
Implementing Automatic Handover Solutions
for Linux-based Mobile Devices

Nickolay Amelichev
Open Source & Linux Lab (OSLL)

St.-Petersburg Electrotechnical University
St.-Petersburg, Russia
namelichev@acm.org

Abstract

In a heterogeneous network environment, transparent horizontal and vertical handover is a
much desired feature. Effective handover solution would allow mobile device users to stay steadily
connected, seamlessly switching between different access networks. If it also consistently connected
to networks which offer best quality of service, that would dramatically improve user experience.

Expanding upon our work in [1], we present a framework for creating your own custom handover
solutions which could run on the clients’ Linux-based mobile devices. The framework consists of
three core interacting components: scanners, which detect available networks; measurers, which
measure network parameters for every detected network; and evaluators, which rank networks
according to the values of the parameters.

To provide an example of using the framework, we reimplement parts of our previous signal
strength-based handover solution to get improved flexibility, modularity and modifiability.

Index Terms: automatic handover, Linux, mobile devices, 3G, WLAN.

I. INTRODUCTION

Modern smartphone users expect to always stay connected. Therefore, seamless handover
forms a crucial part of smooth network experience, especially in heterogeneous network
environments.

Transparent horizontal handover (handover between networks of the same type) is sup-
ported in some form by nearly all smartphones. Exceptions include some of the modern
Android phones that cannot perform handover between two Wi-Fi APs with the same ESSID
[2], [3].

For seamless vertical handover (handover between different types of networks), Quallcomm
offers a standard-compliant implementation [4] targeted at service providers only. It allows
providers to switch traffic between 3G and WLAN (WiFi Mobility), or redistribute it between
available networks (WiFi Mobility + IP Flow Mobility).

To the best of our knowledge, there’re no solutions that run on the client smartphone and
support both vertical and horizontal handover. In this paper, we extend our early handover
solution prototype [1] to support multiple network types and best access network selection
techniques.

II. ARCHITECTURE OVERVIEW

The prototype described in [1] consisted of 3 core components (Fig. 1).
• Switchers to perform actual handover from one access network to another, typically

implemented as shell scripts. There are different scripts for each kind of mobile device,
and each pair of network types (e.g., N950-wlan-to-3g.sh for switching from WLAN to
3G network on Nokia N950).

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 3 --

SwitchersEvaluator

Monitor

Fig. 1. Three core components of our handover solution

• Evaluator to detect neighboring networks, measures network parameters, evaluates each
network depending on the measurements and chooses the “best” one.

• Monitor to supervise the process, periodically calling the Evaluator. If current access
network does not match the “best” one chosen by Evaluator, Monitor calls an appropriate
Switcher. The simplest implementation is a shell script running as a daemon [1].

We decided to keep this general architecture, and focus on the improvements to the
Evaluator. The original Evaluator was simple and compact, but didn’t support adding custom
components for network detection, parameter measurement and best network selection. It was
also did not output identifier of the chosen network, only its type (e.g. ”wireless” for WLAN),
because multiple WLANs were not supported.

A. Interaction between Monitor and Evaluator
Calls from Monitor to Evaluator and internal Evaluator operations are shown in Fig.

2. Monitor calls Evaluator, which proceeds to read previous measurements, scan for new
and existing neighboring networks, measure parameters of these networks, and evaluate the
networks.

Overall evaluation results, and results for each network type (3G, WLAN, ...) are written
to the aq.txt file. For each best ranked network, we output its unique identifier (address, e.g.
00:50:18:64:1E:88), name (human-readable name, e.g., ”AirCel” or ”SJCE STUDENT”)
), and type (3G/WLAN/etc.).

Finally, network parameter measurements are saved, and the application terminates. If
Monitor detects that Evaluator’s best network is not currently being used, it launches an
appropriate Switcher to correct this situation.

B. New Evaluator’s Features
At the core of the new Evaluator is a new framework that we created, called FINE

(Framework for detectIon and Evaluation of Networks). The framework allows to easily
add new components for detecting networks, measuring network parameters and choosing
the best network. The latter can be re-used across all target platforms without any changes.
The framework also offers some standard functionality.

• Network List. Current list of all available neighboring networks, as well as all the
parameters measured, is maintained automatically. You need only to write detection code
for specific network types.

• Measurement Series. The framework keeps track of the last measured value, as well
as the mean, variance and standard deviation. Variance and mean are calculated using
highly accurate Welford’s method [6].

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 4 --

Monitor

Evaluator

calls

Scan for Neighboring Networks

Measure Network Parameters

Choose Best Network

Output Best Network InfoLocal
Store

Read Previous Measurements

Store Current Measurements

 reports best network

Fig. 2. Interaction between Monitor and Evaluator

• Unit Conversion. Measurements for different networks can have different measurement
units. These are transparently converted to a convenient base unit for the parameter (e.g.
signal power in dBm to power in %).

• Persistence. Information about neighboring networks (names, identifiers, parameter mea-
surements) is persisted across calls to Evaluator.

III. THE FINE FRAMEWORK

The proposed FINE framework is used to create custom network detection, measurement
and ranking components which can be plugged into the new Evaluator. Fig. 3 shows core
classes in the framework.

Note that scanner, measurer and evaluator interfaces correspond to the main operations
of the Evaluator: scanning for neighboring networks, measuring network parameters and
evaluating networks. Concrete implementation for these interfaces must be provided by the
users of the framework.

A. Network Identification
FINE stores network identification information in the immutable objects of the network

class. This includes:
• Network type (type). E.g. WLAN, 3G, etc.
• Unique network identifier (id). MAC address for WLANs, WiMAX, Bluetooth; MCC

(Mobile Country Code)+MNC (Mobile Network Code) pair for 3G networks, etc. The
identifier must be unique at least for all networks of the specified type.

• Human-readable network name (name). This is the name which is suitable for displaying
in the UI. Not necessarily unique even for the networks of the same type.

How exactly this information is obtained depends on the scanning components, which are
described in section III-C.

B. Parameters and Measurement Units
Each measurable network parameter is represented by an immutable object of parameter

class. Parameter is defined by its name (which must be unique), and base measurement unit.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 5 --

network

-id: string
-name: string
-type: network_type

+id(): string
+name(): string
+type(): network_type

<<interface>>

evaluator

+rank(network): double
+min_rank(): double
+max_rank(): double

measurer

+value(network,parameter): double
#measurement_unit(parameter): unit
#value_internal(network,parameter): double

vote

-networks_: set<network>
-evaluators_: set<evaluator>

+push_evaluators(set<evaluator>)
+push_networks(set<network>)
+vote(rel_threshold:double=0): network

1

*

1

*

unit

+name(): string
+convert_to(unit,double): double
+is_convertible_to(unit): bool
#convert_to_internal(unit,double): double
#is_convertible_to_internal(unit): boolean

net_info

+instance(): net_info
+update(set<network>)
+param_list(): set<parameter>
+network_list(): set<network>
+param_values(network,parameter): series

<<use>>

parameter

+name(): string
+description(): string
+base_unit(): unit

<<interface>>

scanner

+scan(): set<network>

series

-param: parameter

+for_param(): parameter
+push(double)
+peek(): double
+mean(): double
+variance(): double
+size(): size_t
+empty(): bool

 *

 1

<<use>>
bat

-main_sequence()

Main Program Class
Runs the following tasks:
 1. Update Network List
 2. Update Network Parameter Values
 3. Rank Networks & Vote for Best
 4. Report Best Network

<<use>>

*

1

*

1

1

*

<<use>>

1

*

1 *

Fig. 3. Core Classes of the FINE Framework

The list of all parameters to be measured on each call to signalstren application is kept in
the net info (network information) object, which is described in section III-E.

Measurement units are represented by objects of class unit. Measurement unit must have a
unique name and its values can potentially be converted to values of another compatible unit.
unit class can be used for units not convertible to any other units; otherwise it is needed to sub-
class unit and redefine implementations of is convertible to internal and convert to internal
to check for compatibility between units and perform the requested conversion.

C. Scanning and Measurement
Each network type has an single scanner which detects networks of this type, and a single

measurer, which measures parameters for the specified network.
The main class for signalstren application, called bat, initiates network scanning, calling

the scanners for each network type. It then consolidates scanning results into a single list and
requests update of network list and parameter measurements from the net info object (see
III-E. This is shown in detail in Fig. 4.

1) Scanner: A scanner interface implementation must provide code for method scan,
which returns a list of unique network identification objects (providing unique network id
and a human-readable network name, see III-A). How this information is obtained is device-
dependent. The simplest approach is, of course, polling (e.g., executing iw dev wlan0 scan

when the iw utility is available). If the target device has NetworkManager support, it can
utilise the D-BUS API [7] to get information about detected networks without forcing a new
scan, at least for WLAN.

2) Measurer: A concrete measurer must subclass the measurer abstract class and override
two virtual protected methods:

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 6 --

*[for each measurement series]loop

*[for each detected network net]

*[for each network scanner]

:bat :scanner

scan()

list of detected networks

add found networks to the list
of all detected networks

:net_info

update(list of all detected networks)

:measurer :seriesnet:network

loop

loop
measurer()

measurer for this type of network

value(net, param)

measured value of parameter

remove all undetected
networks from storage

network parameter param

for_param()

push(measured value of parameter)

Fig. 4. Sequence Diagram for Scanning and Measurement Stages

• measurement unit to return measurement unit for the specified network parameter;
• value internal to return value for the specified network parameter measured in measure-

ment unit.
The value method ensures that if parameter is measured in some other unit than the base one
(e.g., received signal power in mW vs. in dBm), its values are converted to base measurement
unit. This way, all other components can treat measurements of the same parameter for
different network types as always having the same scale.

3) Series: Series of parameter values (objects of class series) represent measurements of
a specified network parameter for the given network over a period of time. FINE framework
automatically push()es new parameter values acquired from the measurers into the respective
series, which can then be accessed through the network information object (III-E).

D. Evaluation and Voting
The signalstren application could not work without defining at least one method for ranking

detected networks according to their parameters. To define an evaluation criteria, users must
implement the evaluator interface, providing rank(), max rank() and min rank() methods.
max rank() and min rank() specify the range rmin ≤ r ≤ rmax of network ranks r for the
evaluator. The rank() method is central to network ranking: it calculates the rating of a
specified network using information provided by the network information object (III-E).

Signalstren determines the best network by majority vote (Fig. 5). Networks are ranked by
each registered evaluator. For every evaluator, the winning network (network with maximum
rank) is determined. Network ranks are compared within a relative threshold α ∈ (0..1):
networks are considered equal in rank if their ranks r1 and r2 are |r1− r2| ≤ α(rmax− rmin).
The network that won the most times (for most evaluators) is chosen as the overall winner.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 7 --

:bat :vote

push_evaluators(available evaluators)

push_networks(detected networks)

:evaluator

*[for each evaluator]loop

winner()

*[for each network net]loop

rate(net)

network rating

[network rating > previous ratings]
set as best network for current evaluator

increment win counter for the
best network for current evaluator

save winner information
to file

winner network
find network with maximum win counter

:net_info

Fig. 5. Sequence Diagram for the Voting Process

E. Network Information Object
Network Information Object (net info::instance()) is central to the FINE framework. This

singleton object of class net info holds actual information about currently available networks,
network parameters, and measurements of these parameters. Its update method responds to
”network scanning complete” events and updates the stored information as shown in Fig. 4.

1) Features: To effectively evaluate networks, Evaluator keeps series of measurements for
all parameters of currently active networks. If network is no longer detected, its correspond-
ing series is deleted. The measurements for active networks can be accessed through the
param values method. It returns series of measurements for a parameter of a given network.
The returned series has an already calculated mean, variance and standard deviation values;
the last value in series can also be retrieved. This method is primarily used by the network
evaluators, which can easily extract series only for parameters they need to inspect, and have
no need to do averaging and variance calculations.

All the parameters which are for each network can be retrieved by calling the param list
method. Currently active network list can be retrieved by calling the network list method.

2) Persisting Network Information across Calls to signalstren: Evaluator is called by
Monitor, produces result and exits, so measurements must persist across Evaluator runs, device
shutdowns and reboots (due to crashes, rapid discharge of battery etc.) As memory and battery
of the mobile device is at premium, the series are saved in a compact way. Only the previous
measured value, mean, variance, and 4 auxiliary variables used for iterative calculation of
mean and variance [6] are stored. Standard deviation for the series is calculated as the square
root of variance; it is not stored in any way.

We used Google Protocol Buffers [5] to serialize measurement series. The following mes-
sage format was used to optimize for working with the lightweight version of libprotobuf-
lite.so protobuf shared library (Fig. 6).

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 8 --

'

&

$

%

option optimize_for = LITE_RUNTIME;

message m_network { // Network identification information
required string id = 1; // Network id
required string name = 2; // Human-readable Network Name
enum network_type {

FIRST = 0;
WLAN = 0;
UMTS = 1;
LAST = 2;

}
required network_type type = 3; // Network type

}

message m_series { // Series of values of some parameter.
required m_network network = 1; // Network this series corresponds to
required string parameter_name = 2; // Name of the measured parameter
required int32 size = 3; // Count of processed measures
required double last_value = 4; // Last processed measure
required double mean = 5; // Mean value of the parameter
required double variance = 6; // Variance of the parameter
// Next 4 variables are for iterative calculation of mean and variance:
required double old_m = 7;
required double old_s = 8;
required double new_m = 9;
required double new_s = 10;

}

message m_netinfo { // The whole persisted state is here
repeated m_series all_series = 1;

}

Fig. 6. Message Format for Serializing Parameter Measurement Series

F. System Requirements
The Evaluator component built using FINE framework has minimal software requirements

(see Table I for details). It needs Google Protocol Buffers Lite Library (libprotobuf-lite) to
be compiled for the target device architecture, though. Other components might be required
to detect wireless networks and measure network parameters, but these will depend on the
device and network types supported.

TABLE I
REQUIRED SYSTEM COMPONENTS FOR signalstren.

Dependency Type Minimal Version
Linux Kernel OS 2.6.28

sh-compatible shell Shell —
Qt Libraries 4.7+

QtMobility Libraries 1.2+
Protocol Buffers (libprotobuf-lite.so) Library 2.4.1+

G. Full Handover Solution
Creating a fully functional handover solution would require using the Monitor daemon

script and Switcher scripts from [1] alongside with the Evaluator developed using FINE;
and modifying the target Linux-based system’s /etc/init.d to launch Monitor daemon at
startup. Monitor and Switchers would need minor changes to accomodate new format of the
Evaluator’s output file aq.txt.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 9 --

One might also have to implement their own scanners and measurers, as well as custom
Switcher scripts. Current version of FINE comes only with a simple implementation of WLAN
scanner and measurer, which use iwlist utility from the wireless-tools package [9]. But
it is possible to use something entirely different, if the target system will support it; and add
support for more network types, e.g., WiMAX and Bluetooth.

Scanning wireless networks, getting network parameters, changing routing tables and other
settings during handover are privileged operations, so all the solution’s components (Monitor,
Evaluator and Switchers) would need to run as root. This means that this handover solution
is restricted to rooted Android devices; as well as Maemo/MeeGo-based Nokia N900, N950
and N9 (which don’t need rooting). Other devices might also be supported, as long as they
satisfy all the requirements outlined in Table I, allow custom applications to run as root and
have network APIs to create scanners and measurers for all the network types needed.

IV. PRELIMINARY TESTING

To prove usefulness of the FINE framework, we reimplemented much of the original signal
strength-based handover solution [1] in terms of scanners, measurers and evaluators. New
signalstren, along with the FINE framework, is freely available from the new-arch branch of
our GitHub repository1.

There were 2 scanners and measurers: 1 for 3G, and 1 for WLAN; and 1 evaluator, which
assigned ranks to networks according to their average received signal power.

To test automatic conversion between units in the framework, we used 2 measurement units
for signal power: % (for 3G networks) and dBm (for WLANs). Conversion between dBm
and % was possible, because typical signal power for 802.11x chips lies between −120 and
−20 dBm, and the relationship between power in dBm and power in mW is almost linear on
this interval [8, p. 4]. Therefore, 100% (maximum power) roughly corresponds to −20 dBm,
and 0% (minimum power) corresponds to −120 dBm.

We introduced two significant differences from the original signal strength-based solution:
• networks were ranked according to their average, instead of instantaneous, signal power;
• ranks were compared with a relative threshold of 8%, instead of 0. Threshold was chosen

arbitrarily, just to test that rank comparison takes threshold value into account.

TABLE II
SAMPLE SEQUENCE OF signalstren CALLS.

Call # Detected Network Network Type Signal Strength, %
1 SJCE STUDENT WLAN 87

2 SJCE STUDENT WLAN 75
ROUTER WLAN 53

3 SJCE STUDENT WLAN 32
ROUTER WLAN 67

4
SJCE STUDENT WLAN 73

shivu WLAN 37
MegaFon 3G 80.5

Preliminary testing of the new Evaluator was done on a regular desktop computer running
Ubuntu 10.04 LTS. Testing consisted of regularly calling signalstren, supplying simulated net-
work scan information and parameter measurements to it. The information sent is summarized
in the Table II (expected winning network is shown in bold).

1https://github.com/OSLL/sw3g/tree/new-arch

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 10 --

'

&

$

%

=============== before update ================
00:50:18:64:1E:88 __ROUTER__ wlan

Signal Strength[Power (%)]: size=2,mean=60,variance=98,stdev=9.89949,last_value=67
00:18:E7:8C:B6:D2 SJCE_STUDENT wlan

Signal Strength[Power (%)]: size=3,mean=64.6667,variance=836.333,stdev=28.9194,last_value=32
=============== after update ================
25520 MegaFon 3g

Signal Strength[Power (%)]: size=1,mean=80.5,variance=0,stdev=0,last_value=80.5
00:1E:58:B8:AB:A3 shivu wlan

Signal Strength[Power (%)]: size=1,mean=37,variance=0,stdev=0,last_value=37
00:18:E7:8C:B6:D2 SJCE_STUDENT wlan

Signal Strength[Power (%)]): size=4,mean=66.75,variance=574.917,stdev=23.9774,last_value=73
================= ranking ===================
[signal_strength_evaluator] MegaFon rank=80.5
[signal_strength_evaluator] shivu rank=37
[signal_strength_evaluator] SJCE_STUDENT rank=66.75
[signal_strength_evaluator] found best net, it is: MegaFon
================== voting ===================
determining overall...
found best count - 1 - for MegaFon
found overall winner, it is: MegaFon

The winner is: 25002 - MegaFon (type 3g)

Fig. 7. signalstren log for the sample�
�

�

best=3g 25520 MegaFon
best[3g]=25520 MegaFon
best[wlan]=00:18:E7:8C:B6:D2 SJCE_STUDENT

Fig. 8. signalstren output for the sample

New signalstren application performed well, choosing the expected winner in each of
the test cases. Signalstren log and output on the last step are shown in Fig. 7 and Fig. 8,
respectively.

V. CONCLUSION

We created the FINE framework for network detection, parameter measurement and rank-
ing. We have successfully redone the monolithic Evaluator application using FINE, easily
adding averaging and comparison of network ranks using a certain relative threshold. Ac-
cording to the preliminary test, results obtained with our new signalstren application based
off the FINE framework are consistent with the results we got from the old application. The
new application is much easier to maintain and improve, though, largely due to the separation
of concerns, e.g., the evaluator need not know how the parameters are measured to process
their values.

Extracting existing monolithic Evaluator functionality into three kinds of interacting com-
ponents: scanners, measurers and evaluators, lays the groundwork for implementation of more
sophisticated network ranking schemes. These include using multiple parameters for ranking
networks (e.g., SNR, collision rate, average throughput, packet loss and network latency,
jitter); ranking depending on the environment (remaining battery charge, device velocity, etc.)
and so on. Exploring these possibilities for intelligent and automatic selection of best access
network will be the topic of our future works.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 11 --

REFERENCES

[1] N. Amelichev, K. Krinkin, S.P. Shiva Prakash, TN Nagabhushan, ”Signal Strength-Based Approach for 3G/WLAN
Handover on Nokia N900 Devices”, Proceedings of 10th Conference of Open Innovations Association FRUCT, Tampere,
Finland, 7-11 November 2011, pp. 10–15.

[2] ”WiFi AP Handover/Switching”. - http://androidforums.com/captivate-all-things-root/270139-wifi-ap-handover-
switching.html, 2011.

[3] ”WiFi Handover Between Access Points not Happening Automatically”. - http://androidforums.com/android-
lounge/220090-wifi-handover-between-access-points-not-happening-automatically.html, 2010.

[4] ”3G/WiFi Seamless Offload”. - http://www.qualcomm.com/media/documents/files/3g-wifi-seamless-offload.pdf, 2010.
[5] ”Developer Guide - Protocol Buffers”. - http://code.google.com/intl/ru-RU/apis/protocolbuffers/docs/overview.html,

2011.
[6] B.P. Welford, ”Note on a method for calculating corrected sums of squares and products”. Technometrics 4(3), pp.

419–420, 1962.
[7] ”NetworkManager D-BUS Interface Specification”. - http://projects.gnome.org/NetworkManager/developers/spec.html,

2008.
[8] ”Converting Signal Strength Percentage to dBm Values”. - http://www.wildpackets.com/elements/whitepapers/Converting

Signal Strength.pdf, 2002.
[9] ”Wireless Tools for Linux”. - http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html, 2008.

__PROCEEDING OF THE 11TH CONFERENCE OF FRUCT ASSOCIATION

-- 12 --

