) 3.0 25.0 8.0 8.63 19.25 4.74 

WT (oC) 10.0 36.0 28.0 26.06 35.44 4.38 

M
id

-S
tre

am
 

(M
at

hu
ra

) DO (mg/L) 0.0 19.2 6.2 6.25 9.06 5.95 
pH 6.7 9.0 7.8 7.89 0.23 0.47 

BOD (mg/L) 2.0 27.0 8.0 9.02 19.78 4.45 

WT (oC) 11.0 36.5 28.0 26.42 34.35 2.80 

D
ow

n 
St

re
am

 
(M

at
hu

ra
) DO (mg/L) 0.0 19.6 6.2 6.26 9.05 3.01 

pH 6.7 9.1 7.9 7.89 0.23 0.47 
BOD (mg/L) 2.0 27.0 18.0 9.02 19.17 4.44 

WT (oC) 11.0 36.5 28.0 26.4 34.35 5.86 
                                       *S.D.= Standard deviation; Min. = Minimum; Max.= Maximum; 𝑥̅𝑥= Mean 
   

Table 1. Descriptive statistics of each parameter
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the system and passes to the output layer, the error 
of the training is generated and propagates backward 
until the output desired of the network is achieved 
(Nourani 2017;  ASCE Task Committe, 2000). The 
primary aim of BPNN is to reduce the error in order 
for the network to learn the training data Fig. 2 shows 
a three-layer FFNN with BP (Nourani et al., 2012)two 
artificial neural networks were developed to simulate 
outflow hydrograph from earthen dam breach. The 
required data for the modelling were collected from 
literature, laboratory experiments and a physically 
based model (i.e. BREACH. Sigmoid was the transfer 
function utilized in this study which was introduced 
to convert in each neuron linear to non-linear function 
ranging gradually  between 0 and 1 (Nourani et al., 
2015; ASCE Task Committee 2000). However, every 
layer comprised of interconnected neurons by weight 
and activation function (Areerachakul et al., 2011; 
Nourani et al., 2015). Lavenberg-Marquardt (LM) is 
an algorithm used in training MLP model because of 
its outstanding performance as described in several 
hydrology literature (ASCE Task Committe, 2000). 

Before model training at the initial stage, the data for 
both input and output were normalized within a scale 
of 0 and 1 using the Eq. 7 which helps to increase 
integrity and reduce the redundancy of the data (Abba 
and Elkiran, 2017). 

𝑋𝑋𝑖𝑖 =
𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 
                                                     (7)

Where “X’i” is the normalized quantity, “xi” is un-
normalized quantity, “xmin” is the minimum and “xmax” 
is the maximum quantity of the data set (Nourani et al., 
2012)two artificial neural networks were developed 
to simulate outflow hydrograph from earthen dam 
breach. The required data for the modelling were 
collected from literature, laboratory experiments and 
a physically based model (i.e. BREACH.

Adaptive neuro-fuzzy inference system (ANFIS)
Fuzzy logic as AI based technique deals with 

uncertainty, vagueness, and imprecision which was first 
introduced by Zadeh, 1996. A mathematical expression 

Table 2: Correlation variables used in multi-station modelling 
 

Parameters Dou pHu BODu WTu Dom pHm BODm WTm DOd pHd BODd WTd 
Dou 1.0000            
pHu 0.5152 1.0000           
BODu 0.0487 0.1021 1.0000          
WTU 0.0772 0.2394 0.0771 1.0000         
Dom 0.0526 -0.0613 0.0756 0.1004 1.0000        
pHm 0.1001 0.1106 0.1596 -0.0231 0.2601 1.0000       
BODm 0.0056 0.0656 0.0543 0.1695 -0.1740 -0.0195 1.0000      
WTm -0.0117 0.0723 0.0951 0.1226 0.0295 0.2642 0.0137 1.0000     
DOd 0.1465 0.0900 0.0458 0.0070 0.5768 0.2909 -0.0001 0.0664 1.0000    
pHd 0.1521 0.2147 0.0965 -0.0036 0.2767 0.5154 0.0371 0.1244 0.3551 1.0000   
BODd 0.2503 0.1407 0.1708 0.2393 0.0012 -0.0582 0.4075 -0.1251 -0.1032 0.0843 1.0000  
WTd 0.0362 0.0166 0.1639 -0.0686 0.0830 0.1343 -0.0772 0.4541 0.0641 0.3013 -0.0260 1.0000 

 
 
   

Table 2: Correlation variables used in multi-station modelling

 

 

 

 

 

 

 

Fig. 2: Typical structure of  three-layered FFNN  (Nourani et al., 2012) 

   

Fig. 2: Typical structure of  three-layered FFNN  (Nourani et al., 2012)
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called fuzzy rule input and output relationship of a 
system with respect to if -then statement and form of 
language variables (Yetilmezsoy et al., 2011; Abba et 
al., 2017). Fuzzifier, defuzzifier and fuzzy database 
are the main three parts of the system (Nourani et al., 
2011). Fuzzy rules and FIS  knowledges are important  
aspects of fuzzy logic (Parmar and Bhardwaj,  2015). 
The combination of ANN with the fuzzy system creates 
a robust hybrid system that is able to solve a complex 
nature of relationship (Akrami et al., 2014). ANFIS is 
a Multi-Layer Feed-Forward (MLFF) neural network 
using the integration of neural network and fuzzy logic 
algorithms in order to map inputs with outputs (Solgi 
et al., 2017). ANFIS has several drawbacks like other 
soft computing tools as hybrid learning algorithm, 
however the approach is more suitable and complex 
for some inference systems like Takagi-Sugeno. The 
major importance of ANFIS rule systems basically are 
categorized into Mamdani and Takagi-Sugeno which 
are expressed normally into mathematical function 
and linguistic variable, respectively. Mamdani rule 
requires defuzzification process where as Sugeno 
requires no defuzzification (Takagi  and Sugeno, 
1993). As a universal approximator, ANFIS to any 
degree of accuracy on a compact set, has the capability 
of approximating any continuous real function. 
Functionally, ANFIS is equivalent to FIS (Takagi  and 
Sugeno, 1993). Fig. 3 shows the general structure of 
the ANFIS.

Supposing a FIS containing two inputs and one 
output ‘x’ ‘y’ and ‘f’’, a Sugeno fuzzy first order has 
the following rules (Eqs. 8 and 9).

Rule (1): if μ(x) is A1 and μ(y) is B1; then f1 = 
p1x + q1y + r1                                                                            (8)
                            
Rule (2): if μ(x) is A2 and μ(y) is B2; then f2 = 
p2x + q2y + r2                                                              (9)                        

Membership functions parameters for x and y 
inputs are A1, B1, A2, B2, outlet functions’ parameters 
are p1, q1, r1, p2, q2, r2, a five-layer neural network 
arrangement followed the formulation and structure 
of ANFIS

Layer 1: Every node i is an adaptive node in this 
layer, which has a node function as in Eq. 10.

𝑄𝑄𝑖𝑖1 = 𝜇𝜇𝐴𝐴𝐴𝐴(𝑥𝑥)  for i = 1,2 or 𝑄𝑄𝑖𝑖
1 = 𝜇𝜇𝐵𝐵𝐵𝐵(𝑥𝑥)  for i = 3,4   (10)

 
Where 𝑄𝑄

1
𝑖𝑖   for input x or y is the membership 

grade. Gaussian membership function was chosen due 
to its lowest error in prediction. 

Layer 2: T-Norm operator connects every rule in 
this layer between inputs that performs as ‘AND’ 
operator as Eq. 11.

𝑄𝑄2
𝑖𝑖 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝐴𝐴(𝑥𝑥). 𝜇𝜇𝐵𝐵𝐵𝐵(𝑦𝑦) for 𝑖𝑖 = 1,2                      (11)
    
Layer 3: ‘’Normalized firing strength’’ is the output in 

this layer and every neuron is labelled Norm as Eq. 12.

21

3

ww
wwQ i

ii +
==

	
i = 1, 2	                         (12)

Layer 4:  Every node i in this layer is an adaptive node 

 
 
 
 
 

 

 

 

 

 

Fig. 3: First order type Sugeno FIS and ANFIS Structure Model 

   

Fig. 3: First order type Sugeno FIS and ANFIS Structure Model
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and performs the consequent of the rules as Eq. 13.

iiiiiii fwryqxpwQ =++= )(4
	                       (13) 

p1, q1, r1 are irregular parameters referred to as 
consequent parameters.

Layer 5: In this layer the overall output is computed 
as the summation of all incoming signals as Eq. 14.
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Performance efficiency criteria 
The performance efficiency of the model can be 

assessed through different statistical measures, in 
order to evaluate the predictive performance of the 
model. Determination coefficient (DC), Root mean 
square error (RMSE) and mean square error (MSE) 
were employed in this study as Eqs. 15, 16 and 17.
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Where n, iobso , obso  and icomo are data number, 
observed data, averaged value of the observed data and 
calculated values, respectively. DC ranges between -∞ 
and 1, with perfect score of 1.

The RMSE and DC show the measured and 
computed values differences. Under normal 
circumstance, the best network is achieved with higher 
DC and lower RMSE (Legates and McCabe, 1999).

RESULTS AND DISCUSSION
For the multi-station modelling in this study, 

sensitivity and correlation analyses were examined 
between the variables. The analysis indicated that 
the most effective parameter to affect DO is pH, 

Table 3: Performance evaluation of MLR model 

Model type Model structure Calibration Validation 
  RMSEa MSEa DC RMSEa MESa DC 

MLR I (11-1) 1.02 1.04 0.78 1.11 1.23 0.69 
MLR II (10-1) 1.12 1.25 0.68 1.13 1.27 0.6 
MLR III (9-1) 1.68 2.82 0.54 1.21 1.46 0.49 
MLR IV (8-1) 1.23 1.51 0.62 1.34 1.79 0.57 
MLR V (7-1) 1.54 2.37 0.64 1.34 1.79 0.6 
MLR VI (6-1) 1.64 2.68 0.58 1.58 2.49 0.54 
MLR VII (5-1) 1.42 2.01 0.48 1.43 2.04 0.38 
MLR VIII (4-1) 1.68 2.82 0.59 1.23 1.51 0.50 
MLR IX (3-1) 1.23 1.51 0.57 1.35 1.82 0.54 
MLR X (2-1) 1.45 2.10 0.59 1.55 2.40 0.50 

                      aRMSE has no unit since all the data were normalized 
               a MES  has no unit since all the data were normalized

Table 3: Performance evaluation of MLR model

Table 4: Performance evaluation result for FFNN model 

Model type Model structure Calibration Validation 
  RMSEa MESa DC RMSEa MESa DC 
FFNN - I (11 - 11- 1) 0.81 0.65 0.91 1.72 2.95 0.82 
FFNN - II (10- 10- 1) 0.76 0.57 0.89 1.38 1.90 0.83 
FFNN - III (9- 9 - 1) 1.29 1.66 0.86 1.50 2.25 0.77 
FFNN - IV (8 - 8- 1) 0.85 0.72 0.71 1.74 3.02 0.79 
FFNN - V (7- 7 - 1) 0.24 0.05 0.95 0.56 0.31 0.91 
FFNN - VI (6 - 6 - 1) 1.69 2.85 0.72 1.45 2.10 0.69 
FFNN - VII (5- 5- 1) 0.91 0.82 0.81 1.74 3.02 0.79 
FFNN - VIII (4- 4 - 1) 0.79 0.62 0.9 1.57 2.46 0.85 
FFNN - IX (3- 3 - 1) 1.59 2.52 0.78 1.60 2.56 0.76 
FFNN - X (2- 2 - 1) 1.45 2.10 0.67 1.50 2.25 0.65 

                                        aRMSE has no unit since all the data were normalized 
                                        a MES has no unit since all the data were normalized
   

Table 4: Performance evaluation result for FFNN model
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which has the highest correlation in the middle and 
downstream of Mathura (Table 2). Data from Mathura 
upstream, Mathura middle and Mathura downstream 
(except DO) were considered. Ten different models 
were trained based on the number and types of input 
combinations, for all the methods the model types were 
defined as MLRI up to MLRX, FFNNI up to FFNNX 
and ANFISI up to ANFISX indicating the type of 
models from one to ten for MLR, FFNN, and ANFIS, 
respectively. MLR was applied for the estimation of 
DO of Mathura; the least square approach was used 
for fitting the model to data. In a model structure 
(Table 3), 11-1 stand for number of inputs and output 
variables, the best model was found to be MLR-I with 
the highest number of input parameters (Table 3). Fig. 4 
shows scattered and time series plot for the best model 
for test data. As it is shown in Table 3, the DC values 
in MLR- I model were determined as 0.78, 0.69, the 

MSE were found to be 1.04, 1.23 and the RMSE were 
1.02, 1.11 for calibration and validation, respectively. 
MLR-I model with all the input combinations show 
high value of DC that implies the accuracy of the 
model. In addition, MLR approaches desired results 
by using high number of input variables as shown 
in Table 3. To conclude, MLR-I model did not show 
prominent performance capability. This might be due 
to the nonlinear relationship and interactions within 
the system, while MLR model is mostly able to find 
out the linear relationship between the observed and 
predicted variables. Secondly, FFNN was applied to 
predict DO at three stations of Mathura, the FFNN 
models were trained using LM of BP algorithm. 
Ten different types of models were trained and the 
best structure of each network was obtained through 
a trial-error procedure. The model structure 11-
11-1 indicates 11 number of input parameters, 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Evaluation of MLR model a) scatter plot (b) observe versus computed time series of DO 
   

 

Fig. 4: Evaluation of MLR model a) scatter plot (b) observe versus computed time series of DO

Fig. 5: Evaluation of FFNN model a) scatter plot (b) observe versus computed time series of DO

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Evaluation of FFNN model a) scatter plot (b) observe versus computed time series of DO 
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hidden layer neurons and 1 output layer. However, 
appropriate architecture selection of the number of 
neurons in hidden layer, model network, and optimal 
epoch number are important for calibration of the 
model to prevent the over-fitting. The obtained results 
for the best structure are presented in Table 4. FFNN- 
obtained result showed that high number of input 
variables could lead to the complex computations 
in calibration stage, which leads to over fitting of 
the model. The DC, MSE and RMSE values for 
calibration of the FFNN-V model were determined as 
0.95, 0.91; 0.05, 0.31 and 0.24, 0.56 for calibration 
and validation, respectively. Fig. 5 depicts the scatter 
and time series plot of observed and predicted DO
for the downstream. FFNN-V model shows that, the 
combination of seven input variables led to increase 
in accuracy of the model. This might be due to large 
input parameters that results to convolution of FFNN, 
in contrast to MLR and ANFIS models (Tables 3-5). 
To conclude, the FFNN model is efficient in predicting 
the DO at downstream of Mathura as compared to 
MLR. Lastly, ANFIS modelling was performed, and 
the proportions of calibration, validation were selected 
same as the ones selected for FFNN modelling. Fig. 
6 shows the observed and predicted scatter and time 
series plot for the best model. Tables 5 and 6 shows 
the performance criteria of best model inputs structure 
and the results indicated that, ANFIS-I model with 

optimum input parameters led to the best outcomes. 
The DC and RMSE show the level of capability of 
the ANFIS model in prediction. Table 5 shows that, 
the DC, MSE and RMSE for ANFIS-I model were 
determined as 0.96, 0.91; 0.003, 1.58 and 0.018, 
1.26, respectively. Thus, ANFIS model is found to be 
capable for prediction with satisfactory performance, 
the improvement of ANFIS could be due to it is 
capability to overcome both the limitation of fuzzy 
inference system and ANN. This finding corresponds 
with those of (Najah et al., 2014; Chen and Liu, 2014). 
In addition, low MSE for validation shows that the 
accuracy of ANFIS model proved high merit. For 
the purpose of this research, (11, trimf, 2) indicates 
that, a model with 11 input variables, trimf stands for 
triangular membership function and 2 as a number 
of membership function. To investigate the effect 
of different segment of river on DO, the DO of the 
others two stations was also predicted. Table 5 depicts 
the poor performance result of both DOu and DOm 
which is as a result of sewage treatment plant (STPs) 
located at upper stream of Mathura the discharge 
of these STPs have huge impact on middle stream 
and downstream WQ. However, the value of pH at 
the upstream of Mathura meets higher limit which 
indicates the significant industrial discharge (Table 
1). Urban agglomeration like Mathura uses Yamuna 
water significantly for domestic and irrigational 

Table 5: Performance evaluation result for ANFIS model 

Model type Model structure Calibration Validation 
RMSEa MESa DC RMSEa MESa DC 

ANFIS - I 11, trimf, 2 0.018 0.0003 0.96 1.26 1.58 0.91 
ANFIS - II 10, trimf, 2 0.140 0.01 0.79 1.64 2.68 0.72 
ANFIS - III 9, trimf, 2 1.340 1.79 0.89 1.49 2.22 0.88 
ANFIS - IV 8, trimf, 2 0.130 0.01 0.89 1.59 2.52 0.80 
ANFIS - V 7, trimf, 2 1.440 2.07 0.79 1.50 2.25 0.85 
ANFIS - VI 6, trimf, 2 0.240 0.05 0.88 1.59 2.52 0.69 
ANFIS - VII 5, trimf, 2 1.460 2.13 0.78 1.59 2.52 0.67 
ANFIS - VIII 4, trimf, 2 0.150 0.02 0.89 1.54 2.37 0.78 
ANFIS - IX 3, trimf, 2 1.450 2.10 0.78 1.60 2.56 0.66 
ANFIS - X 2, trimf, 2 1.540 2.37 0.83 1.48 2.19 0.78 

 aRMSE has no unit since all the data were normalized 
  aMES has no unit since all the data were normalized 

Table 6: Performance efficiency for the three stations in validation steps 

Models  DOU DOm DOd 
DC RMSEa MSEa DC RMSEa MSEa DC RMSEa MSEa 

MLR 0.4314 0.1025 0.0105 0.5304 0.0916 0.0083 0.69 1.1 1.2100 
ANN 0.4856 0.0975 0.0095 0.6818 0.0754 0.0056 0.91 0.56 0.3136 
ANFIS 0.8013 0.0452 0.0020 0.854 0.0441 0.0019 0.91 1.26 0.1876 

 aRMSE has no unit since all the data were normalized 
 aMSE has no unit since all the data were normalized 

Table 5: Performance evaluation result for ANFIS model

Table 6: Performance efficiency for the three stations in validation steps
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supplies. There is a large cluster of industries 
established at Mathura which discharge the effluent 
into the catchment water bodies. It is scientifically 
proven that what happens to upstream based on WQ 
will benefit or adversely affect the downstream of 
the river depending on the catchment activities in the 
upstream region. Understanding the upper, middle 
and downstream linkage in hydrological process with 
regards to WQ based on interaction among parameters 
is essential for water resources management. The 
upper stream impact can be categorized into human 
influence or natural impact. In this study, the influence 
of Mathura downstream depicts the impact of human 
and industrial influence (wastewater discharge from 
Mathura upstream). As it is depicted in the Tables 
3-5, ANFIS model could lead to the highest value of
DC as compared to FFNN and MLR models. Hence
for DO prediction of the river, the most efficient
model turns out to be ANFIS. However, it can be
stated that both the two models (ANFIS and FFNN)
are dependable enough in predicting the DOd, as the
difference between the DC values for both FFNN and
ANFIS are negligible in both steps. However, for the
same prediction purpose, ANFIS outperforms FFNN.
Meanwhile, MLR model is found to be less reliable
in the predictions. The outstanding performances of
ANFIS and FFNN models over MLR model may result 
from nonlinear nature of the parameters which can be
represented better by ANFIS and FFNN models.

As shown in Figs. 4, 5 and 6, the accuracy of 
the fitted computed values of FFNN and ANFIS are 
almost the same and are close to the observed values, 
this can be proven by the values of their DCs 

Fig. 6: Evaluation of ANFIS model a) scatter plot (b) observe versus computed time series of DOFig. 6: Evaluation of ANFIS model a) scatter plot (b) observe versus computed time series of DO

(Tables 4 and 5). In contrast, MLR computed 
values are deviated more from the observed values 
which may be due to the linear nature as justified by 
MLR performance efficiency shown in Table 3.

Where, DOu, DOm and DOd are dissolve oxygen at 
upstream, middlestream and downstream of Mathura.

CONCLUSIONS
The river WQ modeling is paramount for 

preserving the life of aquatic animals. Modeling 
the water parameter with conventional classical 
method consumed more time and energy due to 
complex interactions. AI models can effectively 
handle nonlinearity and complexity of a system and 
overcome weaknesses of classic linear models. MLR, 
FFNN, ANFIS models were developed in modelling 
DO concentration at three stations of Mathura and 
the performance of models were computed and 
compared using DC and RMSE criteria. For all the 
models, the sensitivity analysis was carried out 
and MLR was found not to produce a considerable 
outcome due to its inability of handling nonlinear 
interactions. Even though, FFNN and ANFIS could 
handle the nonlinear interactions, it was found that 
ANFIS model performed better than FFNN model 
and outperformed MLR model. Generally, the results 
indicate that for predicting DO centration at Mathura, 
the input combination of middle and downstream 
parameters are satisfactory for better prediction of 
DO. Besides, the ANFIS model proved to have high 
accuracy when the data for all three stations are used 
in input layer. However, the best model of FFNN can 
also be considered in prediction of DO for all the 
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three stations due to its capability. Comparing the 
three stations, the performance efficiency obtained 
from DO at downstream proved high merit than DO 
at upstream and middle stream for all the applied 
models. The obtained results also indicated that, for 
the application of these models in the real world, 
the uncertainty involved in process be addressed. As 
such, the AI tools should be combined in an ensemble 
approach in order to integrate a set of models so as 
to come up with a new model which could produce 
higher accuracy and more reliable estimates than the 
single models.
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ABBREVIATIONS
% Percentage
0C Degree centigrade
AI Artificial intelligence
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial neural network
ASCE American Society of Civil Engineer
BOD Biological oxygen demand
BODu Biological oxygen demand at upper stream
BODm Biological oxygen demand at middle stream 
BODd Biological oxygen demand at downstream 
BP Back propagation
CPCB Central Pollution Control Board
DC Determination coefficient 
DO Dissolve oxygen
DOu Dissolve oxygen at upper stream
DOm Dissolve oxygen at middle stream
DOd Dissolve oxygen at downstream
FFNN Feed forward neural network
FIS Fuzzy Inference System
LM Lavenberg-Marquardt
LPG Linear genetic programming
mg/L Milligram per litre

MLFF Multi-layer feed forward 
MLP Multi-layer perceptron
MLR Multi-linear regression 
NRCR National river conservation program
NWQMP National water quality monitoring program
pHu pH at upper stream 
pHm pH at middle stream
pHd pH at down stream
RBF Radial Basis Function
RMSE Root Mean Square Error
STPs Sewage treatment plant 
SVM Support vector machine
TSK Takagi-sugeno kang
WQ Water quality
WT Water temperature
WTu Water temperature at upper stream
WTm Water temperature at middle stream
WTd Water temperature at downstream
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