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Lower respiratory tract infections and tuberculosis are responsible for the death of about

4.5 million people each year and are the main causes of mortality in children under

5 years of age. Streptococcus pneumoniae is the most common bacterial pathogen

associated with severe pneumonia, although other Gram-positive and Gram-negative

bacteria are involved in respiratory infections as well. The ability of these pathogens

to persist and produce infection under the appropriate conditions is also associated

with their capacity to form biofilms in the respiratory mucous membranes. Adding to

the difficulty of treating biofilm-forming bacteria with antibiotics, many of these strains

are becoming multidrug resistant, and thus the alternative therapeutics available for

combating this kind of infections are rapidly depleting. Given these concerns, it is urgent

to consider other unconventional strategies and, in this regard, phage lysins represent an

attractive resource to circumvent some of the current issues in infection treatment. When

added exogenously, lysins break specific bonds of the peptidoglycan and have potent

bactericidal effects against susceptible bacteria. These enzymes possess interesting

features, including that they do not trigger an adverse immune response and raise

of resistance is very unlikely. Although Gram-negative bacteria had been considered

refractory to these compounds, strategies to overcome this drawback have been

developed recently. In this review we describe the most relevant in vitro and in vivo results

obtained to date with lysins against bacterial respiratory pathogens.

Keywords: phage lysins, pneumonia, respiratory infection, antibacterials, antibiotic resistance, endolysins

THE IMPACT OF BACTERIAL RESPIRATORY DISEASES ON
HUMAN HEALTH

Lower respiratory tract infections remain the most deadly communicable diseases, and caused
3.2 million deaths worldwide in 2015 (1). Tuberculosis is still to date among the top 10 death
causes, and community-acquired pneumonia is the single largest bacterial infectious cause of death
in children worldwide (2). Streptococcus pneumoniae (pneumococcus) accounts for most of the
bacterial pneumonia cases in children, followed by Haemophilus influenzae type b, and other
bacterial pathogens: Streptococcus pyogenes (group A Streptococcus), non-typeable H. influenzae,
Staphylococcus aureus,Mycoplasma pneumoniae, Moraxella catarrhalis, and Klebsiella pneumoniae
(3). Pneumococcus is also a common cause of community-acquired pneumonia in elderly patients
with comorbidities (4). On the other hand, hospital-acquired pneumonia and ventilator-associated
pneumonia are among the leading nosocomial infections worldwide, with an increasing frequency
of multidrug resistant (MDR) Gram-negative bacteria (G–) as the bacteriologic cause (5).
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Indeed, antimicrobial resistance (AMR) and associated
morbidity and mortality have been increasing globally. A recent
study estimated that AMR could produce 10million deaths a year
by 2050 (6), although this prediction should be taken with care
(7). Accordingly, economic simulations predict that the world
will suffer an annual shortfall loss of between $1 and $3.4 trillion
by 2030 because of AMR (8). In this scenario, the World Health
Organization (WHO) has called for global action on AMR (9).
This has encouraged several actions: (a) prevention and control
actions in healthcare facilities (10); (b) widespread antimicrobial
stewardship programs (11); (c) reduction of antibiotic use in
livestock production and the environment (12); and (d) the
search for alternatives to the currently used antibiotics (13),
particularly against a group of MDR bacteria having a global
impact (14). Among these priority pathogens, S. pneumoniae,
H. influenzae and those referred to as “the ESKAPE bugs” (15),
are of particular concern. Of note, Mycobacterium tuberculosis
was not included in the above list as it is already in a globally
established priority for which innovative new treatments are
urgently needed (16). A few decades ago, phage therapy revived
as an alternative to conventional antibiotics and, since the
beginning of twenty-first century, phage lytic enzymes have also
been extensively tested as antibacterials. This area of research
is the focus of this review and the most relevant results of
certain enzymes against respiratory pathogens will be discussed.
Extensive details on the issue can be found in other recent reviews
(17–26).

GENERAL CHARACTERISTICS OF LYSINS

Endolysins, or more simply lysins, are phage-encoded enzymes
capable of hydrolyzing the bacterial cell wall (CW) and that
are synthesized at the end of the phage replication cycle. The
peptidoglycan (PG) polymer is the basic component of the
CW, and is composed of chains of a disaccharide repeat made
up of N-acetylglucosamine and N-acetylmuramic acid, linked
by β(1→4) glycosidic bonds. Glycan strands are cross-linked
by tetra/pentapeptide side stems attached to muramic acid
residues through amide bonds. Lysins are usually classified as
glycosidases [glucosaminidases, transglycosylases, and lysozymes
(or muramidases)], if they break any of the bonds of the glycan
chain, N-acetylmuramoyl-L-alanine amidases (NAM-amidases),
if they break the amide bonds between the glycan strands and
peptide chains, or endopeptidases if they hydrolyze different
bonds within peptide chains. When purified lysins are added
exogenously, their CW-degrading activity can lead to rapid
osmotic lysis and bacterial death. The enzymatic activity of
lysins was the basis for their exploration as antibacterial agents
and they were also named “enzybiotics” (27). Lysins possess
several advantages over antibiotics: (a) they rapidly kill bacteria,
practically upon contact; (b) they can be specific to the target
pathogen, particularly against Gram-positive (G+) bacteria (28–
31), which allows to preserve the normal microbiota (32); (c)
development of resistance seems very unlikely (33, 34), probably
because these enzymes directly target an essential and well-
conserved structural component such as the PG, which cannot
be easily modified without compromising fitness (35); (d) with

few exceptions (36, 37), lysins are active independently of the
bacterial physiological state (38, 39); (e) they are effective against
MDR bacteria (20, 34, 40–42); (f) they can act synergistically
with other lysins or antibiotics and thus theoretically reduce the
development of resistance while increasing therapeutic efficiency;
and (g) lysins are also effective killing colonizing pathogens
growing on mucosal surfaces and/or in biofilms (Tables 1, 2).

Lysins encoded by phages infecting G+ bacteria generally
display a modular structure, comprising one or more catalytic
domains (CDs) and one or more CW binding domains (CWBD).
Although the species specificity of a lysin is generally assigned
to its CWBD, there are some data suggesting that combined
interactions of CD and CWBDwith unknown CW receptors may
play a significant role (129). On the other hand, phages from G–
bacteria usually encode globular lysins with a single CD, with
several exceptions (31, 111, 128).

Concerning their systemic, therapeutic use, it has been
alleged that lysins, as foreign proteins, could be expected to
trigger the production of neutralizing antibodies that might
hinder their antibacterial action in subsequent administrations.
However, early studies addressing this potential drawback,
strongly suggested that highly immune serum slows down—but
does not block—lysins (46, 130). Pre-clinical and clinical trials
with the antistaphylococcal lysin SAL-1 have been performed in
animal models and, lately, in humans. An immune response was
indeed elicited after repeated intravenous injections of SAL200,
as demonstrated by the presence of specific antibodies and
reduced C3 complement levels in the animal blood samples (80).
Still, pharmacokinetic, pharmacodynamic, and tolerance studies
of SAL200 in monkeys and humans did not show any serious
adverse effects or clinically significant alterations even at the
highest dose tested (81, 82). Anyhow, host immune responses to
specific lysin formulations must always be considered concerning
safety and improving the therapeutic potential of lysins.

The antibacterial efficacy of lysins can be improved by
several means including: (a) replacement of certain amino acids
to modify the net charge of the enzyme (53, 131) or allow
dimerization (132); (b) deletion of entire domains (75, 133); (c)
construction of chimeric proteins by domain shuffling (41); (d)
fusion to cationic peptides (or other domains) to render lysins
capable to cross the outer membrane (OM), a widely recognized
drawback of lysin therapy against G– bacteria (122, 134, 135), or
to increase CW affinity (136); (e) co-administration of lysins with
membrane destabilizing agents (EDTA, carvacrol, etc.), especially
in G– pathogens (53, 112).

LYSINS AGAINST GRAM-POSITIVE
BACTERIA

Streptococcus pneumoniae
The key aspect of the S. pneumoniae system is the role of the
aminoalcohol choline in the enzymatic activity of the bacterial
autolysin LytA, and the pneumococcal phage lysins. Choline
forms part of the (lipo)teichoic acids and constitutes an absolute
requirement for the binding of these enzymes—members of
the choline-binding family of proteins (CBPs) (137)—to the
CW substrate. This peculiarity explains the extreme specificity
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TABLE 2 | Selected lysins active against Gram-negative bacteria.

Species Lysin/phage Susceptible bacteria Methodology used Acc. No.; comments References

P. aeruginosa

Lys1521/B.

amyloliquefaciens

phage

G– Activity on intact bacteria Q94ML9 (104–107)

EL188/EL G– Activity on permeabilized

bacteria

CAG27282 (108–110)

KZ144/ϕKZ G– Activity on permeabilized

bacteria

AAL83045 (108, 110)

OBPgp279/OBP G– Activity on intact bacteria YP_004958186 (111)

Art-175 G– Activity on intact bacteria Chimera of KZ144 and

SMAP-29 peptide

(34, 112)

LysPA26/JD010 G– Activity on intact bacteria, biofilm A0A1V0EFL1 (113)

A. baumannii

LysAB2/ΦAB2 G– and S. aureus Activity on intact bacteria

in vivo: sepsis (mice)

F1BCP4 (114, 115)

LysABP-01/ØABP-01 G– Activity on intact bacteria;

synergy with colistin

KF548002 (116)

PlyAB1/Abp1 A. baumannii Activity on intact bacteria YP_008058242 (117)

PlyF307/RL-2015 A. baumannii; otros G– Activity on intact bacteria, biofilm

in vivo: sepsis (mice)

AJG41873 (36, 118)

LysAB3/A. baumannii

ATCC 17978 prophage

A. baumannii Activity on intact bacteria ABO12027 (119)

LysAB4/A. baumannii

ATCC 17978 prophage

A. baumannii Activity on intact bacteria CP000521 (119)

E. coli

Lysep3/Ep3 E. coli, P. aeruginosa Activity on permeabilized

bacteria

A0A088FRS5 (120)

Lysep3-D8 G–, Streptococcus sp. Activity on intact bacteria Chimera of Lysep3 and

Lys1521 (Q94ML9)

(121)

Colicin-lysep3 E. coli Activity on intact bacteria

in vivo: intestinal infection

Chimera of Lysep3 and

colicin A (Q47108)

(122)

EndoT5/T5 E. coli Activity on permeabilized

bacteria

Q6QGP7 (123)

PlyE146/E. coli 8.0569

prophage

G– Activity on intact bacteria EKK47578 (37)

K. pneumoniae

K11gp3.5/K11 G– Activity on permeabilized

bacteria

B3VCZ3 (124)

KP32gp15/KP32 G– Activity on permeabilized

bacteria

D1L2U8 (124)

KP27 lysin/KP27 G– Activity on permeabilized

bacteria; cell culture

K7NPX3 (125)

C. freundii

CfP1 lysin/CfP1 Citrobacter sp. Activity on intact bacteria A0A1B1IXL3 (126)

S. maltophilia

P28 G– and some G+ Activity on intact bacteria Lytic enzyme from a

bacteriocin system

(127)

Burkholderia sp.

AP3gp15/AP3 G– Activity on permeabilized

bacteria

A0A1S5NV50 (128)
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of CBPs for pneumococci. The first article reporting the use
of a CBP as an enzybiotic demonstrated the capacity of the
NAM-amidase Pal to kill pneumococci of every serotype tested,
including penicillin-resistant isolates (40). These results were
confirmed in a mouse model of nasopharyngeal carriage (27).
The Cpl-1 lysozyme has also been successfully tested in several in
vitro assays and in different animal models of infection (46–48),
and a synergistic effect was found when Cpl-1 was used together
with several antibiotics (49, 50), or in combination with Pal
(43, 44). The Cpl-7 lysozyme represents an exception to choline-
recognizing pneumococcal lysins, since it harbors a different
CWBD (138–140) that allows it to recognize and kill a broader
range of bacteria. Moreover, the bactericidal effect of Cpl-7 has
been improved in the engineered Cpl-7S by inverting the net
charge of its CWBD (53). To date, themost powerful killing lysins
tested against S. pneumoniae are nonetheless chimeric proteins:
Cpl-711, a chimera of Cpl-7 and Cpl-1 (41), and PL3, a fusion
protein between Pal and LytA [Table 1; (38)]. Treatment with
Cpl-711 strongly reduced the attachment of S. pneumoniae to
human epithelial cells, and a single intranasal dose of Cpl-711
significantly reduced nasopharyngeal colonization in a mouse
model (51).

Staphylococcus aureus
Although S. aureus is frequently carried asymptomatically in
humans, it is also the cause of a variety of diseases and,
particularly, methicillin-resistant strains (MRSA) are responsible
for a great percentage of all infections, up to 80% in some
countries (141). The S. aureus PG displays a characteristic
pentaglycine interpeptide cross-linking the glycan strands (142).
Most tested lysins in the S. aureus system contain two CDs
(endopeptidase and NAM-amidase) together with an SH3b
CWBD (61, 143, 144). Although the exact interaction between
the CWBD and the structures to which these domains bind
remains to be demonstrated in many cases, it has been proposed
that some CWBDs recognize the pentaglycine peptide cross-
bridge (145) or the CW-associated glycopolymers (79). Of note,
the vast majority of studies reporting the therapeutic use of
lysins are directed to fight S. aureus infections (20, 21). Together
with lysostaphin (produced by Staphylococcus simulans), LysK
and its derivatives seem to be the most lethal lysins against S.
aureus, includingMRSA (73, 76, 146, 147) as well as vancomycin-
intermediate and -resistant isolates [see reference (21) and
references therein]. Other examples of anti-staphylococcal lysins
include several engineered proteins such as chimeric or truncated
proteins (76, 85, 100, 148, 149) or fusion proteins with short
cationic peptides able to cross the eukaryotic membrane and
kill intracellular S. aureus (150, 151). Nevertheless, lysin-based
studies that consider S. aureus as a respiratory pathogen are
scarce and only include some decolonization assays (62, 63, 75,
85) and a single example of endolysin efficacy in a mouse S.
aureus pneumonia model (93).

Other Gram-Positive Pathogens and
Mycobacteria
S. pyogenes is a major causative agent of upper respiratory tract
infections (152). The most relevant example of a lysin targeting

this pathogen is PlyC, a peculiar multimeric enzyme that kills
group A streptococci with high efficiency (27, 55). In addition,
the ability of PlyC to penetrate respiratory tract epithelial cells
to eliminate intracellular S. pyogenes cells has also been proven
(56). This intracellular activity overcomes one of the major
drawbacks of antibiotic therapy against streptococcal throat
infections, which is bacterial self-protection by cellular invasion.
Other lysins reported to kill S. pyogenes are PlyPy (58) and the
broad range, pneumococcal phage-derived Cpl-7S (53). Besides,
group B streptococci are known to cause severe pneumonia in
newborns (153). At least one attempt has been conducted in mice
toward oropharyngeal decolonization of group B streptococci
using PlyGBS lysin (59).

The acid-fast M. tuberculosis is still rather unexplored for the
development of lysin-based therapy. This might be due to the
peculiarity of Mycobacterium CW structure, which comprises a
thick PG layer covalently attached to arabinogalactan sterified
with mycolic acids (154). Because of this architecture, the
lytic cassette of mycobacteriophages comprises two different
lytic enzymes: a classical PG hydrolase (usually named LysA)
and mycolyl-arabinogalactan esterase (LysB), which cleaves
the ester bond linking mycolic acid to the arabinogalactan-
PG layer. As a result, the mycolic acid layer detaches from
the cell, rendering vulnerable to osmotic shock and, finally,
lysis (155). Some in vitro assays have been conducted with
bothmycobacteriophage-derived hydrolases, yielding, in general,
promising results that show either growth arrest (101) or a
bactericidal effect (103), but further research is still required. The
mycobacterial endolysins and their therapeutical potential have
been recently reviewed (156).

LYSINS AGAINST GRAM-NEGATIVE
BACTERIA

Pseudomonas aeruginosa
The first lysins tested against P. aeruginosa, for example,
EL188, only killed bacteria when membrane permeabilizers (e.g.,
polycationic agents, EDTA) were co-administered (108, 109).
Due to the potential difficulties of therapies based on the co-
administration of lysins and permeabilizing agents, some of the
most recent efforts have been directed toward the engineering
of the enzymes themselves, giving rise to the “artilysin” concept
(134). In this study, lysins were fused to cationic, antimicrobial
peptides (AMPs), and these fusions were able to exert a
permeabilizing activity that allowed them to cross P. aeruginosa
OM to degrade the PG layer both in vitro and in vivo (134). Art-
175 is an artilysin that was constructed by fusing lysin KZ144 and
the sheep myeloid AMP 29 (SMAP-29), and further optimizing
the thermostability of the resulting chimera by point mutation
of several cysteine residues (34). Art-175 was able to efficiently
kill either antibiotic-susceptible or MDR P. aeruginosa strains.
Of note, Art-175 also controlled the appearance of persisters, i.e.,
bacterial subpopulations transiently tolerant to antibiotics that
often appear upon antiinfective chemotherapy (157).

Despite the engineering efforts mentioned above, lysins able
to lyse G– bacteria on their own are also currently available.
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Typically, this intrinsic activity from without relies on non-
enzymatic mechanisms, which were first described for the T4
phage lysozyme (158) and then in several P. aeruginosa phage
lysins (159). These lysins harbor AMP-like elements (peptides
with an amphipathic secondary structure and a positive net
charge) that destabilize the OM. In some cases, as for T4
lysozyme, these regions account for the bactericidal activity of the
enzyme to a higher extent than the enzymatic activity itself (158).
One of the first examples of a lysin with a natural cationic peptide
exploited as an enzybiotic was the Bacillus amyloliquefaciens
phage lysin Lys1521, which was indeed able to lyse P. aeruginosa
cells (104). Other examples of P. aeruginosa lysins with intrinsic
anti-G– activity include OBPgp279 (124) and LysPA26 (113).
Although active research is being performed to deal with the OM
barrier issue, no extensive in vivo experimental evidence has been
provided for the clearance, upon lysin treatment, of P. aeruginosa
from respiratory infections.

Acinetobacter baumannii
In general, lysins against G– bacteria appear to be less specific
than their G+ counterparts, possibly due to the (apparently)
simpler organization of the former sacculi (160). This broader
spectrum allows some lysins to kill several pathogenic genera,
like the already mentioned lysin LysPA26, which besides
P. aeruginosa can also lyse other G– pathogens such as E. coli,
K. pneumoniae or A. baumannii (113), or Art-175, which also
killsA. baumannii (112). This bacterium is a potential respiratory
pathogen (particularly for immunocompromised and debilitated
patients) that is receiving great attention in recent years due to
its worrisome increased antibiotic resistance (161). Thus, several
enzybiotics have also been developed with emphasis in their A.
baumannii killing capacity, such as LysAB3 and LysAB4 (119),
PlyAB1 (117), and LysABP-01 (116).

PlyF307 was capable of killing A. baumannii isolates,
including MDR strains, both in planktonic and biofilm cultures
(36) and represents the first example of an intact lysin
with intrinsic anti-G– activity tested in a mammalian (mouse
bacteremia) model. Unsurprisingly, it was later determined that
such intrinsic activity from without partly resided in a cationic
peptide located in the C-terminal domain of the lysin (118).
Further studies revealed that this region contains sub-domain
structural motifs with membrane permeabilizing ability, but
lacking enzymatic activity; similar motifs have also been found in
other lysins. For example, lysin LysAB2 (114) represents a broad-
spectrum enzybiotic, both active against G+ and G– bacteria
(A. baumannii, Escherichia coli and, surprisingly, S. aureus).
Based on its permeabilizing properties (114), AMPs based on
the C-terminal region of LysAB2 have been synthesized and
demonstrated high antimicrobial activity when tested in mice
infected with A. baumannii (115).

Other Gram-Negative Pathogens
In spite of being a prominent member of the ESKAPE group
(162), there are only few reports of lysins active against
K. pneumoniae. As already mentioned, LysPA26 also showed
bactericidal activity against K. pneumoniae (113). Consequently,

it is conceivable that some of the other broad spectrum anti-
G– lysins would kill K. pneumoniae. As for specific Klebsiella
phage lysins, some examples of lysins with proven lytic activity
are those from phages K11, KP32, and KP27 (124, 125, 163), but
only KP32 and KP27 were tested for their anti-Klebsiella activity.
Although usually associated with intestinal infections, E. coli is
also a frequent cause of nosocomial pneumonia (164). Again,
some of the other G– lysins are also active against E. coli (105,
113, 114, 116, 124). Specifically from an E. coli phage, Lysep3 lysin
has demonstrated noticeable activity against permeabilized E. coli
cells (120). Moreover, a chimeric construction between Lysep3
and a colicin was able to traverse the OM via specific recognition
by OM transporters (122, 165).

CONCLUDING REMARKS AND FUTURE
TRENDS

As MDR bacterial respiratory pathogens are increasingly
prevalent, alternative therapeutics are urgently needed. Lysins
represent more than a hope in this scenario and may be a
perfect counterpart to therapies based on standard antibiotics.
The potential for lysin development is seemingly endless. For
example, thousands of putative lysins, many of which displaying
novel domain architectures, have been recently described using
bioinformatic techniques (166). All this huge amount of
information, together with the crystal structures of lysins and
a more detailed knowledge on the bacterial CW structure, will
provide better insights to design and construct “tailor-made
lysins” potentially directed against any desired pathogen. Drug
delivery and other added-value systems involving lysins are
now also being researched by setting up different approaches
(167–170). Several polymers have been studied as potential
drug release vehicles not only for research but also for
clinical purposes. Particularly interesting is the case of poly(N-
isopropylacrylamide) (PNIPAM) that has been used for the
coadministration of the CHAPK lysin and lysostaphin through
a thermally triggered release event (the temperature increase due
to infection) (64).

Although a limited number of endolysins have entered clinical
trials and some of them are already available in the market
[reviewed in reference (18)], phages and phage-based products
are subjected to strict regulatory measures (171). Moreover, in
spite of their demonstrated specificity and lack of resistance
development, the use of phage endolysins in humans raises
several concerns. Among them, the relatively short plasma
life of lysins, their immunogenicity and possible toxicity, the
proinflammatory response to bacterial debris, and the difficulties
to attack intracellular bacteria have been mentioned. Although
only limited data of phage lysin interactions with the human
body, e.g., pharmacokinetic/pharmacodynamic studies, have
been published, it is encouraging that most (if not all) of the
above mentioned potential limitations lack current experimental
support (18, 23, 25). Although this scenario seems favorable
toward hitting the clinic in the short term, further evidence is still
due, especially when bacterial respiratory diseases—in particular,
those caused by G– bacteria—are considered. Additional efforts
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to cover the currently unmet therapeutic requirements are
warranted.
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