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This study aimed to investigate the jejunal metabolic variations in enterotoxigenic
Escherichia coli (ETEC)-infected piglets. Piglets were infected with 1 × 1010 CFUs
(colony-forming units) of ETEC W25K and assigned into diarrheal, recovered, control,
and resistant groups. Jejunal samples were harvested at day 6 and metabolic profiles
were analyzed via gas chromatography coupled to time-of-flight mass spectrometry
(GC/TOFMS). The results showed that 33 metabolites in the jejunum were identified
in ETEC-induced diarrhea, including amino acids, fatty acids, sugars, and organic
acids. Compared with the control, resistant, and recovered piglets, diarrheal piglets
showed higher concentrations of 4-aminobutyric acid (GABA) and glycine in the
jejunum. Compared with the control and resistant piglets, six metabolites were markedly
decreased in diarrheal piglets, including ornithine, asparagine, glutamine, citric acid,
citrulline, and lysine. Collectively, this study provides insights into jejunal metabolic
response to ETEC infection and ETEC induced diarrhea in piglets.

Keywords: jejunum, metabolism, ETEC, diarrhea, piglet

INTRODUCTION

Diarrheal illnesses are a severe public health problem and pathogenic enterotoxigenic Escherichia
coli (ETEC) has been considered as a major cause of diarrhea in human and animals (Fleckenstein
et al., 2010). After infection, ETEC rapidly colonizes in small intestine, including duodenum,
jejunum, and ileum. ETEC colonization inhibits intestinal immune function and induces
inflammatory response. In our previous report, we found that ETEC infection inhibits the mRNA
expression of intestinal immune factors, such as polymeric immunoglobulin receptor (pIgR),
cryptdin-related sequence 1C (CRS1C), and Reg3γ in mice (Liu et al., 2017). Meanwhile, ETEC
infection upregulates intestinal IL-17 and causes dysbiosis of intestinal microbiota via increasing
abundance of γ-aminobutyric acid (GABA)-producing Lactococcus lactis subsp. lactis (Ren et al.,
2016b). The jejunal metabolite (e.g., amino acids and polyamine) participate in many important
physiological process, such as the regulation of gene expression, synthesis and secretion of
hormones, oxidative defense, and so on (Wu, 2009). The proteome analysis from our previous
study identifies 92 differentially expressed proteins in the jejunum after exposure to ETEC and
large body of these proteins were involved in metabolic process, such as protein turnover, nutrients
(i.e., nucleotide, amino acids, carbohydrate, lipid, and inorganic ion) transport and metabolism,
coenzyme metabolism, energy production and conversion, and secondary metabolite biosynthesis
(Ren et al., 2016a). Metabolomics is an emerging analytical technique to seek global profiles of
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FIGURE 1 | Principal component analysis (PCA) score plot derived from the GC-MS analysis of jejunum from diarrheal piglets (black dots), recovered piglets (red
dots), control piglets (blue dots), and resistant piglets (purple dots). (A) Total PCA, modeling diagnostic R2X = 0.261; Q = 0.0803; (B) diarrheal piglets vs. control
piglets, modeling diagnostic R2X = 0.901; Q = 0.295; (C) diarrheal piglets vs. resistant piglets, modeling diagnostic R2X = 0.734; Q = 0.379; and (D) diarrheal piglets
vs. recovered piglets, modeling diagnostic R2X = 0.286; Q = –0.163.

metabolites in particular samples, including endogenous and
exogenous metabolites (Khan et al., 2017). Therefore, we conduct
this study to further investigate metabolic profiles in the jejunum
after ETEC infection in piglets.

MATERIALS AND METHODS

Bacterial Strains
This study used the Escherichia coli F4-producing strain W25K
(O149:K91, K88ac; LT, ST, EAST), which was originally isolated
from a diarrheal piglet.

ETEC Infection
This study was conducted according to the guidelines of
the Institute of Subtropical Agriculture, Chinese Academy of
Sciences. Piglets (Landrace × Yorkshire; 18-day-old) were
purchased from ZhengDa, Co., Chongqing, China and orally
administrated with ETEC W25K at dose of 1 × 1010 CFUs
(colony-forming units) for five consecutive days (Ren et al., 2015,
2016a). The control piglets were treated with the same volume of
LB medium. Fecal consistency was scored daily as: 0 = normal;

1 = soft; 2 = runny or watery. Piglets with the development of
watery diarrhea were defined as diarrheal piglets, and piglets that
were recovered from diarrhea were regarded as recovery piglets,
while piglets that were challenged with ETEC but not suffered
from diarrhea were defined as resistant piglets. Six control piglets,
six diarrheal piglets, six recovered piglets, and six resistant piglets
were randomly selected for collecting the samples.

Sample Preparation
Twenty-four piglets were sacrificed at day 6 after ETEC infection
and jejunal samples (100 mg) and extraction solvents (50 µL L-
2-chlorophenylalanine and 350 µL methanol) were added and
then homogenized using a Mini-BeadBeater-16 (Biospec, Co.,
Bartlesville, OK, United States) for 5 min. The mixture was placed
on a shaker at 70◦C for 10 min and centrifuged at 12,000 × g and
4◦C for 10 min. The supernatant was separated, transferred into a
GC vial, and then evaporated to dryness under a stream of N2 gas.

Methoxyamine hydrochloride (20 µL, 20 mg/mL pyridine)
was added to the dried fraction and incubated at 37◦C for
2 h. One hundred µL of bis-(trimethylsilyl) trifluoroacetamide
(BSTFA) containing 1% TMCS was rapidly added and incubated
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FIGURE 2 | Score plots and permutation test results for PLS-DA model derived from jejunum samples. Score plots of PLS-DA, (A) diarrheal piglets (black dots) vs.
control piglets (blue dots); (B) diarrheal piglets (black dots) vs. resistant piglets (purple dots); (C) diarrheal piglets (black dots) vs. recovered piglets (red dots).
Permutation validation of PLS-DA model, blue dots and green dots represented Q2 and R2, respectively; (D) diarrheal piglets vs. control piglets; (E) diarrheal piglets
vs. resistant piglets; and (F) diarrheal piglets vs. recovered piglets.

at 70◦C for 1 h. Then the samples were kept at room temperature
before analysis.

GC-TOFMS Analysis
Metabolites in jejunal samples were derivatized prior to gas
chromatography coupled to time-of-flight mass spectrometry
(GC-TOFMS) analysis (Agilent 7890A, Agilent, United States;
LECO Chroma TOF PEGASUS 4D, MI, LECO, United States).
The system utilized a DB-5MS capillary column coated
with 5% diphenyl cross-linked with 95% dimethylpolysiloxane
(30 m × 250 µm inner diameter, 0.25 µm film thickness;

J&W Scientific, Folsom, CA, United States). A 1 µL aliquot
of the analyte was injected in splitless mode. Helium was
used as the carrier gas, the front inlet purge flow was
3 mL min−1, and the gas flow rate through the column was
1 mL min−1. The initial temperature was kept at 90◦C for
0.25 min, then raised to 240◦C at a rate of 5◦C min−1,
and finally to 285◦C at a rate of 20◦C min−1 for 11.5 min.
The injection, transfer line, and ion source temperatures were
280, 250 and 220◦C, respectively. The energy was −70 eV
in electron impact mode. The mass spectrometry data were
acquired in full-scan mode with the m/z range of 20–600
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FIGURE 3 | Venn diagrams illustrating that similar differential metabolites (including increase and decrease) among diarrheal piglets vs. control piglets, diarrheal
piglets vs. recovered piglets, and diarrheal piglets vs. resistant piglets.

at a rate of 100 spectra per second after a solvent delay of
492 s.

Data Processing and Analysis
Each sample was represented by a GC-TOFMS chromatograph.
The GC-TOFMS raw data were processed by Chroma TOF 4.3X
software (LECO Corporation, St. Joseph, MI, United States)
and LECO-Fiehn Rtx5 database for raw peaks extracting, data
baselines filtering and calibration, peak alignment, deconvolution
analysis, peak identification, and peak area integration. All the
output data exported from Chroma TOF 4.3X software were
imported into SIMCA-P software (version 11.0, Umetrics, Umeå,
Sweden) for multivariate statistical analyses including a principal
component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA), and pairwise orthogonal projections to latent
structures discriminant analyses (OPLS-DA).

RESULTS

PCA Model Analysis
Principal component analysis is an unsupervised mathematical
procedure used to identify latent structures in the dataset
and outliers (Caboni et al., 2014). PCA of jejunal samples
from diarrheal piglets, recovered piglets, control piglets, and
resistant piglets was shown in Figure 1A. The results showed
that plots from diarrheal piglets, recovered piglets, control
piglets, and resistant piglets were separated each other. As the
points that were close to each other had similar metabolic
profiles, our results indicated that there might be significant

metabolic differences among the four groups. The modeling of
the three datasets (diarrheal piglets vs. control piglets, diarrheal
piglets vs. resistant piglets, and diarrheal piglets vs. recovered
piglets) of separate pairs, revealed separation between subjects
(Figures 1B–D).

PLS-DA Model Analysis
To specify the metabolic variations produced by ETEC infection,
PLS-DA models were constructed in jejunal samples (Figure 2).
The results showed that the samples from each group were
perfectly separated in three subjects: diarrheal piglets vs. control
piglets (R2X = 0.90, Q2 = 0.30), diarrheal piglets vs. resistant
piglets (R2X = 0.73, Q2 = 0.38) and diarrheal piglets vs.
recovered piglets (R2X = 0.29, Q2 = −0.16). This phenomenon
indicated that the physiological metabolism was interrupted by
ETEC infection. In addition, diarrheal piglets showed distinctive
metabolic profiles compared with piglets that recovered from
diarrhea and were resistant to ETEC infection.

OPLS-DA Model Analysis
The variable importance in the projection (VIP) statistic of the
first principal component of orthogonal partial least squares
discriminant analysis (OPLS-DA) model (threshold > 1) coupled
with the P-value of the Student’s t-test (threshold < 0.05) were
used for selecting significant variables responsible for group
separation.

As shown in Figures 3, 4, the OPLS-DA models showed a
clear separation between the diarrheal piglets vs. control piglets
(R2X = 0.41, R2Y = 0.96, Q2 = 0.77), diarrheal piglets vs. resistant
piglets (R2X = 0.45, R2Y = 0.97, Q2 = 0.82) and diarrheal
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FIGURE 4 | The results from the analysis of differential metabolites were normalized by logarithmic and Euclidean distance and produced a heat map.

piglets vs. recovered (R2X = 0.32, R2Y = 0.98, Q2 = 0.62). We
detected 26, 33, and 14 differential metabolites between diarrheal
piglets vs. control piglets, diarrheal piglets vs. resistant piglets and
diarrheal piglets vs. recovered piglets, respectively. However, only
three differential metabolites were commonly altered (including
increase and decrease) among them.

Compared with the control piglets, diarrheal piglets
showed higher concentration of nine metabolites in
the jejunum [4-aminobutyric acid (GABA), glycine,
8-aminocaprylic acid, taurine, 5-methoxytryptamine,

lactamide, isocitric acid, L-threose, and malonic acid].
However, 17 metabolites showed a decreased trend in the
diarrheal piglets (2-hydroxybutanoic acid, L-allothreonine,
2-amino-1-phenylethanol, methionine, ornithine, lauric acid,
asparagine, glutamine, O-phosphorylethanolamine, citric acid,
citrulline, lysine, tyrosine, myo-inositol, stearic acid, spermidine
and arachidonic acid) (Table 1).

Compared with the resistant piglets, nine metabolites were
significantly enhanced in the diarrheal piglets (GABA, glycine,
pyruvic acid, lactic acid, ethanolamine, creatine, 8-aminocaprylic
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TABLE 1 | The variation in content of metabolites in the jejunum between diarrheal and control piglets.

Metabolites RT Cout Mass VIP P-value Fold change

Lactamide 16.08 12 257 1.81 0.002 271000.00

4-Aminobutyric acid∗ 5.53 17 69 1.92 0.001 4.33

8-Aminocaprylic acid∗ 13.60 24 174 1.89 0.001 3.10

5-Methoxytryptamine 15.27 24 174 1.42 0.032 2.71

L-Threose 2 19.48 24 73 1.44 0.029 2.28

Taurine 14.20 24 326 1.58 0.013 2.25

Isocitric acid 18.71 24 147 1.61 0.011 1.99

Glycine 7.02 24 102 1.62 0.011 1.98

Malonic acid 1 20.77 23 122 1.42 0.031 1.67

2-Amino-1-phenylethanol 11.19 24 156 1.49 0.022 0.84

L-Allothreonine 10.18 24 73 1.49 0.023 0.80

Methionine 12.04 24 176 1.41 0.034 0.77

Tyrosine 18.37 24 218 1.37 0.040 0.71

Ornithine 13.31 24 142 1.52 0.018 0.68

Myo-inositol 20.78 24 217 1.54 0.016 0.66

Citrulline 16.51 24 157 1.70 0.006 0.64

Lysine 18.09 24 156 1.51 0.019 0.64

Asparagine∗ 14.12 24 116 1.93 0.001 0.56

Stearic acid 22.74 24 117 1.56 0.015 0.54

Citric acid 16.37 24 273 1.38 0.038 0.53

O-Phosphorylethanolamine 15.87 24 73 1.67 0.008 0.51

2-Hydroxybutanoic acid 7.06 19 146 1.38 0.039 0.50

Arachidonic acid 25.75 24 80 1.83 0.003 0.38

Glutamine 1 15.74 24 156 1.55 0.016 0.31

Lauric acid 13.94 16 117 1.55 0.016 0.27

Spermidine 22.83 20 174 1.41 0.033 0.25

∗The extremely significant metabolites between diarrheal and control piglets, which P-value < 0.001.

acid, taurine, and noradrenaline), while 24 metabolites were
significantly enhanced in the diarrheal piglets (beta-alanine,
glutamine, L-malic acid, alanine, ornithine, glutamic acid,
asparagine, lyxose, glucose-1-phosphate, citric acid, gluconic
lactone, citrulline, fructose, sorbose, mannose, lysine, sorbitol,
L-threose, spermidine, malonic acid, diglycerol, inosine, uridine
monophosphate, and lactobionic acid) (Table 2).

Compared with the recovered piglets, 14 metabolites were
significantly different in diarrheal piglets, and 8 metabolites
were increased in the jejunum (GABA, glycine, glycolic acid, D-
glyceric acid, xylitol, glucose, cis-gondoic acid, and malonic acid).
Meanwhile, six metabolites were decreased in diarrheal piglets
(methyl phosphate, fumaric acid, alanine, inosine, adenosine, and
uridine monophosphate) (Table 3).

DISCUSSION

Infection with ETEC bacteria is the major cause of diarrhea in
human and animals. After infection, ETEC rapidly colonizes
the intestine and secretes exotoxins, which further disrupt
intestinal barrier integrity and cause secretory diarrhea
(Deng et al., 2015). In addition, ETEC colonization induces
imbalance of intestinal microbiota and may dysregulate
intestinal metabolism (Ren et al., 2016b). In this study, 33
metabolites have been identified in ETEC induced diarrhea,

including amino acids, fatty acids, sugars, and organic
acids.

Compared with the control, resistant and recovered piglets,
diarrheal piglets have higher concentrations of GABA and glycine
in the jejunum. GABA, a transmitter of enteric interneurons, has
been noticed in the cytoplasm and the brush border of intestinal
epithelial cells and regulates the function of the gastrointestinal
tract (Wang et al., 2004; Li et al., 2012; Jung et al., 2017). The
direct functions of intestinal GABAergic signaling system have
been identified to be involved in fluid transport through luminal
secretion of Cl− (Jin et al., 2006), which is a major driving
force for fluid secretion and increased during diarrhea. Similar
to our results in piglets, Li et al. (2012) reported that intestinal
GABAergic signaling was upregulated in diarrheal mice caused
by ovalbumin and blocking this GABA signaling decreased the
occurrence of allergic diarrhea. In our previous study, we found
that ETEC infection increased GABA-producing L. lactis subsp.
lactis and GABA production, which further promotes IL-17
expression through mTORC1–S6K1–EGR-2–GFI-1 pathway and
mediates intestinal inflammation (Ren et al., 2016b). Glycine
serves as a precursor for glutathione along with cysteine and
glutamic acid (Yin et al., 2016), while cysteine, glutamic acid
and glutamine were markedly decreased in diarrheal piglets,
suggesting that increased glycine failed to contribute to the
glutathione synthesis and antioxidant effect in ETEC model. In
intestinal injury, even after manifestation of a severe systemic
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TABLE 2 | The variation in content of metabolites in the jejunum between diarrheal and resistant piglets.

Metabolites RT Count Mass VIP P-value Fold change

Lactic acid 6.38 10 174 1.43 0.011 1498647.03

4-Aminobutyric acid∗ 5.53 17 69 1.88 0.000 3.99

Glycine∗ 6.06 24 102 1.88 0.000 3.89

Taurine 14.20 24 326 1.57 0.003 3.25

8-Aminocaprylic acid 13.60 24 174 1.30 0.026 2.10

Creatine 12.58 24 115 1.56 0.004 1.86

Ethanolamine 8.81 24 174 1.38 0.015 1.84

Noradrenaline 17.05 24 174 1.55 0.004 1.75

Pyruvic acid 6.20 24 59 1.34 0.020 1.44

Glutamine 3 11.39 22 155 1.40 0.013 0.76

L-Malic acid 11.49 24 73 1.28 0.028 0.73

Glutamic acid 13.39 24 246 1.50 0.006 0.72

beta-Alanine 10.81 24 248 1.26 0.031 0.70

Lysine 18.09 24 156 1.30 0.025 0.65

Asparagine∗ 14.12 24 116 1.65 0.001 0.64

Ornithine 13.32 24 142 1.32 0.022 0.63

Citrulline 16.52 24 157 1.42 0.011 0.60

Alanine 13.22 22 188 1.33 0.021 0.53

L-Threose 1 19.24 24 147 1.29 0.027 0.51

Glucose-1-phosphate∗ 15.57 24 217 1.81 0.000 0.48

Inosine 25.13 24 217 1.50 0.006 0.47

Gluconic lactone 16.51 22 56 1.22 0.039 0.41

Sorbitol 18.25 24 147 1.40 0.014 0.31

Spermidine 22.83 20 174 1.46 0.008 0.30

Sorbose 17.33 24 103 1.31 0.023 0.25

Lyxose 14.14 17 103 1.32 0.023 0.25

Fructose 17.18 24 103 1.32 0.023 0.25

Citric acid 16.37 24 273 1.61 0.002 0.22

Mannose 17.94 24 73 1.24 0.035 0.20

Diglycerol 24.42 11 103 1.20 0.044 0.15

Malonic acid 2 23.50 16 47 1.52 0.005 0.13

Lactobionic acid 27.80 14 73 1.24 0.034 0.12

Uridine monophosphate 27.36 16 169 1.48 0.007 0.11

∗The extremely significant metabolites between diarrheal and resistant piglets, which P-value < 0.001.

TABLE 3 | The variation in content of metabolites in the jejunum between diarrheal and recovered piglets.

Metabolites RT Count Mass VIP P-value Fold change

Glucose 17.42 24 205 1.79 0.016 2.20

D-Glyceric acid 9.47 24 189 1.85 0.012 2.11

Glycine 6.06 24 102 2.04 0.004 1.85

4-Aminobutyric acid 5.53 17 69 1.91 0.009 1.75

Xylitol 14.58 24 103 1.69 0.027 1.61

cis-Gondoic acid 19.80 24 117 1.64 0.032 1.58

Malonic acid 20.78 23 122 1.60 0.038 1.38

Glycolic acid 6.49 24 177 1.65 0.031 1.30

Fumaric acid 9.76 24 245 1.67 0.028 0.74

Methyl phosphate 7.66 24 241 1.77 0.018 0.59

Inosine 25.13 24 217 1.96 0.006 0.52

Alanine 13.22 22 188 1.64 0.033 0.42

Adenosine 25.59 21 230 1.70 0.026 0.26

Uridine monophosphate 27.36 16 169 2.30 0.000 0.09
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impairment (Effenberger-Neidnicht et al., 2014) and causing pH-
dependent membrane damage to ETEC (Vanhauteghem et al.,
2012), glycine has been demonstrated to protect intestine against
subacute endotoxemia. Meanwhile, the glycine cleavage system
contributes to the intracellular replication of virulent bacterium
and pathogenesis (Brown et al., 2014). Thus, the increased GABA
and glycine in the jejunum may mediate or promote diarrhea in
ETEC infectious piglet model.

Compared with the control and resistant piglets, we found
that six metabolites were markedly decreased in diarrheal piglets,
including ornithine, asparagine, glutamine, citric acid, citrulline,
and lysine. Ornithine, asparagine, and citrulline play roles in
the urea cycle (Mikulski et al., 2015), thus decreased ornithine
and asparagine may indicate urea cycle is altered in ETEC
induced diarrhea. Aspartate, a precursor of asparagine, has been
demonstrated to enhance intestinal integrity and energy status
in weaning piglets after lipopolysaccharide challenge (Pi et al.,
2014) and alleviate diquat-induced intestinal oxidative stress
(Yin et al., 2015). Thus, the decreased jejunal asparagine in
diarrheal piglets may exacerbate ETEC infection. Glutamine has
been indicated to modulate intestinal permeability and tight
junction expression in various diseases, and serves as a protective
mechanism against radiation-induced diarrhea and diarrhea-
predominant irritable bowel syndrome (Kucuktulu et al., 2013;
Bertrand et al., 2015). Lower jejunal glutamine in diarrheal
piglets suggested that ETEC infection influenced glutamine
synthesis, which may further disturbs the protective mechanism
of glutamine against diarrhea. Citrate is an intermediate in the
tricarboxylic acid cycle (TCA) and the reduced citrate in the
diarrheal piglets suggested that the TCA was altered after ETEC
infection.

Out of our expectation, we found that the lactic acid in
diarrheal piglets was much higher than resistant piglets as a
1498647 fold change. Lactic acid was the metabolite fermented
by various intestinal microorganisms (e.g., Klebsiella, Bacteroides,
Lactobacillus), and presented in the intestine lumen (Zhao et al.,
2011). As mentioned above, ETEC infection increased the relative
abundance of lactic acid-producing bacteria (L. lactis subsp.
lactis) significantly, thus the concentration of lactic acid in
jejunum lumen was increased. But it failed to explain why lactic
acid in jejunum tissue of diarrheal piglets was much higher
than resistant piglets. In the healthy condition, the intestine

of mammals was incapable of absorbing lactic acid, while the
intestinal permeability might be changed in some pathological
conditions, and the lactic acid was permitted to permeate the
intestinal mucosa, thus the lactic acid may be regarded as an
important indictor response to the intestinal barrier function
(Qiu et al., 2013; Ikuta et al., 2017). We concluded that ETEC
infection might impair the intestinal barrier of piglets and
increase the permeability of jejunum (Yang et al., 2014), thus
resulted in the high concentration of lactic acid in jejunum
tissue.
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