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Mild traumatic brain injury (TBI) is considered to induce abnormal intrinsic functional
connectivity within resting-state networks (RSNs). The objective of this study was to
estimate the role of sex in intrinsic functional connectivity after acute mild TBI. We
recruited a cohort of 54 patients (27 males and 27 females with mild TBI within 7 days
post-injury) from the emergency department (ED) and 34 age-, education-matched
healthy controls (HCs; 17 males and 17 females). On the clinical scales, there were
no statistically significant differences between males and females in either control group
or mild TBI group. To detect whether there was abnormal sex difference on functional
connectivity in RSNs, we performed independent component analysis (ICA) and a
dual regression approach to investigate the between-subject voxel-wise comparisons
of functional connectivity within seven selected RSNs. Compared to female patients,
male patients showed increased intrinsic functional connectivity in motor network,
ventral stream network, executive function network, cerebellum network and decreased
connectivity in visual network. Further analysis demonstrated a positive correlation
between the functional connectivity in executive function network and insomnia severity
index (ISI) scores in male patients (r = 0.515, P = 0.006). The abnormality of the functional
connectivity of RSNs in acute mild TBI showed the possibility of brain recombination after
trauma, mainly concerning male-specific.

Keywords: mild traumatic brain injury, sex difference, rs-fMRI, functional connectivity, independent component
analysis

INTRODUCTION

Traumatic brain injury (TBI) is a substantial public health problem, and can accelerate the ageing
process, leading to long-term structural and functional alterations to the brain (Benedictus et al.,
2010; Cole et al., 2015). About 90% of TBI is classified as mild (Vos et al., 2002). It is worthy of
attentions that one-quarter of mild TBI patients have post-concussive symptoms or other cognitive
disorders (Bazarian et al., 2010). However, the heterogeneity of the injuries and the variability of
cognitive symptoms make it problematic for management (Jenkins et al., 2016). Several factors are
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associated with poor outcomes after mild TBI, of which, the most
controversial is sex (Bazarian et al., 2010). In female group, sex
steroids have been tested to demonstrate neuroprotective effects
in severe TBI (Fakhran et al., 2014). Nevertheless, the effect of
sex on outcome is still unclear after mild TBI. Understanding
sex differences of brain injury mechanism after mild TBI may
enhance the future diagnostic work-up in patients and lead
to separate management strategies for patients with different
sexes.

Previous studies about sex differences in cognitive outcome
after mild TBI revealed controversial and interesting results.
Controlled animal experiments have shown better cognitive
outcomes among females after mild TBI (Bramlett and
Dietrich, 2001; O’Connor et al., 2003; Bazarian et al., 2010).
Evidence from a human study also finds that women have
superior executive functioning when compared with men after
acute TBI (Niemeier et al., 2014). Other studies show that
women outperform men in the tasks of verbal memory and
learning measures following TBI (Farace and Alves, 2000;
Covassin et al., 2012). These results indicate that female sex
is somehow neuroprotective. While, multiple observational
studies in humans have demonstrated that females present
worse outcomes following concussion compared with males
(Broshek et al., 2005; Bay et al., 2009; Covassin et al., 2013;
Hsu et al., 2015; Cancelliere et al., 2016). Specifically, females
report more post-concussive symptoms with greater severity
compared to males (Broshek et al., 2005; Bay et al., 2009;
Covassin et al., 2012). Indeed, these observation studies may
be confounded by many factors, especially by sociological
pressures on male athletes, including the greater societal stigma
with symptom reporting, resulting in underreporting by males
(Fakhran et al., 2014). Therefore, more objective measurements,
such as neuroimaging indices, are crucial in avoiding such
bias.

The evaluation of resting-state functional connectivity is
an appealing approach to assess activity differences among
sexes (Filippi et al., 2013). A recent research has revealed that
global connectivity was stronger in female network than in
males with posttraumatic stress disorder (PTSD; Cao et al.,
2018). However, resting-state fMRI studies in mild TBI focus
on connectivity mainly in a limited number of predefined
regions-of-interest (ROIs), not fully exploring large-scale brain
functional connectivity (Mayer et al., 2011; Slobounov et al.,
2011; Shumskaya et al., 2012). Though substantial evidence
supports models of TBI as a condition characterized by
altered brain connectivity, sex-related differences in functional
connectivity are still less clear. Understanding the effects of sex
difference after mild TBI on brain function and behavior is
likely to require a widespread investigation on brain network
connectivity. Indeed, several studies have characterized the
resting-state networks (RSNs) using independent component
analysis (ICA; Damoiseaux et al., 2006; De Luca et al., 2006). As
declared by a study performed on a very large sample of healthy
participants, these networks have a high reproducibility (Biswal
et al., 2010). The assessment of RSNs allows us to evaluate the
intrinsic functional connectome of the human brain among sexes
(Filippi et al., 2013).

Most studies investigating functional connectivity have
involved patients with moderate-to-severe TBI, or during the
chronic stage of recovery (Caeyenberghs et al., 2012, 2013, 2014;
Shumskaya et al., 2012). Importantly, reliable and valid indices
of acute injury, which can elucidate underlying neuroanatomical
injury mechanisms or be predictive for longer-term outcomes,
are lacking in studies of mild TBI (Yuan et al., 2015). Thus, in
the current study, we aimed to investigate the sex differences on
whole-brain functional connectivity at the network level from a
cohort of acute mild TBI patients, not biased by a priori region
selection.

MATERIALS AND METHODS

Participants
A total of 61 patients with acute mild TBI within 7 days
post-injury were recruited from the emergency department (ED)
of a local hospital, between August 2016 and July 2017. All
consecutively patients with non-contrast head CT due to acute
head trauma enrolling from the local ED formed the initial
population. Inclusion criteria for all mild TBI patient were based
on the World Health Organization’s Collaborating Centre for
Neurotrauma Task Force (Holm et al., 2005): (i) Glasgow Coma
Scale (GCS) score of 13–15 on presentation to the ED; (ii) one
or more/any of the following: loss of consciousness (LOC) for
less than 30 min, posttraumatic amnesia (PTA) for 24 or less
hours, and/or other transient neurological abnormalities such as
focal signs, seizure, and intracranial lesion not requiring surgery;
and (iii) were aged 18 years or older. Mild TBI patients were
excluded for: (i) a history of a previous brain injury, neurological
disease, long-standing psychiatric condition, or concurrent
substance or alcohol abuse; (ii) a structural abnormality on
neuroimaging (CT and MRI); (iii) intubation and/or presence
of a skull fracture and administration of sedatives; (iv) the
manifestation of mild TBI due to medications by other
injuries (e.g., systemic injuries, facial injuries, or spinal cord
injury); (v) other problems (e.g., psychological trauma, language
barrier, or coexisting medical conditions); and (vi) caused by
penetrating craniocerebral injury. Among these patients, seven
were excluded, five of whom had MRI contraindications, and
two were left handedness. At last, 54 patients (27 males) were
enrolled. In addition, 34 sex-, age- and education-matched
healthy controls (HCs; 17 males) without neurologic impairment
or psychiatric disorders participated in the study. All participants
were right-handed according to the Edinburgh Handedness
Inventory. All the subjects gave written, informed consent in
person approved by a local institutional review board; the
research procedures were approved by the Ethical Committee of
The Second Affiliated Hospital of Wenzhou Medical University
and conducted in accordance with the Declaration of Helsinki.

Clinical Assessment
Clinical assessments were performed within 48 h of MR imaging
for all the participants. Neuropsychological tests included:
(a) WAIS-III Digit Symbol Coding (DSC) to examine motor
skill and memory; (b) Verbal Fluency Test to evaluate verbal
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fluency including language ability, executive function and
semantic memory (Troyer et al., 1997; Kreiner and Ryan,
2001). Self-assessment symptom questionnaires included: the
Rivermead Post-Concussion Symptom Questionnaire (RPCS),
Insomnia Severity Index (ISI; King et al., 1995; Bastien et al.,
2001).

Image Acquisition
A non-contrast CT scan was performed on all consecutive
patients following acute head injury with a 64-row CT
scanner (GE, Lightspeed VCT). The MRI scans were acquired
with the use of 3.0 T MRI scanner (GE 750). A custom-
built head holder was used to prevent head movements. All
participants were instructed to remain in a relaxed state without
engaging in cognitive or motor activity and to keep their eyes
closed. Alertness during the scan was confirmed immediately
afterward. The MRI protocol involved the high-resolution
T1-weighted 3D MPRAGE sequence (echo time (TE) = 3.17 ms,
repetition time (TR) = 8.15 ms, flip angle = 9◦, slice
thickness = 1 mm, field of view (FOV) = 256 mm × 256 mm,
matrix size = 256 × 256), single-shot, gradient-recalled echo
planar imaging (EPI) sequence with 54 slices covering the whole
brain (TR = 2,000 ms, TE = 30 ms, slice thickness = 3 mm, flip
angle = 90◦, FOV = 216 mm × 216 mm, matrix size = 64 × 64,
voxel size = 3mm× 3mm× 3mm), axial FLAIR (TR = 9,000ms,
TE = 95 ms, flip angle = 150◦, thickness = 5 mm, slices = 20,
FOV = 240 mm × 240 mm, matrix size = 173 × 256),
axial susceptibility weighted imaging (SWI; TR = 37.8 ms,
TE = 25 ms, flip angle = 15◦, thickness = 2 mm, slices = 70,
FOV = 230 mm × 230 mm, matrix size = 512 × 512), axial
FLAIR (TR = 9,000 ms, TE = 95 ms, flip angle = 150◦,
thickness = 5 mm, slices = 20, FOV = 240 mm × 240 mm, matrix
size = 173 × 256).

The presence of focal lesions and cerebral microbleeds
was determined by an experienced clinical neuroradiologists
(with 10 years’ experience) who assessed multiple modalities
of neuroimaging data acquired at baseline (T1-weighted, SWI,
FLAIR) for all subjects in random sequence, blind to clinical
information and group membership (patient or control).

Preprocessing of Resting State Data
Image preprocessing was accomplished using the FSL software
package (Smith et al., 2004). First, the first 10 volumes of resting-
state data were removed to allow for steady state equilibrium.
Data preprocessing included the slice-timing, head-motion
correction, normalization, spatially smoothing with a 6-mm full
width at half maximum, linear trend removal, and band-pass
filtering (0.01–0.08 Hz). Motion correction was performed by
realigning fMRI time-series using a six-parameter rigid-body
spatial transformation (Friston et al., 1995). In the normalization
step, all BOLD data were aligned to their corresponding
T1-weighted images, and normalized BOLD images were created
by applying the transformation of T1-weigthed images to the
ICBM152 template. Spurious variances (headmotion, ventricular
and white matter signal and the derivatives of each of these
signals) were removed by multiple linear regression analysis.

Data analysis was performed using the FMRIB Software
Library (FSL; FMRIB Software Library). Head motion in the
resting state data was corrected using multi-resolution rigid body
co-registration of volumes, as implemented in the MCFLIRT
software (Jenkinson et al., 2002). Brain extraction was carried
out in the BET software for motion-corrected BOLD volumes
with optimization of the deforming smooth surface model,
as implemented (Smith, 2002). Rigid body registration as
implemented in the FLIRT software was used to co-register
fMRI volumes to 3D MPRAGE (brain-extracted) volumes of
the corresponding subjects and subsequently the 3D MPRAGE
volumes to the MNI152 standard space (Jenkinson et al.,
2002). The images were smoothed with a 6-mm full width at
half-maximum (FWHM) Gaussian kernel.

Resting State Networks
Following the preprocessing, Multivariate Exploratory Linear
Optimized Decomposition into Independent Components
(MELODIC) tool within FSL was used to perform spatial
group-ICA using multisession temporal concatenation. Datasets
were temporally concatenated across all participants to create a
single 4-dimensional dataset as input for MELODIC, to produce
25 independent component maps (IC maps) representing
average resting state brain networks (RSNs).

The intrinsic functional connectivity was the connectivity
among various regions within a RSN (Kumar et al., 2018). A
dual regression approach was used to perform the between-
subject analysis by voxel-wise comparisons of resting functional
connectivity (Jenkinson et al., 2002; Nichols and Holmes, 2002;
Beckmann and Smith, 2005; Cole et al., 2010; Kumar et al.,
2018). We accomplished this procedure as follow. First, we used
all group ICA spatial maps as spatial regressors against the
preprocessed individual subject’s fMRI data, which produced
subject-specific time courses for each group ICA component.
Then, these time courses were variance-normalized and linearly
regressed for the subject’s fMRI dataset. Individual spatial maps
of each group ICA component were provided by the regression.
Finally, we merged these individual spatial maps across subjects
into single 4-dimensional files per ICA component. The
voxel-wise group differences in intrinsic network functional
connectivity between male and female patients were carried out
using nonparametric permutation testing (5,000 permutations
per contrast for each ICA component) in FSL (Kumar et al.,
2018). Threshold-free cluster enhancement (TFCE) was used to
control themultiple comparisons. The significance threshold was
set to P < 0.05, Family-Wise Error (FWE) corrected. The results
represented the group differences in functional connectivity for
all RSNs.

Region of Interest Analysis
Region-of-Interest (ROI) analysis was then applied based
on the regions showing significant differences on functional
connectivity between male and female patients. Such analysis
would provide us the ability to determine the size and location of
the clusters, which showed significant differences between male
and female patients. A single ROI mask was created according to
the location and size of clusters in the specific RSN. Strengths of
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functional connectivity of patients and HCs, were then extracted
in an automated fashion by using the ROI mask along the
individual spatial maps.

Additional Statistical Analysis
Statistical analyses were performed in SPSS 20.0. For each
continuous variable, the normal distribution was measured by
the Shapiro-Wilk test. The independent two-sample t-test and
the Mann-Whitney test were used to compare group differences
based on data normality, respectively. A Kruskal-Wallis test was
conducted to assess the differences in age, education level and
neuropsychologic test results in four groups (i.e., control male,
control female, mild TBI male and mild TBI female). Chi-square
analyses were applied to assess categorical variables. ROI-analysis
among four groups were subjected to the univariate analysis
of variance (ANOVA). Correlation analysis was also conducted
between functional connectivity and clinical symptoms by using
Pearson correlation coefficients.

RESULTS

Participant Characteristics
During the study, we employed 54 patients with mild TBI, all of
which were recruited from the ED of the local Level-1 emergency
center. None of patients were with visible contusion lesions using
conventional neuroimaging techniques and exhibited cerebral
microbleeds on SWI. Thirty-four (17 males) control subjects
were included. No significant difference was seen between the
HCs and patients with mild TBI in regard to age, sex and
education level (P > 0.1).

For all the patients, no significant contusion or cerebral
hemorrhage was found. The major mechanism of trauma was a
motor vehicle collision injury [13 of 27 male patients (48.2%),
15 of 27 female patients (55.6%)], followed by assault [9 of
27 male patients (33.3%), 7 of 27 female patients (25.9%)], and
fall was the last [5 of 27 male patients (18.5%), 5 of 27 female
patients (18.5%)]. No significant differences in age and education
level were found betweenmale and female patients with mild TBI
(P > 0.05).

Both female and male patients with mild TBI displayed
deficits on all of the clinical assessments compared with their
control counterparts. For both the male and female subjects,
there were significant differences between patients and controls
in the Rivermead Post-Concussion Symptom Questionnaire
(P < 0.001), WAIS-III DSC score (P < 0.05), Verbal Fluency
Test (P < 0.05), ISI (P < 0.001; Table 1). No significant sex
differences were found for all assessments, neither in mild TBI
nor HC groups (Table 2).

Resting-State Networks
Twenty-five components were computed in the entire subject
group by the ICA. Based on visual inspection of the spatial map
(biologic plausibility and comparability with previously reported
RSNs), we sorted the components into functionally relevant
RSNs and artifactual components related to physiologic/scanner
noise and head motion. Seven components closely coincided TA
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FIGURE 1 | The panel represents functionally relevant resting-state networks
(RSNs) from the group independent component analysis (ICA) analysis of
temporally concatenated datasets from both patients with mild traumatic brain
injury (TBI) and control subjects. The left side of the brain corresponds to the
left side in the image.

with prior reports (Figure 1; Shumskaya et al., 2012). RSN 2
corresponded to the motor network. The visual processing
network was represented in the RSN 12. We also found two
RSNs involved in high-order cognitive functions: the executive
function network (RSN 3) and default mode network (RSN 17).
RNS14 was medial temporal which located in the temporal lobe.
RNS7 corresponded to the ventral stream. We identified another
component that was rarely reported or examined thoroughly,
namely the cerebellum (RSN 8).

Five RSNs showed significant voxel-wise differences in the
spatial maps between male and female patients (P < 0.05, FWE
corrected, Figures 2, 3). Compared with females, male patients
showed increased intrinsic functional connectivity within the
motor network (RSN 2), executive function network (RSN 3),
ventral stream network (RSN 7), and cerebellum (RSN 8). By
contrast, male patients performed lower connectivity than female
patients in the visual network (RSN 12).

ROI Data Analysis
Within these between-sex difference networks in patients, results
of ANOVA demonstrated that intrinsic functional connectivity
were significant different in clusters within the motor network
(P = 0.012, F(3,84) = 3.91), executive functional network
(P = 0.011, F (3,84) = 3.96), ventral stream network (P = 0.004,
F(3,84) = 4.77), cerebellum (P = 0.003, F(3,84) = 5.02) and visual
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FIGURE 2 | Intrinsic functional connectivity differences between male and female patients within (A) motor network, (B) ventral stream network, (C) executive
function network (D) cerebellum are showed increased connectivity in male patients. Maps were thresholded at P < 0.05 (family wise error (FWE) corrected). The left
side of the brain corresponds to the left side in the image. Scatterplots are displayed for regions-of-interest (ROI)-analysis among groups. Significant effects are
denoted with asterisks between two groups, under post hoc restricted least significant difference (LSD) tests.

network (P = 0.004, F(3,84) = 4.88) among groups. Post hoc
restricted least significant difference (LSD) tests of ANOVA
further revealed that male patients had significant increased
connectivity than male controls in the motor (RSN 2, P = 0.033)
and ventral stream networks (RSN 7, P = 0.021). Male patients

had lower connectivity strength in the visual network (RSN 12,
P = 0.028) than male controls. No significant difference was
found between female patients and female controls within these
brain networks. In sum, the mild TBI effect on the sex difference
was derived mainly from the male patients.
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FIGURE 3 | Intrinsic functional connectivity differences between male and female patients within visual network, where showed decreased connectivity in male
patients. Maps were thresholded at P < 0.05 (FWE corrected). The left side of the brain corresponds to the left side in the image. Scatterplots are displayed for
ROI-analysis among groups. Significant effects are denoted with asterisks between two groups, under post hoc restricted LSD tests.

The Relationship Between Abnormal
Functional Connectivity and Clinical
Performance
Correlation analysis was then conducted and restricted into
each brain network showing significant sex difference (RSNs 2,
3, 7, 8, 12) and clinical symptoms only in the male patients.
Correlation analysis showed that functional connectivity within
the executive function network (RSN 3) was positively correlated
with ISI scores (r = 0.515, P = 0.006, Figure 4). A conservative
corrected significance level of P < 0.0125 was considered
following Bonferroni correction for the total number of clinical
assessments involved (0.05/4).

DISCUSSION

Mild TBI is considered to induce abnormal resting state
functional connectivity within intrinsic networks, however little

FIGURE 4 | The pearson correlation coefficient plots correlating mean
Z-values of intrinsic functional connectivity in executive function network with
insomnia severity index (ISI).

is known about whether there is an effect of biological sex
on response to TBI-related abnormalities (Shumskaya et al.,
2012; Mayer et al., 2014). This study applied a whole-brain
analysis to illustrate sex differences of resting-state functional
connectivity from a network perspective after mild TBI. To
the best of our knowledge, this is the first study to evaluate
potential sex differences in the functional connectivity networks
from a cohort of patients with acute mild TBI. The main
findings of the present study are: (a) for the neuropsychological
tests and self-report scales involved in the study, there were
no significant differences between males and females either
in mild TBI or control group; (b) however, male patients
presented increased functional connectivity within motor,
ventral steam, executive function and cerebellum networks,
decreased connectivity within visual network compared with
female patients; these identified RSNs have been previously
associated with somatosensory and motor functions, executive
control, self-related processing (Bressler and Menon, 2010);
and (c) there was a positive correlation between functional
connectivity within executive functional network and ISI scores
in male patients.

No sex difference was observed in clinical scales after mild
TBI in our study. Previous studies have attempted to discover sex
effect on mild TBI using clinical cognitive outcomes (Covassin
et al., 2012, 2013; Hsu et al., 2015). However, results of these
experiments are controversial. Some have suggested that females
report worse outcomes and more post-concussive symptoms
compared with males following concussion (Broshek et al., 2005;
Covassin et al., 2012; Cancelliere et al., 2016). One has found
that women have superior executive functioning when compared
with men after TBI (Niemeier et al., 2014). In consistent with
several studies, our results had shown no substantial difference
in outcome with regard to sex (Cantu et al., 2010; Frommer
et al., 2011). Observational studies may be confounded by
sociological pressures on males, leading to underreporting by
male subjects (Fakhran et al., 2014). Thus, it is essential to
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develop a more objective measurement to evaluate the sex
difference after injury.

In the present study, we selected seven functionally relevant
RSNs. Between-group analysis reported the effects of sex
difference on intrinsic functional connectivity within RSNs.
Compared to female patients with mild TBI, male patients
exhibited enhanced functional connectivity within the motor
network (paracentral lobule, superior frontal gyrus, Figure 2A),
ventral stream network (superior temporal gyrus, Figure 2B),
executive function network (middle frontal gyrus, Figure 2C),
and cerebellum (posterior lobe, Figure 2D). Male patients also
presented higher connectivity than male controls in the motor
and ventral steam network (Figures 2A,B). Motor network is
involved inmotor-learning, and it is suggested to have a potential
role in disease-related functional connectivity alterations in
motor tasks (Kumar et al., 2018). In a previous study, Shumskaya
et al. (2012) find decreased functional connectivity within the
motor-striatal network in the mild TBI group. Conversely, we
observed increased connectivity in male patients when compared
with either male HC or female patients. Nevertheless, there
was no significant difference neither between female patients
and female controls in the area, nor between male and female
controls. We supposed that there might be physical male-specific
stress response after acute injury. The ventral stream network
is involved to the processing of visual information, as well
as hearing (Tinelli et al., 2014; Dittinger et al., 2018). Our
results showed significantly increased functional connectivity
in the superior temporal gyrus in male patients. In executive
function network, male patients showed greater connectivity
than female patients on the middle frontal gyrus. A previous
study suggest that increased connectivity found in the mild
TBI group might lead to the increase of awareness from the
external environment during the acute stage, and it might
explain cognitive over-fatigue recounted by patients with mild
TBI (Shumskaya et al., 2012). Similarly, damaged self-awareness
has also been attested previously in patients with TBI with
frontal lobe injury (Spikman and van der Naalt, 2010). Within
cerebellum network, comparing to female patients, male patients
showed increased connectivity on the anterior lobe and posterior
lobe. However, few researches have investigated functional
connectivity in cerebellum, since there is no region of interest in
studies. A research about sex differences on cerebellum should be
done in future. In brief, the hyper-connectivity in male patients
indicated that men had a different strategy in information
processing when suffering concussion.

Further, male patients showed significant decreased
functional connectivity on occipital lobe, which considered to
be one component of visual network (Figure 3), compared with
female patients and male controls. The visual network is related
to the processing of visual information, and visual dysfunctions
in mild TBI include photosensitivity or photaesthesia, double
vision and vision deficits (Goodrich et al., 2007; Cockerham et al.,
2009). Visual dysfunction had been found to be associated with
high level processing defects, such as the speed of understanding
and reading (Capó-Aponte et al., 2012). Mild TBI may destroy
the transmission of information, and then affect perception,
cognition and behavior. In visual network, female patients

showed no significant difference than female controls. We
suspected that males had weaker visual adjustment ability with
compensation than females following injury. For the acute mild
TBI, females may have the ability to protect their visual network
with production of some regulatory substance.

Moreover, a positive correlation between functional
connectivity within executive function network and ISI
scores was discovered in male patients, suggesting the
hyperconnectivity in executive function network was detrimental
to male’s sleeping after mild TBI. One study has reported that
the hyperconnectivity with dorsal medial prefrontal cortex
(dlPFC) across the executive function network may explain
impaired concentration, increased rumination and self-focus in
major depressive disorder (Crowther et al., 2015). It has been
demonstrated that a single night of sleep deprivation is harmful
to cognitive abilities, ranging from phasic alertness to executive
functions (Harrison et al., 2000; Doran et al., 2001; Muto et al.,
2012). The fragmented sleep can also make impairments on
hyper-arousal and executive dysfunction (Stoffers et al., 2014).
The results in our study may indicate that males were more
vulnerable than females when suffering mild TBI.

Several limitations of our present study should be noted. First,
it cannot infer direct causal effects of sex differences from current
results in the study. Sex differences on functional connectivity
are the result of interaction between genetics and external
environmental factors (Kaczkurkin et al., 2016). Nonetheless,
in specific RSNs, the significant sex differences presented on
functional connectivity suggest particular adjustment for males
followingmild TBI, andmay represent an important mechanism.
Second, current study about mild TBI is limited to the
acute period. Long-term differences of functional connectivity
or prognosis between male and female patients cannot be
accomplished. Recent research had shown that the strength of
these network connections would be increased or decreased
in a rapid and reversible manner to achieve a dynamic
network connection (DNC; Arnsten et al., 2010). We need a
longitudinal follow-up instead of once time point study in future.
Third, the hormone status, which has been shown to affect
neuropsychologic data and image status, is not unified (Bhagia
et al., 2010; Xu et al., 2010; McAllister et al., 2011; Tamargo
et al., 2017; Yamakawa et al., 2017). The study variables cannot be
completely controlled. Furthermore, a combination of imaging
methods, such as SWI, diffusion tensor imaging for integrity of
white matter cellulose, MR perfusion study andMR spectroscopy
for metabolite study should be compared, which may help to
understand the structural pathophysiology of mild TBI and the
causes of sex differences, to draw a more statistically significant
conclusion.

CONCLUSION

In summary, the current findings of our research confirmed that
there were significant sex differences on functional connectivity
within specific RSNs following mild TBI. Male patients showed
hyper-connectivity than female patients in four of selected
RSNs, including motor, ventral stream, executive function and
cerebellum networks. Hypo-connectivity in male patients than
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female patients was found in visual network, suggesting a
king of female compensation mechanism. We found that the
abnormality of the functional connectivity of RSNs in acute mild
TBI showed the possibility of brain recombination after trauma,
mainly concerning male-specific.
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