
Web Mapping Service for Mobile Tourist Guide

Nikolay Teslya
SPIIRAS

St.Petersburg, Russia
teslya@iias.spb.su

Abstract—Development of context-aware systems depends
on the context definition and the context components. The
entity location was always one of the main context
components. For using location, a map service that provides
possibilities of working with geographical information and
showing results on the map is needed. The paper describes an
implementation of a web mapping service for a mobile tourist
guide, which is a context-aware service developed for
supporting travelers before, during and after the trip. The
mapping service provides possibilities of map showing,
routing, geocoding, and has minimal license restrictions. The
paper provides an analysis of existing web mapping systems
such as Google, Microsoft, Yandex and describes
implementation of free web mapping service for the mobile
tourist guide based on OpenStreetMap, Leaflet, PostGIS,
pgRouting, and Nominatim projects.

I. INTRODUCTION

Nowadays there are many mobile applications and
services developed for information processing with
possibilities to consider the context. The definition of the
context always includes the location of the considered
object. In particular, A.K. Dey et al. provided the most
detailed definition of information system context, in 2001.
They define it as any information that can be used to
characterize the situation of an entity, where an entity is a
person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves [1]. The examples of
location-aware applications are navigation applications,
tourist guides, advertisement applications, sport trackers
and others. All these applications can determine the user
location by using signals from GPS/GLONASS satellites as
well as signals from the mobile network base stations. After
the information has been processed, results should be
shown on the map. For this purpose, the composition of
map-based applications is used. This composition includes
geoinformation sources, applications for map rendering,
user interfaces for map showing, and applications for
geoinformation processing. In the case of location-aware
application the geoprocessing module can implement the
following functions: routing for the high amount of routes,
routes showing with additional information, such as start
and end points, moving time, route length, geocoding and
reverse geocoding, and others.

This paper describes implementation of the web
mapping service for the mobile tourist guide [1], [2]. The
mobile tourist guide aims to provide a comprehensive up-
to-date information and assistance in the travel-related
decision making, especially during the trip to enrich tourist
experiences. The system accumulates tourist’s interests and
context-related information and searches for information
about points of interest (POI), attractions, and available
transportation means based on this information [2], [3].
Transportation means include public transport, taxis, and
ridesharing in the region. For attractions and POI searching,
routing and visualization of results in the mobile tourist
guide, a web mapping service that satisfying the following
requirements is needed: location and routing support, no
limitations for route requests amount, address searching
support, maximal coverage area, and data accuracy.

The rest of the paper is structured as follows. Section 2
provides description and comparison of the main well-
known web mapping services: Google Maps, Yandex
Maps, Microsoft Bing, and OpenStreetMap with
CloudMade. Section 3 gives description of the
OpenStreetMap-based instruments for geographic
information processing and map rendering with the
additional information on the map. Section 4 provides
descriptions of the routing and geocoding utilities.
Section 5 shows the implementation of web mapping
service for mobile tourist guide. Section 6 describes
performance of the built service based on the routing time
evaluation.

II. WEB GEOINFORMATION SERVICES

The finding of the accurate and detail geographic
information is not a real problem nowadays. Major world
Internet-searching corporations additionally provide map
services that allows to link search results to the place on the
Earth. These services are provided by, for example, Google
and Microsoft. Also, Yandex provides map service on the
Russian and post-USSR Internet-market. All services
provide high quality map with many additional functions,
but there are serious limitations to the maps usage such as
copyrights and restrictions on servers loading.

Besides proprietary services there is a free map provider
called OpenStreetMap. OpenStreetMap is a collaborative,
Wikipedia-like project to create a free editable map of the

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201550186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

world. The data about the roads are usually obtained from
the tracks recorded by GPS-receivers and imported by
special programs, which further to convert it into the OSM
geodata. The community members add additional
information such as buildings, points of interests, road
signs, traffic lights, etc. This project provides only map
data, without any additional services, but there are many
applications, developed by OpenStreetMap community,
that can be used to analyze and manipulate these data.

All services can be used as a geographic information
system in different projects. Each service provides API for
developers that allow including map into applications, web
pages, manipulating data on the map, showing additional
information over the main map layer, etc. There are some
benefits and restrictions for using the services. A
comparative overview of main map providers is presented
below. The comparison has been made by the following
characteristics that are important for the mobile tourist
guide application:

� Coverage describes geographical area provided by
service, data precision and detail.

� Routing describes functions and API provided by
service for routing and navigation.

� Geocoding is the process of finding associated
geographic coordinates (often expressed as latitude
and longitude) from other geographic data, such as
street addresses, or ZIP codes (postal codes).
Reverse geocoding is the process of converting
geographic coordinates into a human-readable
address. This characteristic describes functions and
API provided by service for geocoding and reverse
geocoding.

� Restrictions and limits describes licensing and
limitation of service usage.

A. Google Maps
1) Coverage: All world. The accuracy and detail of the

data are different in regions. For example, whole USA map
has a lot of details and very high accuracy, but Russia is
detailed only in cities. All text information, such as street
and object names, is presented with the current UI
language, local language and with Latin transliteration.
Routing is available in the half of the presented countries.
The detail information about coverage and functions in
different countries is available in the table of coverage,
provided by Google Code Page [4].

2) Routing: Google routing API (Google calls it
directions API) provides search for directions for several
modes of transportation, include transit, driving, walking or
cycling using an HTTP request. Directions may specify
start point, end point and waypoints either as text strings
(e.g. "St. Petersburg, Russia" or "Darwin, NT, Australia")

or as latitude/longitude coordinates. This service is
generally designed for calculating directions for static
(known in advance) addresses for placement of application
content on a map; this service is not designed to respond in
real time.

For the real-time calculations, Google provides
JavaScript Directions service and Distance Matrix service.
Google's Distance Matrix service computes travel distance
and journey duration between multiple origins and
destinations using a given mode of travel. This service does
not return detailed route information. It is provided by the
Directions service based on the directions API.

3) Geocoding: The Google Geocoding API provides a
direct way to access these services via an HTTP request to
geocode on the server-side, but this service is not designed
to respond in real time.

For the real-time geocoding on client-side, Google
provides JavaScript geocoder class for geocoding and
reverse geocoding dynamically from user input.

4) Restrictions and limits: The Directions API has the
following limits:

� Users of the free API can request 2 500 directions
per 24 hour period with up to 8 waypoints allowed
in each request. Waypoints are not available for
transit directions.

� Business customers can request 100 000 directions
requests per 24-hour period with 23 waypoints
allowed in each request. Waypoints are also not
available for transit directions.

Directions API URLs are restricted to approximately
2000 characters, after URL Encoding.

The Distance Matrix service has the following usage
limits:

� Maximum of 25 origins or 25 destinations per
request;

� At most 100 elements (origins times destinations)
per request.

Requests are also rate limited. If too many elements are
requested within a certain time period, an
OVER_QUERY_LIMIT response code will be returned.

In addition, the Directions API and JavaScript Directions
service and Distance Matrix service may only be used in
conjunction with displaying results on a Google map; using
Directions data without displaying a map for which
directions data was requested is prohibited.

The Google Geocoding API (server-side) has the
following limits in place:

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 136 --

� Users of the free API can do 2 500 requests per
24 hour period.

� Business customers can do 100 000 requests per
24 hour period.

Client-side geocoding will not face a quota limit unless a
batch of geocoding requests within a user session is
performed.

Like the directions API, the Geocoding API may only be
used in conjunction with a Google map; geocoding results
without displaying them on a map are prohibited.

Complete details on allowed usage are described at the
Maps API Terms of Service License Restrictions [5].

B. Microsoft Bing Map
1) Coverage: All world. The accuracy and detail of the

data are different in regions. The detail information about
coverage and functions in different countries is available in
the table of coverage provided by Bing MSDN page [6]. In
addition, there is a coverage analyzer tool that allows to
view and discover areas of Bing Maps coverage [7]. This
tool is developed by OpenStreetMap community to
compare coverage of Bing Maps and OSM Map. According
to the tool, the best coverage has USA and Western Europe.
Other world has a various precision and detail. All text
information, such as street and object names, is presented
with the current UI language and with Latin transliteration.

2) Routing: Bing Maps Routes API allows to create a
route that includes two or more locations and to create
routes from major roads using an HTTP request. Users can
create driving or walking routes. Driving routes can also
include traffic information. The URL used to get route is
built by specifying a series of waypoints. A waypoint is a
specified geographical location defined by longitude and
latitude that is used for navigational purposes. The route
includes information such as route instructions, travel
duration, travel distance or transit information. A set of
route points can also be requested.

3) Geocoding: Microsoft Bing Maps provides Location
API for geocoding and reverse geocoding. It works over
HTTP and HTTPS protocols. Works in all regions,
presented in Bing Maps, but with varying precision.

4) Restrictions and limits: It can be specified up to 25
waypoints for a route. Each set of waypoints creates a
separate route leg. Between any two waypoints, it can be up
to 10 intermediate viaWayPoints. ViaWaypoints define the
route path and do not create route legs.

One user may not exceed 100 000 total requests or 20
requests per asset, whichever is greater, of forward
geocoding transactions, sessions or routing requests, all
measured as an average over any 24 hour period [8].

C. Yandex Maps
1) Coverage: All world. The map has high accuracy and

detail in the Russia and post-USSR region, as well as
Turkey. The accuracy and detail of the data are different in
regions. All text information, such as street and object
names, is presented with the Russian language and with
Latin transliteration.

2) Routing: Routing is provided by JavaScript Yandex
Map API. The route between a start point and end point is
calculated automatically, and an unlimited number of
waypoints and throughpoints can be set on the route. A
route is built via the route function, which is passed an
array of points for the route to go through, and additional
route construction options, if necessary. A route can be
built either with or without consideration for traffic jams.

3) Geocoding: The geocoder can be accessed either over
the HTTP protocol or over using the JavaScript API. When
accessing the geocoder over HTTP, the response may be
formed either as an XML document in YMapsML format,
or in JSON format. With the JavaScript Yandex.Maps API
the search can be performed across the entire world map, or
in a specified rectangular area. In addition, the rectangular
area can apply strict limitations (the search will be
performed only across objects inside the area), or flexible
ones. In the latter case, the search will be performed across
the entire map, but the closer a found object is to the center
of the area, the higher it will be ranked in the results.

For reverse geocoding, the type of object to find can be
specified (such as building, street, neighborhood, town, or
subway station).

4) Restrictions and limits: The Yandex.Maps API cannot
be used for fee-based cartographic services or services that
restrict third-party access in any other way.

The number of geocoding queries is limited to 25 000
per Web site or mobile application a day. There is no
information about routing API limitation. [9]

D. OpenStreetMap (OSM)
1) Coverage: All world. The accuracy of data depends

only on the community activity in the region.

2) Routing: OpenStreetMap provides only the data. The
different libraries and applications, developed by OSM
community, implement routing functions. The examples are
pgRouting, GraphHopper, pyRoute, etc. [10].

3) Geocoding: Geocoding functions are also provided by
applications, developed by community.

4) Restrictions and limits: OpenStreetMap data is free
for everyone to use.

Due to the fact that map data is available for free
download and use, developers can organize own services

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 137 --

with all required features and designed for planned loading.
As an example of such service, it can be mentioned one of
the most powerful OSM-based platform for software
development, called CloudMade. The company provides a
range of web services, mobile and desktop libraries that let
developers to build powerful geo applications quickly and
easily. CloudMade makes extensive use of OpenStreetMap
data to provide mapping services. It was founded in 2007
by OSM founder Steve Coast and long-term OSM
contributer, Nick Black.

CloudMade geocoding API provides possibilities of
address geocoding and reverse geocoding, local search, and
finds geo objects by structured query. First 100 000 queries
free each month. Then it is needed to pay 15$ per 100 000
transactions.

Cloudmade routing API allows calculating route times,
distances and more, vehicle, bicycle or pedestrian routing,
and real-time, turn-by-turn routing. First 10 000
transactions free each month. Then it is needed to pay 15$
per 100 000 transactions. In addition, CloudMade provides
SSL access to their servers for $5 per 100 000 requests.

The rest part of the paper describes how to organize own
mapping service for mobile tourist guide application by
using the existing open-source OSM-based software. This
service allows building routes, showing the results on the
self-draw map on mobile device. The choice of own OSM-
based mapping service building can be explained by strong
limitation to the number of queries, license issues of query
results usage in the other map services and performance
limitations of the OSM-based public services such as an
amount of queries limitation, hardware performance and
service loading limitations. At the same time, only
ridesharing service from the work of A. Smirnov et al.
"Smart Logistic Service for Dynamic Ridesharing" [11],
which is a part of the mobile tourist guide, has to
implement about 12000 routing queries to find matching
path for 20 passengers and 30 drivers. The less value of
users is not enough to the service working. The amount of
queries for the ridesharing service exceeds all limitations of
services, described above, and requires either buying the
business account for using existing services or own web
map service implementation.

III. OWN MAP RENDERING

To reduce the load on the main OpenStreetMap site,
developers are highly encouraged organizing their server
for rendering and distributing map to the end users. For this
purpose the main page of the OpenStreetMap project uses
PostgreSQL DBMS with PostGIS extension as a main
datasource, tile generator Mapnik for map rendering and a
special module — mod_tile — for Apache web server for
tiles caching and sharing. PostGIS extension provides
functions to work with geographical data stored in
PostgreSQL database. The map is shown to the user with

using a JavaScript Leaflet library. This combination of
software is well tested and longtime checked software that
provides high-speed work and efficient works on high load.
All the software is open source and can be used by anybody
for own map services organization.

A. Map data source organization
OpenStreetMap project delivers the map data in the

OSM XML-file. This file contains a description of the
properties of all the elements that can be displayed on the
map with additional information about when the element
has been added, who has add it, etc. The file structure
allows manipulating data while map style is configured and
create layers showing an additional information over the
main map layer. However, the use of the file directly from
the file system is difficult due to the great file size and a
huge amount of information held in it. For example, file
that holds data about whole planet requires more than 450
Gb HDD space (29 Gb compressed, pbf format). Only
St. Petersburg requires about 330 Mb of free disk space. It
is very hard to search through the similar amount of
information that is presented with one file. It is also needs a
lot of computational power and time.

To resolve the problem of a big file size the model of
holding map data in the PostgreSQL DBMS has been
developed by OSM community. Osm2pgsql schema [12]
has historically been the standard way to import OSM data
for use in rendering software such as Mapnik. The import
to the PostgreSQL database with PostGIS extension is
handled by the osm2pgsql software, which has two modes
of operation, slim and non-slim, which control the amount
of memory used by the software during import and whether
it can be updated. Slim mode supports updates, but time
taken to import is highly dependent on disk speed and may
take several days for the full planet, even on a fast machine.
Non-slim mode is faster, but does not support updates and
requires a vast amount of memory.

The import process is lossy, and controlled by a
configuration XML-file in which the keys of elements of
interest are listed. The values of these "interesting"
elements are imported as columns in the points, lines and
polygons tables. (Alternatively, values of all tags can be
imported into an "hstore" type column.) These tables can be
very large, and care must be paid to get good indexed
performance.

B. Map Rendering
For the map rendering the Mapnik toolkit is used. It can

draw map from many sources: directly from OSM-XML
file, from the data stored in the database, from shapefiles
and others. This toolkit is also a main software for map
rendering on the main page of OpenStreetMap project.
Mapnik is written in C++ and can be scripted using binding
languages such as Javascript (Node.js), Python, Ruby, and
Java. It uses the Anti-Grain Geometry rendering library and

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 138 --

offers anti-aliasing rendering with subpixel accuracy. It can
read ESRI shapefiles, PostGIS, TIFF rasters, .osm files, any
GDAL or OGR supported formats, CSV files, and more.
Pre-built packages are available for OS X and Windows
and can be found at Mapnik.org/download. Many Linux
distributions provide packages for installing Mapnik.

Mapnik can output map images to a variety of graphics
formats — PNG, JPEG, SVG, and PDF, of any defined
size, any area in different geographic projections.
OpenStreetMap and other services primary use of Mapnik
involves rendering thousands of 256 × 256 pixel
tiles (Fig. 1), which are displayed with a JavaScript “Slippy
Map” interface [13].

Fig. 1. An example of a tile in St. Petersburg at zoom level 15

At the server side, the mod_tile module for Apache web
server is used. This module uses Mapnik for tiles
generation. It provides a dynamic combination of efficient
caching and on the fly rendering. Due to its dynamic
rendering, only a small fraction of overall tiles needs to be
kept on disk, reducing the resources required. At the same
time, its caching strategy allows for a high performance
serving and can support several thousand requests per
second.

C. Map displaying
There are two main JavaScript libraries that combine

individual tiles in whole map: Openlayers and Leaflet.
These libraries also provide API to include additional
information layers over the main map layer. The JavaScript
code with “Slippy Map” can be included into html web
page as widget.

1) OpenLayers library has been developed by OSM
community to display a map on the main page of the
OpenStreetMap project It is very powerful library that
allows to configure all the properties of the map. It can
display map tiles loaded from any sources as well as
additional objects such as markers, lines, polygons, popups,
etc. At the current version of OpenLayers library (2.13.1)
the syntax is quite hard and realisation of several features
needs a lof of code to be written. Moreover, some elements
of the interface have problems with scaling when running
on the mobile devices. These issues are planned to be

resolved at the OpenLayers 3.0 release.Also it is planned to
easing the use of the library by providing a new syntax.

2) Leaflet library has been developed by CloudMade
project community. Implements most of the OpenLayers
functions and has an easy to use API with simple syntax. It
works efficiently across all major desktop and mobile
platforms out of the box, taking advantage of HTML5 and
CSS3 on modern browsers while still being accessible on
older ones. It is used for the main OSM website map, as
well as on Flickr, Wikipedia mobile apps, foursquare,
craigslist, IGN, Washington Post, The Wall Steet Journal,
Geocaching.com, City-Data.com, StreetEasy, Nestoria and
Skobbler among others [14].

IV. ADDITIONAL FUNCTIONS PROVIDED BY LIBRARIES

As it has been mentioned, the main goal of the
OpenStreetMap project is to provide high quality
geographical information. There are a lot of applications
and libraries using to work with this information. All of
these applications are developed by OpenStreetMap
community. The most used functions in every GIS are
routing and geocoding.

A. Routing libraries
OpenStreetMap data includes information about roads

for routing by many modes including car, foot, bicycle and
even a horse. There are many routing applications and
libraries, developed by the OSM community. The most
interesting from them are pgRouting [15] and
GraphHopper [16].

1) pgRouting: is an extension for the PostgreSQL
DBMS. It allows manipulate through the map data
imported to the PostgreSQL DBMS with PostGIS
extension. PgRouting searches for path based on a weighted
graph that built based on information about roads in
OpenStreetMap. The main library code is written using
C++ program language with wrappers on SQL.

pgRouting provides functions for:

� All pairs shortest path, Johnson’s Algorithm;

� All pairs shortest path, Floyd-Warshall Algorithm;

� A* shortest path;

� Bi-directional Dijkstra shortest path;

� Bi-directional A* shortest path;

� Dijkstra shortest path;

� Driving Distance – allows finding nodes that are
laying in the defined distance from the starting
node;

� K-Shortest path, multiple alternative paths;

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 139 --

� K-Dijkstra, one-to-many shortest path allows
finding shortest paths from one origin to several
destinations;

� Traveling sales person;

� Turn Restriction Shortest Path (TRSP);

� Shortest Path Shooting Star. Searches for the
shortest path from edge to edge (not from vertex to
vertex).

2) GraphHopper: is a fast and memory efficient Java
routing engine. Designed for the server, desktop, as well as
for Android. Works out of the box with OpenStreetMap
(osm and pbf) but can be adapted to use another data.

GraphHopper provides functions for:

� A* Shortest Path;

� Dijkstra Shortest Path;

� Bi-directional Dijkstra Shortest Path;

� Bi-directional A* Shortest Path;

� One-to-many shortest paths.

B. Geocoding libraries
1) Tiger Geocoder: is a PL/pgSQL based geocoder

written to work with the TIGER (Topologically Integrated
Geographic Encoding and Referencing system) / Line and
Master Address database export released by the US Census
Bureau. Geocoder is packaged with the PostGIS source
code and can be used with PostgreSQL/PostGIS map
database. Although it is designed specifically for the US, a
lot of the concepts and functions are applicable and can be
adapted to work with other country address and road
networks.

2) Nominatim: is another geocoder for PostGIS, gaining
in popularity and more suitable for international use. It uses
OpenStreetMap gazeteer formatted data. It requires
osm2pgsql for loading the data, PostgreSQL 8.4+ and
PostGIS 1.5+ to function. It is packaged as a webservice
interface and seems designed to be called as a webservice.
Just like the tiger geocoder, it has both a geocoder and a
reverse geocoder component. From the documentation, it is
unclear if it has a pure SQL interface like the tiger
geocoder, or if a good deal of the logic is implemented in
the web interface.

V. WEB MAPPING SERVICE IMPLEMENTATION

As it has been mentioned, web mapping service for
mobile tourist guide should implement the following
functions: location and routing support, address searching
support, maximal coverage area, and data accuracy and also
has no limitations for queries amount. According to these
requirements and descriptions of the services, presented in

Section 2 and Section 3, the following combination of
project is used for GIS building on the server side (Fig. 2):

� OpenStreetMap as map data source,

� PostgreSQL database with PostGIS extension for
map storing and data processing,

� Apache mod_tile module with Mapnik-based
renderd rendering core for map rendering,

� pgRouting library for routing,

� Nominatim library for geocoding.

On the client side, the Leaflet library for map showing is
used. In addition, client provides the device location to the
server using device-specified geolocation API.

For the information importing, two main utilities has
been used: osm2pgsql and osm2pgrouting. First utility
imports the full OSM XML file to the database tables,
except information about changes, versions, timestamps,
etc. It creates the table structure, imports file and builds
indexes for the fast searching.

Osm2pgrouting utility has been used to build routable
database. It has created all needed tables, imported
information about selected types of road and created
topology over these roads.

On the client side the developed GIS is presented by the
web page with included “slippy map”, provided by Leaflet
library. When the web page view opens by the user, the
map is initializing. Map contains of a set of tiles with
defined zoom level. These tiles are rendered by the renderd
daemon at the server, which is a part of Apache mod_tile
module. For the server usage optimization rendered tiles are
saved in the cache directory. The structure of cache
directory looks like follows:

shared_cache_folder
 |- z
 |- x
 |- y.png,

Geocoding

Navigation and
ridesharing service,

pgRouting

Geocodin
g service,

Nominati

Map rendering
core,
Apache +

PostgreSQL+P
ostGIS Map

Web page
with Leaflet
map widget
and
additional JS
functions Route

HTTP

Map

Fig. 2. Web mapping service architecture for the mobile tourist guide

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 140 --

where ‘shared_cache_folder’ is a name of shared folder on
the web-server, ‘z’ is a name of subfolder in
‘shared_cache_folder’, associated with a map zoom level,
‘x’ is name of subfolder in ‘z’, associated with a first map’s
tile index, and ‘y’ is a file in ‘x’, associated with a second
tile’s index (see Fig. 3). When the web page with “slippy

Fig. 3. “Slippy” Map view structure

map” requests tile, it constructs an http request by the
following scheme:

http://path_on_server/{z}/{x}/{y}.png

If there is no tile in the destination path, renderd is started
to render it and save in cache. Else the tile is loaded from
the cache and adds to the “slippy map” view on the web
page.

In addition to the Leaflet API, several functions has been
written with JavaScript to provide possibilities of showing
advanced information such as single routes, routes with
ridesharing, markers with additional information and layers
descriptions. These functions can be accessed from the web
page as well as from the application.

Navigation and ridesharing service is developed based
on the pgRouting library. The service allows building
shortest paths and searching the transportation means to
reach the places of interest. It uses the following pgRouting
functions:

� shortest path A* for finding shortest paths for
tourists travelling by car or preferring foot walks;

� driving distance for possible meeting points search
in the case of ridesharing;

� K-Dijkstra, one-to-many shortest path for the
optimal ridesharing route finding.

For the geocoding possibilities, the Nominatim library is
using. Because of Nominatim public server maintainers ask
not to provide a heavy usage of theirs servers, the own
instance of Nominatim has been configured for working
with Apache web server. When user tries to find an address,
the following request is generated on the client side:

http://path_to_nominatim/search?format=jso
n&q=queried+address

This request returns found places with coordinates in
JSON format that interpreted by the client application and
is showed to the user. It can be several results from one
query and user should select one. In the case of reverse
geocoding, when user clicks on the map, client application
generates another request to the Nominatim:

http://path_to_nominatim/reverse?format=js
on&lat=latitide&lon=longitude&zoom=zoom_leve
l

This request returns a place address that depending on
the zoom level. At higher zoom levels there are more
details found by reverse geocoding. For example, at zoom
level 10 and the coordinates lat=59.93404,
lon=30.30599, the geocoder finds Admiralteysky
District of St. Petersburg, Russia. At the same coordinates
at zoom level 18 there is St Isaac's Cathedral.

VI. PERFORMANCE TEST

Since the routing functions are the most resource-
intensive in presented structure, the test is based only on the
routing time evaluation. All evaluations have been
performed in the virtual machine with Debian 7.2 operating
system, running under the Hyper-V hypervisor. For the
virtual machine 4 cores of the Intel® Xeon(R) CPU E5620
2.40GHz and 3 Gb DDR3 RAM have been allocated. In
addition, files of the virtual machine with map database are
held on RAID 1 to improve read performance of the
database.

Routing functions work over the built topology and run
rather fast. For example, it is need about 401 ms to find
route from the most northern point of St. Petersburg to its
most southern point (path consists of 363 points, total
length is 31 km) with A* shortest path function. In this
example path has been searched through the all types of
roads, including walk roads, footways, steps and other road
types which are cannot been ridden by car. After the
excluding roads that cannot been passed by car, search time
has reduced to 172 ms (366 points, total length is 31.3 km).
Fig. 4(a) and Fig. 4(b) provide an example of how the
searched path depends on the available road types. At the
Fig. 4(a) a route has been built through the all road types
with the following query:

SELECT * FROM pgr_astar(
 'SELECT gid AS id,
 source::integer,
 target::integer,
 length::double precision AS cost,
 reverse_cost,
 x1, y1, x2, y2
 FROM ways’, 535, 44115, true, true)

In this SQL query, the shortest path A* function is used.
In this function, the inner SQL selects the roads that will be
used for routing; first number is a start point ID, second
number is an end point ID, and Boolean values set the road

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 141 --

graph is directed and edges has reverse cost. This query
returns 135 path points with total distance 8.4 km at
342 ms. With this path driver should ride a car through
yards, footpaths, etc.

All roads in OpenStreetMap have a classification tag that
describes the road class (highway, motorway, residential,

Fig. 4. Route (a) without the road type restrictions (left)
(b) with restriction of road types that cannot been passed by car (right).

footway, etc.), maximal available speed, road cover
(asphalt, gravel, etc.). These tags converts to the road class
ID while importing to the database and can be used for
roads filtering. The Fig. 4(b) shows path with restriction of
roads types that cannot been passed by car. In the imported
database, these roads have class ID less or equal 110. The
request that takes into consideration the road restrictions is
presented below:

SELECT * FROM pgr_astar(
 'SELECT gid AS id,
 source::integer,
 target::integer,
 length::double precision AS cost,
 reverse_cost,
 x1, y1, x2, y2
 FROM ways WHERE class_id <= 110’,
535, 44115, true, true)

This request returns path with 112 points with total
distance 8.8 km at 130 ms.

VII. CONCLUSION

There are many web mapping services that can be used
by developers to build own application with map functions
support. Most of them provide possibilities of map
showing, routing, geocoding and other functions. At the
same time, these services have many restrictions for using
their functions. OpenStreetMap project provides geographic
information data for free. Developers can build own
geographic information services with needed functions

based on the OSM data. All needed software is free for use,
modification and provides many additional functions to
manipulate the OSM data. Therefore, own map service may
be implemented. Developers may extend the functionality
of this service by using applications and libraries developed
by the OSM community, or realize own functions to
manipulate the OSM data. The case study that is presented
in the paper shows an example of the map service building
for tourist support application. Performance tests of the
built system show high-speed evaluations of the used
functions. It means that the system can work under high
load and provide high service quality to users.

ACKNOWLEDGMENT

This research is a part of grant KA322 «Development of
cross-border e-tourism framework for the programme
region (Smart e-Tourism)» of Karelia ENPI programme,
which is co-funded by the European Union, the Russian
Federation and the Republic of Finland. The presented
results are also a part of the research carried out within the
project funded by grants # 13-07-00336 and 13-01-00286
of the Russian Foundation for Basic Research.

REFERENCES

[1] A.K. Dey, D. Salber, and G.D. Abowd, (2001). "A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications," Context-Aware Computing, A
Special Triple Issue of Human-Computer Interaction, 16.
Retrieved August 13, 2012. [Online]. Available:
http://www.cc.gatech.edu/fce/ctk/pubs/HCIJ16.pdf.

[2] A. Smirnov, A. Kashevnik, S.I. Balandin, and S.Laizane,
Intelligent Mobile Tourist Guide: Context-Based Approach and
Implementation, Internet of Things, Smart Spaces, and Next
Generation Networking, 13th Int. Conf., NEW2AN 2013, and 6th
Conf., ruSMART 2013, St. Petersburg, Russia, August 28-30,
2013, Springer, LNCS 8121, pp. 94-106.

[3] A. Smirnov, A. Kashevnik, A. Ponomarev, N. Shilov,
M. Shchekotov, N. Teslya, Recommendation System for Tourist
Attraction Information Service, Proc. of the 14th Conf. of Open
Innovations Association FRUCT, State University of Aerospace
Instrumentation, pp. 140-147.

[4] Google Map Coverage Filtered [Online]. Available: http://gmaps-
samples.googlecode.com/svn/trunk/mapcoverage_filtered.html

[5] Google Maps/Google Earth APIs Terms of Service. [Online].
Available:
https://developers.google.com/maps/terms#section_10_12.

[6] Bing Maps Geographic Coverage [Online]. Available:
http://msdn.microsoft.com/en-us/library/dd435699.aspx.

[7] Bing/Coverage. OpenStreetMap wiki. [Online]. Available:
http://wiki.openstreetmap.org/wiki/Bing/Coverage.

[8] Microsoft® Bing™ Maps Platform APIs’ Terms Of Use [Online].
Available: http://www.microsoft.com/maps/product/terms.html.

[9] Yandex.Maps API Terms of Use [Online]. Available:
http://legal.yandex.com/maps_api/.

[10] Routing. OpenStreetMap Wiki. [Online]. Available:
http://wiki.openstreetmap.org/wiki/Routing#Developers.

[11] A. Smirnov, N. Shilov, A. Kashevnik, N. Teslya, "Smart Logistic
Service for Dynamic Ridesharing," Internet of Things, Smart
Spaces, and Next Generation Networking, 12th International
Conf., NEW2AN 2012, and 5th Conf., ruSMART 2012, St.
Petersburg, Russia, August 27-29, 2012, pp. 140-151.

[12] Osm2pgsql/schema. OpenStreetMap Wiki [Online]. Available:
http://wiki.openstreetmap.org/wiki/Osm2pgsql/schema.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 142 --

[13] Slippy Map. OpenStreetMap Wiki. [Online]. Available:
http://wiki.openstreetmap.org/wiki/Slippy_Map

[14] Leaflet. An Open-Source JavaScript Library for Mobile-Friendly

Interactive Maps [Online]. Available: http://leafletjs.com/.
[15] pgRouting. [Online]. Available:http://pgrouting.org.
[16] GraphHopper. [Online]. Available:http://graphhopper.com/.

___PROCEEDING OF THE 15TH CONFERENCE OF FRUCT ASSOCIATION

-- 143 --

