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Gliomas are the most common primary malignant brain tumors in adults. Accurate
grading is crucial as therapeutic strategies are often disparate for different grades
and may influence patient prognosis. This study aims to provide an automated glioma
grading platform on the basis of machine learning models. In this paper, we investigate
contributions of multi-parameters from multimodal data including imaging parameters
or features from the Whole Slide images (WSI) and the proliferation marker Ki-67 for
automated brain tumor grading. For each WSI, we extract both visual parameters
such as morphology parameters and sub-visual parameters including first-order and
second-order features. On the basis of machine learning models, our platform classifies
gliomas into grades II, III, and IV. Furthermore, we quantitatively interpret and reveal
the important parameters contributing to grading with the Local Interpretable Model-
Agnostic Explanations (LIME) algorithm. The quantitative analysis and explanation may
assist clinicians to better understand the disease and accordingly to choose optimal
treatments for improving clinical outcomes. The performance of our grading model
was evaluated with cross-validation, which randomly divided the patients into non-
overlapping training and testing sets and repeatedly validated the model on the different
testing sets. The primary results indicated that this modular platform approach achieved
the highest grading accuracy of 0.90 ± 0.04 with support vector machine (SVM)
algorithm, with grading accuracies of 0.91 ± 0.08, 0.90 ± 0.08, and 0.90 ± 0.07 for
grade II, III, and IV gliomas, respectively.

Keywords: glioma grading, machine learning, morphological features, support vector machine, digital pathology
images

INTRODUCTION

Gliomas are the most common primary malignant brain tumors in adults, accounting for
30% of all primary central nervous system (CNS) tumors and 80% of all malignant brain
tumors (Goodenberger and Jenkins, 2012). According to their histological characteristics, such
as cellularity, pleomorphism, nuclear atypia, necrosis, and endothelial proliferation, gliomas can
be classified into WHO grades I–IV (Louis et al., 2007). Correctly differentiating tumor grades
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is critical because they are widely used to predict patient
outcomes and determine the use of adjuvant therapy
protocols including aggressive radiotherapy and concomitant
chemotherapy (Hsu et al., 1997). A precise prediction of
the prognosis depends on an accurate pathology diagnosis.
Compared to glioblastoma (GBM), low-grade gliomas (LGGs;
WHO II) have greater chemotherapy sensitivity and a better
post-therapy prognosis (Cillekens et al., 2000; Cavaliere et al.,
2005; Wang and Jiang, 2013).

Considered as one of the “gold standards” and conventionally
used by pathologists for tumor grading, haematoxylin and eosin
(H&E) stained images provide specific histological characteristics
and patterns to differentiate gliomas grades (Rubin et al., 2008).
The parameters extracted by clinicians from WSIs mostly focused
on the cellular level, including the number and size of nuclei,
which reflects the proliferation and differentiation of the nuclei
per unit area and heterogeneity of different levels of the tumor
cells. For instance, compared to grade II gliomas, grade III,
and grade IV both exhibit microvascular proliferation (MVP),
indicating the presence of proliferation of enlarged blood vessels
in the tissue (Burger et al., 2002). Grade IV gliomas can be further
distinguished from grade III by examining H&E stained images
for the presence of highly pleomorphic cells with hyperchromatic,
irregular nuclei and brisk mitotic activity. Grade IV gliomas
are often more mitotically active, necrosis prone, and generally
associated with neovascularity, infiltration of surrounding tissue
and a rapid postoperative progression (Louis et al., 2016).
However, the conventional grading procedure based on H&E
pathology images is often subjective and operator-dependent and
of low reproducibility due to the inter-observer variability.

Apart from H&E stained images, immunocytochemical
staining with Ki-67 antibodies has been widely accepted as
an alternative reference for assessing the proliferative potential
in tumor cells. Strictly associated with cell proliferation, Ki-67
nuclear antigen is present during all active phases of the cell
cycle (Gap 1, Synthesis, and Gap 2 phases of the cell cycle) and
mitosis but absent in resting (quiescent) cells (Gap 0) (Bruno and
Darzynkiewicz, 1992). The proliferative index (PI), determined
by Ki-67 immunohistochemistry (IHC), correlates well with the
histological malignancy grade of gliomas (Skjulsvik et al., 2014).
PI values may assist in differentiating grade II from III or grade
II from IV; however, due to the overlapping PI values of grades
III and IV, PI itself would not be considered as sufficient evidence
to adequately determine these two malignancy grades (Skjulsvik
et al., 2014).

Computer-assisted grading systems are capable of mining a
large number of quantitative features from digital pathology slide
images to sort out the most important patterns for grading.
This ability provides the opportunity for better quantitative
modeling of the disease appearance and hence possibly improves
the prediction accuracy of tumor grading. In addition, it
also provides a more reproducible, less labor-intensive and
more efficient mechanism than manual grading by pathologists.
However, the compelling opportunities offered by big digital
pathology data come with optimal computational algorithm
challenges (Madabhushi and Lee, 2016). For example, image
analysis and computer-assisted detection models inadequately

address the data density in high-resolution digitized whole slide
images (WSI). Mousavi et al. (2015) proposed to distinguish
LGGs from GBMs using image features extracted from regions
of interest (ROIs) in WSIs. However, the manual selection of ROI
in this method may introduce a potential risk of inter-observer
variance. Kong et al. (2009) tiled the WSI into non-overlapping
pieces and analyzed each image tile to grade LGGs from GBMs.
While fully processing all the image tiles, the method might be
less computationally efficient, in particular, for high-resolution
H&E stained images. To improve computational efficiency of the
automated prognosis of neuroblastoma from H&E images, Sertel
et al. (2009) proposed a multiresolution approach to extract local
binary pattern and texture features of different scales.

While the above mentioned automated methods process and
analyze WSIs for grading, the method proposed by Ertosun and
Rubin (2015) classified LGGs and high-grade glioma (HGGs)
on the basis of automated segmentation and analysis of cell
nuclei and morphological features (Kong et al., 2013) but
neglected the tumor patterns important for manual grading.
To systematically compare the performance of classic machine
learning models on grading, Huang and Lee (2009) implemented
three machine learning models, Bayesian, k-nearest neighbors
(KNN) and support vector machine (SVM), and concluded that
KNN and SVM both achieved the highest accuracy. Apart from
conventional machine learning, Reza and Iftekharuddin, 2016
proposed a deep learning-based grading system, characterizing
each tile type with convolutional neural network (CNN).
However, these machine learning and deep learning models are
considered as “black boxes” without transparent interpretation of
either the models themselves or the grading results.

To improve reproducibility and avoid inter-operator variance
in conventional manual grading, in this study, we design and
implement a platform for automated grading gliomas into grades
II, III, and IV from digital pathology images. In our approach,
discriminative visual, sub-visual and IHC parameters are
identified, and a reliable machine learning model is selected. With
the machine learning based models, we integrate information
from both histological morphology images and proliferation
biomarkers into a single unified framework to predict the
glioma grade in 116 patients,which surpass the current clinical
paradigm for patients diagnosed with glioma. Our platform
provides interpretation on the grading outcomes to disclose the
contributions of multiparametric features to individual cases and
presents an alternative for objective, accurate, and interpretable
prediction of glioma grading in the clinic.

MATERIALS AND METHODS

Material and Dataset
The dataset used in this study involves 146 cases of glioma
grading from grades II to IV: 49 grade II, 45 grade III,
and 52 grade IV images. All cases were from Shandong
Provincial Hospital affiliated to Shandong University, and the
pathology diagnoses of the cases were based on WHO standards
(Louis et al., 2007). Paraffin-embedded samples were cut into
3 µm thick sections and stained with H&E stain. All H&E
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images in this study were obtained from WSIs scanned by
a Leica SCN400 slide scanner (Leica Biosystems, Nussloch,
Germany) with multiresolution varying from 20× to 40×.
Ki-67 immunohistochemical staining was prepared using an
automated staining instrument (Ventana, Benchmark Ultra). As
defined in Eq. 1, Ki-67 PI is the percentage of the number of
immunoreactive tumor cells in relation to the total number of
cells. At least 1000 tumor cells or alternatively, three high-power
fields (HPFs) were examined by two independent experienced
observers. The mean of Ki-67 PI is the average of the values
calculated by different observers.

PI=
positive cells

total cells
∗ 100 (1)

Automated Interpretable Glioma Grading
With Machine Learning Models
As illustrated in Figure 1, our automated grading framework is
composed of five major components including automated ROI
identification, feature extraction, important feature selection,
automated grading, and result interpretation.

Automated ROI Identification
Our proposed computational method automatically identifies the
ROIs that reflect cell proliferation and cellular density based on
the number of nuclei in the regions. H&E images were first
partitioned as tiles, each with a resolution of 5120∗5120 pixels

to enable the process of high-resolution imaging (Sertel et al.,
2009; Mobadersany et al., 2018). Then, we detected nuclei using
watershed nuclei detection algorithm in each tile (Al-Kofahi et al.,
2010; Kumar et al., 2017) and based on the density of the detected
nuclei, the five tiles with the highest densities of nuclear were
identified as the ROIs.

Multi-Parameter Extraction and
Important Parameter Selection
From the identified ROIs, we extracted multi-parameters
including visual features and sub-visual features as the inputs
for automated grading. The visual features, including seven
nuclear morphological features, five nuclear staining features,
and nuclei clusters or patterns, were extracted to reflect a basis for
observation when pathologists make diagnostic decisions (Kong
et al., 2013). For instance, nuclear morphological characteristics
such as shape, size, and circularity that reflect cellular atypia
have been commonly used by pathologists to distinguish different
grades of glioma.

In addition to the visual features, sub-visual features also
contribute to accurate glioma grading. The sub-visual features are
the computerized high-throughput intensity and texture image
features that have been proved to have diagnostic, predictive,
and prognostic power, although these features are somehow
beyond human perception capabilities (Thawani et al., 2017).
In our method, for instance, intensity features describe
the first-order statistical information of the image intensity

FIGURE 1 | Schematic flowchart of the automated grading framework. We first automatically selected the representative regions of interest (ROIs) from the H&E
images. Based on these ROIs, we extracted and selected important visual, sub-visual, and immunohistochemical features. We established automated machine
learning models with these features for glioma grading. The grading results output from the model were further explained with the LIME algorithm.
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distribution, while the second-order grey-level co-occurrence
matrix (GLCM) features capture both statistical intensity and
relationship between neighborhood pixels, revealing information
such as homogeneity, contrast and entropy (Selvarajah and
Kodituwakku, 2011). As illustrated in Figure 1, we used a random
forest (RF)-based feature selection method combined with
backward feature elimination to choose the most representative
and informative features (Saeys et al., 2007).

Machine Learning Model for Automated
Grading
To select the best machine learning model for grading, we
compared the performance of four types of classic machine
learning models including RF (Liaw and Wiener, 2002),
gradient boosting decision tree (GBDT) (Friedman, 2002),
SVM (Furey et al., 2000) and neural network (Hagan et al.,
1996) (NN) (Zacharaki et al., 2009; Kothari et al., 2013).
To achieve the best performance for each grading model,
the hyperparameters of the model need to be optimized,
for example, the tree number in RF model. The framework
for automatically tuning the hyperparameters is provided in
Figure 2.

Validation and Evaluation
116 patients out of 146 was used to train the model while the
other 30 patients was used for further validate the model. The
116 patients were randomly divided into training datasets (75%)
and testing datasets (25%) to test performance and validate the
models (Larsen and Goutte, 1999). The corresponding training
set was used to train the classifier, and the test set was used to
verify the model performance. This procedure was repeated 30
times by changing random states while maintaining the same
train-test split ratio. Apart from accuracy, other measurements
including precision, recall, F1 score and confusion matrix were
calculated to more completely validate grading performance. In
addition, extra 30 cases were used as validation dataset with 30
times of cross-validation to further test the performance of our
proposed model.

RESULTS

Multi-Parameter Extraction and
Selection
In the multi-parameter extraction phase, we extracted 24
visual parameters and 171 sub-visual parameters. Since the

FIGURE 2 | Machine learning model with hyperparameter tuning. The original data were randomly separated into training data and testing data. Training data were
used to train the machine learning model, while testing data were used to evaluate the model performance. The hyperparameters of the model can be continuously
tuned with information acquired from testing results until the optimal model is obtained.
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large size of the sub-visual features may suppress important
morphological features, we performed the feature selection
process on the sub-visual features twice to eventually choose 15
features from this category. The predictive performance of the
selected 11 visual features, 15 sub-visual features and one IHC
characteristic – Ki-67 in this study – were assessed with separate
RF models. The box-plot in Figure 3A shows that visual features
had the highest predictive power with 0.76 accuracy, while the
accuracy for sub-visual features and Ki-67 only reached 0.62 and
0.53, respectively.

Automated Grading Performance With
Different Models
We fed these selected important parameters into the four
machine learning models RF, GBDT, SVM, and NN to sort
out the best grading model. Based on cross-validation, SVM
achieved the most accurate and stable grading performance,
with the accuracy of 0.90 ± 0.04, while the other three models
had lower but nearly the same performance with accuracy
stabilized at approximately 0.87 (Figure 3B). Table 1 shows
the results of other measurements including F1, precision and
recall, among which the SVM model maintained the best
performance.

Further Investigation of SVM
Performance
To better understand the performance of the SVM model for
grading histologic grades of glioma II, III, and IV, we calculated a
confusion matrix to uncover misclassification cases. As illustrated
in Figure 4A, grade II had the highest accuracy (0.91) in the
SVM model while the other two grades both had the accuracy
of 0.90. As shown in the confusion matrix for the SVM model
(Figure 4B), grade III gliomas may share common histological
characteristics with both grade II and grade IV gliomas and
thereby may lead to misclassification. In addition, we added
30 new patients of grade II to IV for the further validation.
The validation performance achieved 0.88 ± 0.14 with 30 times
cross-validation.

Quantitative Grading Results
Interpretation
The machine learning algorithm is usually complex and
considered as a “black box” without explicit interpretation
of the learning process or the outputs. To provide a better
quantitative interpretable explanation for the grading results,
we used Local Interpretable Model-Agnostic Explanations
(LIME) algorithm (Ribeiro et al., 2016) to reveal the

FIGURE 3 | Predictive capability of selected important features and models. (A) Predictive accuracy of different categories of selected important features. In each
category, features were assessed for accuracy separately. (B) Accuracy of different grading models. Each model was assessed with 30 times cross-validation.

Frontiers in Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 1046

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01046 January 9, 2019 Time: 10:20 # 6

Wang et al. Multiparametric Glioma Grading

FIGURE 4 | Assessment of grading results with the support vector machine (SVM) model. (A) Prediction accuracy for different histological grades in the SVM model.
The accuracy for each grade was obtained by separating the results by grades in the 30 times cross-validation. (B) Confusion matrixes for different models. The
confusion matrixes reveal the number of misclassified cases for each grade.

importance of features and their underlying contribution
to the grading decision. In this section, we illustrated three
case studies to interpret the automated grading results and
the underlying reasoning for our SVM model with the LIME
algorithm.

TABLE 1 | F1, accuracy, precision, and recall for different machine learning
models.

Method F1 Accuracy Precision Recall

Random forest 0.86 ± 0.07 0.87 ± 0.06 0.86 ± 0.07 0.87 ± 0.06

GBDT 0.86 ± 0.08 0.87 ± 0.07 0.86 ± 0.07 0.86 ± 0.07

Neural network 0.86 ± 0.05 0.86 ± 0.06 0.87 ± 0.06 0.87 ± 0.05

SVM 0.90 ± 0.07 0.90 ± 0.04 0.91 ± 0.04 0.91 ± 0.04

As Ki-67 has been proved to be a clinically significant indicator
for grading, we predicted the grading results by machine
learning models while also taking the influence of Ki-67 into
consideration. To highlight this strategy, we chose three cases to
elucidate the workflow of SVM for precise grading. As shown in
Figure 5A, Case 1 is a relatively easy case to classify, being grade
II with low Ki-67 (0.05). However, Case 2 and Case 3 are more
ambiguous, both with a value of 0.2 for Ki-67, but one is grade
III while the other is grade IV. We established a result explainer
with LIME algorithm for the SVM model and then calculated the
feature contribution for each case.

Case 1 (Figure 5C) was correctly classified as grade II with
a high probability. As Ki-67 has been clinically proved to have
the discriminative capacity to distinguish between LGG and
HGG, it is not surprising that Ki-67 has the dominant influence
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FIGURE 5 | Grading result explanation of representative cases with the LIME algorithm for the SVM model (part 1) (A) Distribution of Ki-67 by different grades. Three
selected cases had Ki-67 PI values of 0.08, 0.2, and 0.2. (B) Prediction probability for 3 cases. (C) Glioma Case 1 for grade II with a Ki-67 PI value of 0.08, and
Ki-67 PI was the dominant feature.

underlying this correct decision. Apart from Ki-67, visual features
such as cell pattern and sub-visual features such as GLCM
texture features also can correctly guide the grading. The result
also shows that although some morphological features such as
perimeter do not support the decision of grade II, they excluded
grade III, which also contributed to accurate grading.

For the more ambiguous Case 2 (Figure 6A) and Case 3
(Figure 6B), with regard to Ki-67 itself, our classification model
demonstrated its capability for an accurate decision. Case 2
(Figure 5B) was the most challenging case among these three
cases because in this case, Ki-67 had only a negative influence on
the grading decision; however, with the strong support of GLCM
texture features and the morphological nuclei count feature,
our grading system made a correct decision. In Case 3, Ki-67
was the major contributor to the correct decision, while the
morphological features such as standard deviation of cells’ max
axis and standard deviation of cells’ perimeter were the second
and third contributors.

DISCUSSION

Given the well-recognized difficulties associated with the grading
of gliomas, in this study, we developed an automated and
interpretable grading of gliomas with a machine learning
platform to provide an additional reference for diagnostic
decision making and patient management and prognosis, which
is more efficient, effective, and objective than currently used
methods. Our major findings were that (1) our method achieved
a high grading accuracy of 90% for classifying gliomas into grades
II, III, and IV; and (2) more importantly, for the first time,
an interpretable insight into the grading outputs was provided
for the histology grading system with the “black-box” machine
learning models.

Computerized image perception in tissue histology is much
more difficult due to the complexity of the cell patterns
and inherent structural associations between different tissue
components. Accurate histopathological diagnosis determines
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FIGURE 6 | Grading result explanation of representative cases with the Local Interpretable Model-Agnostic Explanations (LIME) algorithm for the SVM model (part 2)
(A) Glioma Case 2 for grade III with Ki-67 PI value of 0.2 while texture features and morphological nuclei count feature were the major contributors. (B) Glioma Case
3 for grade IV also with Ki-67 PI value of 0.2 accounting for the dominant contribution.

patient management, treatment, and follow-up, so any method
that results in more objective glioma grading may be of great
value. In the current literature, automated grading either was
based on texture patterns extracted from the selected ROIs

(Mousavi et al., 2015) to capture the histological structures
in the histological images or utilized morphological features
extracted from segmented tumor cells (Sertel et al., 2009;
Ertosun and Rubin, 2015). Our method achieved high accuracy
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through fully utilizing the selected informative visual and sub-
visual features from H&E images combined with the Ki-67 PI
value. To take into account the visual cues used by pathologists
for manual grading, visual features such as texture patterns
and cell morphological characteristics were extracted from
selected ROIs. The sub-visual features that are beyond human
perception capacities can help the precise grading through
more comprehensive quantitative analyses. Furthermore, we
innovatively integrated the IHC indicator Ki-67 PI into our
grading platform, which contributed to boosting our grading
accuracy with high discriminatory power.

Generally, the aim of this research was to objectify, standardize
and quantify features that are already widely accepted as
important by pathologists. Inter-observer discrepancies, which
had long been a diagnostic problem in the past, could be
partly overcome by employing the morphometric analysis
used in the present study (Kinjo et al., 2008). The ability
of the system to objectively identify regions of tumor may
additionally complement the pathologist’s diagnosis and assist in
tailored treatment. In this study, we attempted to automatically
clarify the cellular composition and histopathological features
of different grades of gliomas by utilizing morphometric-
and immunohistochemical-based machine learning models. We
assessed the importance of visual features, sub-visual features
and Ki-67 separately, and the highest predictive power was
achieved by visual features, achieving an accuracy of 0.76, which
indicates that the histomorphology of glioma, such as nuclear
morphological features and nuclear staining features and patterns
play an important role in glioma grading.

The interpretability of the individuals’ grading results
provided quantitative insights into the feature contributions of
each individual case. Most of the grading systems based on
machine learning models are considered “black boxes,” and it
would be valuable for patient management if clinically trusted
reasoning could be revealed. In our study, we used the LIME
algorithm to provide an explanation for each individual grading
result. Case 1 and Case 3 in Figures 5C, 6B endorse the
important role that Ki-67 plays in grading decisions, which is
in accordance with the clinical fact that Ki-67 PI is positively
correlated with the histopathology grades (Faria et al., 2006).
However, Ki-67 sometimes has a detrimental influence on the
grading process, as shown in Case 2, because Ki-67 PI of grade
III gliomas largely overlaps with that of grade IV (Shibata et al.,
1988; Kayaselçuk et al., 2002; Johannessen and Torp, 2006;
Skjulsvik et al., 2014). As a result, Ki-67 itself cannot be the
only determinant of grading. It has been accepted that the Ki-
67 PI value is 3.0 ± 2.1% in grade II gliomas, 11.8 ± 3.4% in
grade III anaplastic gliomas and 15.8 ± 7.4% in grade IV GBMs
(Johannessen and Torp, 2006). Furthermore, the Ki-67 PI values
of grade III anaplastic glioma can overlap with values of grade
II glioma at one end of the range and with those of GBM at the
other in the diagnostic practice of pathologists. Apart from Ki-
67, morphological features including the standard deviation of
cells’ max axis and perimeter were also found to be a significant
contributor to glioma grading because HGG often exhibits strong
heterogeneity with irregular cell shapes (Shuangshoti et al., 2000;
Louis et al., 2016). The precise morphological features extracted

from the most aggressive regions help to investigate intratumoral
histological heterogeneity for precise histopathology grading
(Walker et al., 2001). The primary grading results still support
the conclusion that the only sure way to determine the
histopathological WHO grade remains the pathohistological
evaluation of the H&E stained tumor sample (Stoyanov et al.,
2017).

With three representative cases we could gain a deeper
understanding of why misclassified grade III cases are often
labeled as grade II, while grade IV cases could be wrongly
labeled grade III as shown in the confusion matrix. Actually,
the Ki-67 PI values of the GBM group can be as low as
those for grade II tumors, indicating the limitation of Ki-67
values in the overlap region. In our work, we introduced a
number of histological sub-visual features such as the intensity
and GLCM texture features to distinguish these three grades
of gliomas. These insights become easy once it is understood
what the algorithm models are actually doing, which in turn
leads to models that generalize much better results. In many
applications of machine learning, users are asked to trust a
model to help them make decisions. There has always been
a focus on “trust” in any type of modeling methodology, but
with machine learning, many people feel that the black-box
approach taken with these methods is not trustworthy. Through
this machine learning-based approach, we could use the LIME
algorithm to explain individual predictions to the decision-
maker (the pathologist), and that understanding of the model’s
predictions can be an additional useful tool when deciding
whether a model is trustworthy or not for the final diagnosis from
a pathologist.

Our study did, however, have its limitations. First, grade I
gliomas are not included in our studies. They are accurately
considered benign in clinical practice, in that complete surgical
excision is considered curative. Therefore, grade I gliomas are
different from grade II-IV gliomas in biological behaviour. The
results of our discrimination of grade III and grade IV are
just reasonable preliminary results but leave much room for
improvement. Considering that necrosis is one of the remarkable
features of GBM, we plan to use cell necrosis as an input feature to
further train models to distinguish grade III from grade IV GBM.
Actually, morphometric data research has indicated that the
cellularity of oligodendrogliomas type II was significantly higher
than that of diffuse astrocytomas and that the conditional entropy
of oligodendrogliomas type III was significantly lower than that
of diffuse astrocytomas (Faria et al., 2006), so further stratification
of LGG (grade II) will lead to tailored glioma management
according to their different biological behaviour. Hence, future
work will focus on improvements utilizing larger datasets,
including multi-centre cases. In addition, there is still much room
to improve the grading performance and generalization of the
algorithm model.

CONCLUSION

In conclusion, our approach provides an objective alternative
for quantitative pathology research and for the implementation
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of morphological data in routine diagnostic practice. The
machine learning model utilized multi-parameters including
morphometric and sub-visual parameters as well as Ki-67 PI
information to ensure high accuracy, efficiency and consistency
in glioma grading. Interpretable grading platform has the
potential to facilitate personalized medicine in the setting of
malignant gliomas. With different important features identified
for different patients, specific phenotypic tumor characteristics
can be uncovered for optimal treatment selection. In addition,
as our method is fully automated and quantitative with high
reliability, it becomes easier for our platform to be introduced in
routine clinical practice.
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