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AF is a heterogeneous rhythm disorder that is related to a wide spectrum of etiologies

and has broad clinical presentations. Mechanisms underlying AF are complex and

remain incompletely understood despite extensive research. They associate interactions

between triggers, substrate and modulators including ionic and anatomic remodeling,

genetic predisposition and neuro-humoral contributors. The pulmonary veins play a key

role in the pathogenesis of AF and their isolation is associated to high rates of AF

freedom in patients with paroxysmal AF. However, ablation of persistent AF remains

less effective, mainly limited by the difficulty to identify the sources sustaining AF. Many

theories were advanced to explain the perpetuation of this form of AF, ranging from a

single localized focal and reentrant source to diffuse bi-atrial multiple wavelets. Translating

these mechanisms to the clinical practice remains challenging and limited by the

spatio-temporal resolution of the mapping techniques. AF is driven by focal or reentrant

activities that are initially clustered in a relatively limited atrial surface then disseminate

everywhere in both atria. Evidence for structural remodeling, mainly represented by

atrial fibrosis suggests that reentrant activities using anatomical substrate are the key

mechanism sustaining AF. These reentries can be endocardial, epicardial, and intramural

which makes them less accessible for mapping and for ablation. Subsequently, early

interventions before irreversible remodeling are of major importance. Circumferential

pulmonary vein isolation remains the cornerstone of the treatment of AF, regardless of

the AF form and of the AF duration. No ablation strategy consistently demonstrated

superiority to pulmonary vein isolation in preventing long term recurrences of atrial

arrhythmias. Further research that allows accurate identification of the mechanisms

underlying AF and efficient ablation should improve the results of PsAF ablation.
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INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia.
It represents a major cause of mortality and morbidity, mainly
related to embolic events and heart failure (Benjamin et al., 1998;
Ruigomez et al., 2002, 2009; Pedersen et al., 2006; Miyasaka
et al., 2007; Potpara et al., 2013; Pandey et al., 2017; Eggimann
et al., 2018; Reddy et al., 2018). AF is a heterogeneous rhythm
disorder that is related to a wide spectrum of etiologies and
has broad clinical presentations. Despite extensive research, the
mechanisms underlying AF remain incompletely understood. AF
results from interactions between triggers, responsible for its
initiation, and the substrate responsible for its perpetuation. In
addition, ionic and anatomic remodeling, genetic predisposition,
and neuro-humoral contributors make these interactions more
complex.

The pulmonary veins play a key role in the pathogenesis of
AF and their isolation is associated to high rates of AF freedom
in patients with paroxysmal AF (PAF). However, ablation of
persistent AF (PsAF) remains less effective, mainly limited by
the difficulty to identify the sources sustaining AF outside the
pulmonary veins.

We aimed to review the mechanisms underlying AF and their
implications for catheter ablation.

AF PATHOPHYSIOLOGY

The mechanisms underlying AF are classically described
as mechanisms responsible for its initiation (triggers) and
mechanisms responsible for its perpetuation (Figure 1). This
classification is clinically relevant as it allows to identify
therapeutic targets.

AF Triggers
Haïssaguerre et al. (1998) first reported the essential role of the
pulmonary veins (PVs) in the initiation and maintenance of
paroxysmal AF (PAF). Ectopic activities originating from the
PVs were identified in 94% of patients suffering from frequent
pre-procedural AF episodes. Discrete ablation targeting the site
of origin of the ectopic activities abolished the arrhythmia and
prevented its recurrence in 62% of the cases after a follow-up of
8 months. The role of the PVs in triggering AF was confirmed in
multiple subsequent studies (Chen et al., 1999; Wu et al., 2001;
Sanders et al., 2002; Mahida et al., 2015).

Compared to the atrial cells, the PVs cardiomyocytes
have specific action potential properties that predispose to
arrhythmogenesis. In fact, the PVs cells have a higher resting
membrane potential, a lower amplitude of the action potential,
a smaller maximum phase 0 upstroke velocity and a shorter
action potential duration (APD). Slow and rapid delayed rectifier
currents are greater in the PVs whereas transient outward K+
current and L-type Ca2+ current are smaller (Ehrlich et al.,
2003).

The initial premature beats arising from the PVs are focal
(Arentz et al., 2007). These beats are likely automatic or triggered
and related to calcium handling abnormalities and subsequent
delayed afterdepolarizations (DAD) (Hirose and Laurita, 2007;

Takahara et al., 2011; Heijman et al., 2014). They are modulated
by acute stressors like atrial stretch (Kalifa et al., 2003) and
neural activation (Patterson et al., 2005; Lu et al., 2009). Early
after depolarization due to prolonged action potential duration
are mainly described in models of long QT syndrome (Lemoine
et al., 2011). Subsequent firing is either related to DAD due
to abnormal diastolic spontaneous calcium release (Chou et al.,
2005; Nattel and Dobrev, 2016) or to reentrant activity at the
junction between the PVs and left atrium. In fact, atrial myocytes
at the entrance of the PV have abrupt changes in their fiber
orientation, leading to slow conduction and reentry (Hocini et al.,
2002). In addition, ionic mechanisms facilitate the occurrence of
reentry by shortening the APD (increased rapid [IKr] and slow
[IKs] delayed rectifier K+ currents) and slowing the conduction
via the inactivation of Na+ currents (Nattel and Dobrev, 2016).

Additional ectopic sources triggering AF were identified
outside the PVs. They can be located in the vena cavae, the crista
terminalis, the coronary sinus, the ligament ofMarshall, the inter-
atrial septum, the appendages. . . (Mansour et al., 2002; Lin et al.,
2003; Shah et al., 2003; Lee et al., 2005; Yamada et al., 2006; Pastor
et al., 2007; Hwang and Chen, 2009; Yamaguchi et al., 2010; Elayi
et al., 2013; Enriquez et al., 2017). Lin et al. (2003) identified non-
PV triggers in 20% of the ectopic beats initiating PAF. Non PV
triggers were predicted by female gender (odds ratio 2.00, 95%
confidence interval 1.02–3.92) and left atrial enlargement (odds
ratio 2.34, 95% confidence interval 1.27–4.32) in patients with
PAF (Lee et al., 2005) and are more prevalent in AF of longer
duration (Hung et al., 2017). Mechanisms underlying extra-PV
triggers are less well-elucidated.

Perpetuation of AF
Mechanisms underlying the perpetuation of AF are still debated.
Multiple wavelets and localized (focal or reentrant) sources are
largely accepted to drive AF. These mechanisms are summarized
in Figure 2.

Multiple Wavelets Hypothesis
Multiple wavelets were suggested to perpetuate AF in a
mathematical model performed by Moe et al. (1964). In this
model, multiple waves randomly propagate through the atria,
cause wavebreaks, and give birth to new “daughter” wavelets.
Theoretically, the number and the stability of these wavelets
prevent AF termination. AF would be sustained as long as the
number of wavelets exceeds a critical level. The presence of
independent wavelets has been demonstrated in more recent
studies (Chen et al., 2000; Reumann et al., 2007; De Groot et al.,
2016). However, an important question is whether these wavelets
are driving AF or they are just passive and result from the
breakup of more organized waves remains unanswered. Chen
et al. (2000) analyzed the individual wavelets during sustained
AF by identifying the phase singularities using optical mapping.
In their models, the wavelets existed for less than one rotation in
98% of the cases. In addition, the number of wavelets decreased
between the entrance and the exit of the mapping field. These
results suggested that wavelets essentially result from the breakup
of high frequency organized waves and as such they are not
an independent mechanism that maintains of AF. Recording
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FIGURE 1 | Coumel triangle summarizing the different contributors to AF.

FIGURE 2 | Schematic representation of the mechanisms maintaining AF. (A) Single stable focal or reentrant source (star) with fibrillatory conduction. (B) Multiple

wavelets: multiple waves propagate randomly and give birth to new daughter wavelets. (C) Multiple reentries (red arrows) around areas of scar and fibrosis.

(D) Combination of the different mechanisms that sustain AF in humans. These mechanisms are typically meandering and last for few consecutive beats.
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multiple wavelets during firing from the PVs is an example that
supports the passive role these wavelets.

Localized AF Drivers: (Figure 3)
There is no specific definition of AF drivers. Hansen et al.
(2016) defined AF drivers as localized sources of fast, repetitive
activity from which activation propagates and breaks down into
fibrillatory conduction in the rest of the atria. This definition
refers to localized activities without specifying the underlying
mechanism. The driving role of these activities is demonstrated
by ablation slowing or terminating AF.

Functional reentry
Functional reentry refers to reentrant activity in the absence of
underlying substrate and of anatomical obstacles.

The leading circle concept: This concept was developed by
Allessie et al. (1977). In this theory, centripetal waves moving
toward the center maintain this latter refractory. A functional
reentry establishes itself in the shortest circuit defined as the
shortest distance the impulse travels during the refractory
period. The presence of slow conduction velocity (CV) or brief
refractoriness (RP) produces a small wavelength (WL) andmakes
spontaneous termination of AF unlikely. In fact, as WL= CV ∗

RP, the occurrence of a steady state where the WL is adapted
to the circuit length would stabilize the reentry and would
perpetuate AF.

Spiral wave reentry= rotor concept: Spiral wave reentry or “rotor”
is a region of specific reentry where the curved wavefront and
wavetail meet each other at a singularity, and where the central
tissue is not refractory (Vaquero et al., 2008; Pandit and Jalife,
2013; Nattel et al., 2017).

Evidence for spiral wave reentry was first demonstrated in
simulation studies (Winfree, 1973; Goldbeter, 1975; Lechleiter
et al., 1991; Pertsov et al., 1993a). Its presence in cardiac
tissue was demonstrated using optical mapping by Davidenko
et al. (1990). The authors induced sustained reentrant activity
by using a single appropriately timed premature electrical
stimulus applied perpendicularly to the wake of a propagating
quasiplanar wavefront. Reentry pivots at high frequency (5–7Hz)
around a relatively small group of cells that show only minimal
depolarizations (phaseless region) throughout the cycle.

Mandapati et al. (2000) identified micro-reentrant sources
localized in 80% of the cases at the posterior LA, close to the
left veins. The authors identified high frequency periodic activity
limited to small area (10.4± 2.8mm of core perimeter and 3.8±
2.8 mm2 area). Using high resolution video imaging, the localized
sources correspond to vortex like reentry.

Spatio-temporal characterization of the rotor activities was
facilitated thanks to phase transformation. Gray et al. (1998)
analyzed phase singularities during fibrillation and demonstrated
a spatial and temporal organization that under certain conditions
give rise to rotors. Phase represents the different stages within 1
cycle of a signal divided into 360◦ or 2π radians (Umapathy et al.,
2010).

Phase analysis characterization of the recorded signals lacks
temporal accuracy, Bray and Wikswo (2002) developed an
algorithm capable of establishing proper orbits without the need

to specify “Tau.” Using the Hilbert transform, phase singularities
could be localized closer to the point of initial formation than
was possible previously. This transformation is important for the
purposes of singularity tracking and investigating electrodynamic
interactions. Phase transformation allows to identify the center
of the pivoting rotor as an area of undefined phase and is called
phase singularity. This center is surrounded by phases ranging
between – π and+ π (Figure 5).

Anatomical reentry
Localized reentries play a key role in the maintenance of AF.
Reentry occurs in the presence of unidirectional block and of slow
conduction that makes the wavelength shorter than the length
of the circuit. Such conditions are commonly encountered in the
atria of patients with AF, mainly in the presence of fibrosis.

The role of reentry in maintaining AF was demonstrated by
Schuessler et al. (1992). In their model, the authors induced AF
using a single extra-stimulus and increasing concentrations of
acetylcholine and mapped the right atrial activation. They noted
an increase in the number of wavelets that tended to stabilize
to small, single, relatively stable reentrant circuit in the absence
of anatomical barriers. These reentries are facilitated by the
occurrence of lines of functional block at the crista terminalis.

Spach et al. (1988) showed micro-anatomic reentry (within
1–2mm area) that occur in the presence of non-uniform
anisotropic conduction and micro-fibrosis of the pectinate
bundles of the right atrium (Spach and Dolber, 1986). Hansen
et al. (2015) provided the evidence for intramural reentries
that anchor to fibrosis insulated atrial bundles. The authors
induced AF in explanted Human hearts and mapped intramural
activation of the right atrial wall using high resolution optical
mapping. They noted stable reentries that anchor to areas with
complex architecture marked by increased transmural fiber angle
differences and interstitial fibrosis. The majority of the reentries
were mapped from the endocardial surface and discrete ablation
terminated AF which confirms their driving role. These micro-
reentries were also identified in the left atrium (Zhao et al., 2015)
at the junction between the left atrial roof and the posterior
wall of the left atrium, at an area with abrupt changes in the
myocardial fiber orientation. Ablation of the driver maintain
AF can unmask drivers with longer cycle length (Hansen et al.,
2015). The presence of several temporally competing drivers and
secondary drivers may underlie the absence of acute termination
by ablation and should motivate repeated mapping of AF.

AF drivers are more frequently recorded in the left atrium.
This is attested by shorter AF CL in the left atriumwith a gradient
LA-RA, the higher rate of AF termination in the LA. Mansour
et al. (2001) analyzed left atrial and right atrial dominant
frequencies and identified left to right activation gradient that
increased after the ablation of the Bachmann bundle and of the
inferoposterior interatrial pathway. This observation supports
the higher prevalence of AF drivers in the left atrium with
fibrillatory conduction to the right atrium. Hocini et al. (2010)
tracked the evolution of AF cycle length at the right and atrial
appendages. In 70% of the cases, an increase of both cycle
lengths occurred after left atrial ablation. Right atrial drivers were
recorded in 20% of the cases.
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FIGURE 3 | Different reentrant activities maintaining AF (adapted from reference Allessie et al., 1977).

FIGURE 4 | Phase maps acquired during AF in patients with PAF (A), PsAF of 4 months (B) and long lasting PsAF >12 months (C). Red spots identify sites of phase

singularity.

Atrial Remodeling
Atrial remodeling includes structural and functional alterations
including electric, structural, and autonomic remodeling that
promote atrial arrhythmias.

Electrical remodeling
AF and rapid arrhythmias alter the expression and/or the
function of ion channels in a way that promotes arrhythmias
(Allessie et al., 2002; Schotten et al., 2011; Wakili et al., 2011;
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FIGURE 5 | Unipolar signals recorded during a one second window of AF. Electrograms at the site of reentrant activities (red spots) show a complex and turbulent

activity while the activity in the remaining atria is homogeneous. A reentry can be identified by analyzing the surrounding electrograms (white arrows) that show a

sequential temporal activation. LA, left atrium; LAA, left atrial appendage; LIPV, left inferior pulmonary vein; LSPV, left superior pulmonary vein; RA, right atrium; RIPV,

right inferior pulmonary vein; RSPV, right superior pulmonary vein.

Heijman et al., 2014; Nattel andHarada, 2014). In fact, rapid atrial
rate during AF initiates auto-protective mechanisms to reduce
the entry of Ca2+ inside the cell (Iwasaki et al., 2011). These
mechanisms aim to inactivate the Ca2+ currents, downregulate
ICaL, and enhance the inward rectifier K+ current. Subsequently,
the action potential duration becomes shorter which increases
the atrial vulnerability to atrial arrhythmias and stabilizes the
mechanisms sustaining AF (Figure 5) (Allessie et al., 2002;
Nattel, 2002; Schotten et al., 2011;Wakili et al., 2011). In addition,
impaired calcium handling leads to contractile dysfunction
and subsequent tachycardia-induced atrial cardiomyopathy (Sun
et al., 1998).

Structural remodeling
Fibrosis represents the most important structural remodeling
that promotes AF.

Fibrosis can be reactive (located at the interstitial space) or
reparative (replaces dead myocytes) (Silver et al., 1990; Burstein
and Nattel, 2008).

Animal studies identified atrial fibrosis in the presence of
hypertension (Kistler et al., 2006; Lau et al., 2010a,b, 2013),
heart failure (Li et al., 1999; Shi et al., 2002; Shinagawa et al.,
2002; Lau et al., 2011), diabetes (Linz et al., 2016), obesity
(Abed et al., 2013),. . . In humans, AF is more frequent in the
presence of external stressors predisposing to fibrosis (Sanders
et al., 2003; John et al., 2008; Roberts-Thomson et al., 2009;
Medi et al., 2011, 2012; Dimitri et al., 2012; Vlachos et al., 2016;
Anter et al., 2017; Karam et al., 2017). In addition, when left
untreated, AF promotes the expression of genes that enhance
the proliferation of fibroblasts and increase extra-cellular matrix

secreting function (Burstein et al., 2007; Guo et al., 2012). This
underlies the progression of AF to permanent forms by creating a
long-term positive feedback loop (Platonov et al., 2011; Yue et al.,
2011); the so called AF begets AF hypothesis (Wijffels et al., 1995;
Rostock et al., 2008).

Fibrosis increases the separation of the myocytes within sub-
endocardial atrial bundles and between the endocardial and
epicardial layers leading to endo-epicardial dissociation (Spach
and Dolber, 1986; Verheule et al., 2013; Hansen et al., 2017). It
forms barriers to the propagation of the activation wavefronts
and isolates atrial myocytes. These obstacles affect the wavefront
shape and can induce spiral waves through vortex shedding or by
causing localized conduction block in narrow isthmuses (Panfilov
and Keener, 1993; Cabo et al., 1996; Starobin et al., 1996). The
interaction between the wavefront and the boundaries of the
fibrotic area are determinant for the wavefront curvature by
influencing the propagation velocities and the refractory periods
(Comtois and Vinet, 1999; Sampson and Henriquez, 2002). This
stabilizes rotor activity (Morgan et al., 2016; Roney et al., 2016)
and anchors them to the scar boundaries (Davidenko et al., 1992;
Pertsov et al., 1993b; Morgan et al., 2016).

In addition, the fibrotic pattern affects the velocity of
the activation wavefront (Kawara et al., 2001; Comtois and
Nattel, 2011). In a mathematical model, Tusscher and Panfilov
(2005) demonstrated that an increasing number of small
and randomly distributed obstacles decrease the conduction
velocity but increase the inducibility of wavebreaks and spiral
waves in 2D and 3D excitable media. Kawara et al. (2001)
analyzed the wavefront activation in explanted human hearts
and identified different conduction curves according to the
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fibrotic pattern. The zones of dense, patchy fibrosis with long
fibrotic strands were associated with prominent activation delay.
The conduction curve in this situation was dependent on
the fiber direction. Conversely, dense, diffuse fibrosis with
short fibrotic strands only marginally affected conduction
curves.

In a recent study, Vigmond et al. (2016) demonstrated
the possibility to induce percolation in a computer model
of fibrotic tissue. Percolation was produced as a result of
micro-source-sink mismatch with the fibrotic region. This
produced low amplitude and long lasting electrograms.
Decreasing the cycle length increased the delay needed for the
wavefront to exit the remodeled zones and induced reentrant
activities. Additional studies demonstrated the occurrence
of reentry near the percolation threshold in heterogeneous
cardiac tissue including fibrosis (Alonso and Bar, 2013;
Alonso et al., 2016).

In addition to fibrosis, structural atrial remodeling includes
atrial fatty infiltration, inflammatory infiltration, necrosis and
amyloid deposition (Frustaci et al., 1997; Rocken et al., 2002;
Leone et al., 2004; Nguyen et al., 2009; Hatem and Sanders,
2014; Venteclef et al., 2015). The role of the adipose tissue in
the pathogenesis of AF is well-demonstrated. Adipose tissue has
a paracrine effect through the release of adipokines with pro-
fibrotic properties. It also forms barriers to wavefront conduction
and favor reentrant circuits (Hatem and Sanders, 2014).

Autonomic and neural remodeling
The heart has a rich and complex extrinsic and intrinsic
autonomic innervation (Janes et al., 1986; Armour et al., 1997;
Armour, 2008). The role of this system in the initiation and
maintenance of AF is well-demonstrated (Arora, 2012; Chen
et al., 2014) and is supported by the circadian variation in the
incidence of AF (Viskin et al., 1999; Mitchell et al., 2003).

Neural remodeling including an increase in the atrial
innervation occurs in different clinical situations. Animal studies
(Jayachandran et al., 2000; Chang et al., 2001; Arora et al., 2008;
Ng et al., 2011) demonstrated an increase in the density of
sympathetic and parasympathetic innervation with AF. Gould
et al. (2006) collected the atrial appendages in patients with AF
undergoing cardiac surgery and demonstrated an increased atrial
sympathetic innervation in patients with PsAF.

Neural remodeling also occurs after myocardial infarction
(Han et al., 2012; Nguyen et al., 2012; Ajijola et al., 2015) and
in the presence of cardiomyopathy (Ajijola et al., 2012) and
contributes to the occurrence of AF in these populations. Recent
therapeutic strategies aiming to modulate the autonomic tone
successfully reduced the AF burden in animal models (Richer
et al., 2008; Ogawa et al., 2009; Leiria et al., 2011; Shen et al., 2011)
and in humans (Pappone et al., 2004; Scanavacca et al., 2006; Po
et al., 2009; Katritsis et al., 2013; Pokushalov et al., 2013).

It is important to note that, in contrast with the electrical
remodeling, structural remodeling and fibrosis are not reversible
and lead to the perpetuation of AF in more complex forms. Early
interventions are of major importance to avoid such progression
of the disease.

Genetic Predisposition
Genetic predisposition plays an important role in the occurrence
of AF. It is responsible for familial cases with early onset of
AF independently of concomitant cardiovascular conditions (Fox
et al., 2004; Lubitz et al., 2010; Oyen et al., 2012). AF incidence
also shows racial differences, being less prevalent in Blacks,
Hispanics and Asians compared toWhites (Dewland et al., 2013).

Up to one-third of the patients with AF had genetic
variants that increase the risk of AF. So far, the genome
wide association study (GWAS) and international collaborative
metanalysis identified at least 30 gene loci associated to AF
(Gudbjartsson et al., 2007; Benjamin et al., 2009; Ellinor et al.,
2010, 2012; Sinner et al., 2014; Low et al., 2017; Bapat et al.,
2018; Campbell andWehrens, 2018).Variants located close to the
paired-like homeodomain 2 (PITX2) gene on chromosome 4q25
have the highest association to AF (Lubitz et al., 2014; Low et al.,
2017). The majority of mutations underlying AF affect genes
that encode transcription factors related to cardiopulmonary
development, cardiac-expressed ion channels and cell signaling
molecules (Roberts and Gollob, 2010, 2014; Ellinor et al., 2012).
Genome wide association studies have allowed identification of
variants potentially linked to AF (Christophersen et al., 2017; Lee
et al., 2017; Low et al., 2017; Nielsen et al., 2018a,b; Roselli et al.,
2018). These variants frequently require further classification to
confirm or eliminate their pathogenicity. Genetic predisposition
may influence the response to AF therapies (Darbar et al., 2007;
Parvez et al., 2012; Benjamin Shoemaker et al., 2013; Huang
and Darbar, 2016) and can allow specific and based-mechanism
therapies (Roberts and Gollob, 2010; Campbell et al., 2013;
Faggioni et al., 2014; Darbar, 2016).

MAPPING OF AF

Mapping represents a crucial step to understand the mechanisms
of AF and improve the results of ablation. However, it is
important to note that the spatial resolution of the mapping
technique can significantly affect the interpretation of the
underlying AF mechanism (Roney et al., 2017).

Invasive Mapping of Reentrant and Focal
Activities
Narayan et al. (2012b) used a 64 pole-basket catheter (48mm
diameter, 4mm electrode spacing; or 60mm diameter, 5mm
electrode spacing) introduced through a venous femoral access to
map AF activities from the right and the left atria. They included
97 patients who underwent 107 consecutive ablation procedures
for PAF or PsAF. AF electrograms at 64–128 electrodes
are combined with repolarization dynamics acquired using
monophasic action potentials (MAP) and conduction dynamics
to construct spatiotemporal AF maps (Narayan et al., 2012a).
These maps were used to locate the focal impulses (defined
as centrifugal activation contours from an origin) and rotors
(defined as sequential clockwise or counterclockwise activation
contours around a center of rotation emanating outwards to
control local AF activation). Rotors and focal impulses were
present in 97% cases with sustained AF. The majority of the

Frontiers in Physiology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 1458

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cheniti et al. Atrial Fibrillation: Mechanisms and Ablation

AF sources were rotors (70%) and predominantly located in the
left atrium (76%). In contrast to our experience, no fragmented
signals were recorded at the rotors site. The mean AF sources was
2.1 ± 1.0 and was significantly higher in PsAF than PAF and in
spontaneous than induced AF. A group of patients underwent
ablation targeting Focal Impulse and Rotor Modulation (FIRM
guided ablation). Compared to patients undergoing conventional
AF ablation, FIRM guided ablation was associated to a higher
acute success and a better outcome.

Different systems were developed to invasively map rotational
activities (Daoud et al., 2017; Grace et al., 2017; Honarbakhsh
et al., 2017). The systems use different approaches and more
studies are needed to evaluate their clinical usefulness.

Limitations of Invasive Mapping of Reentrant and

Focal Activities
The FIRM approach needs the use of two basket catheters
for concomitant bi-atrial analysis. Poor electrode contact and
inefficient deployment may significantly alter the recorded
signals (Laughner et al., 2016; Oesterlein et al., 2016). In addition,
low resolution of mapping the atria may lead to false detections
(Roney et al., 2017). Offline analysis is needed which prolongs
the duration of the procedure and limits the reproducibility of
the results (Benharash et al., 2015; Buch et al., 2016). In addition,
there are significant discrepancies between 2D and 3D phase
maps where rotors identified using 2-D maps were absent in 3D
maps (Pathik et al., 2018).

Non-invasive Mapping
Principles of Non-invasive Mapping
Electrocardiographic mapping (ECGi) is a technology that allows
to map the activation of AF from chest recordings in a beat-
to-beat manner (Oster et al., 1997; Ramanathan et al., 2004;
Cuculich et al., 2010; Frontera et al., 2018a). This technique
is particularly useful to map focal sources and non-sustained
arrhythmia (Jia et al., 2006; Wang et al., 2011; Shah et al., 2013;
Zhang et al., 2013; Cochet et al., 2014).

Recording of the cardiac activity is acquired from the torso
using a 252 electrode vest. The cardiac geometry and the
position of each electrode is registered using high-resolution
cross sectional non-contrast computed tomography. The ECGi
algorithm computes epicardial unipolar electrograms from the
input geometry and torso potentials by solving the inverse
problem (Gulrajani et al., 1988; Rudy and Messinger-Rapport,
1988; Rudy and Oster, 1992; Ramanathan et al., 2003; Rudy,
2013). To avoid the superposition of the QRS, windows with
long R-R interval exceeding one second allow to analyze the
fibrillatory waves.

Additional algorithms can be applied to acquire different
maps. Activation maps are computed using the unipolar
electrogram intrinsic deflection (dV/dt) based method. Phase
analysis identifies reentrant and focal activities. Reentrant activity
is identified as a phase singularity formed at the intersection
of depolarization and repolarization isolines (Gray et al., 1998).
Focal breakthroughs are shown as activities raising from discrete
points and showing a negative pattern of the local electrogram.

Results From Non-invasive Mapping
Cuculich et al. (2010) first used ECGi to map AF in 26 patients.
The spatial accuracy for determining different pacing sites was
6 ± 4mm. The authors identified multiple wavelets (defined as
contiguous area of epicardial activation lasting ≥5ms) as the
most common pattern (92% of the patients). Rotor activity was
present in 15% of the cases, only in patients with non-paroxysmal
AF. The authors defined a complexity index as the sum of the
number of wavelets and focal activities and showed an increased
complexity with duration of AF.

Data from our laboratory (Haissaguerre et al., 2014; Lim
et al., 2017) reported the results of 103 patients with PsAF. The
analysis of cumulative windows of 9 ± 1 s of AF were performed
using phase mapping. AF was driven by two to three regions
of reentrant and focal activities during the first months. Drivers
activity spread in more regions and became bi-atrial in PsAF of
longer duration (Figure 4). Reentrant drivers were located in the
PV antra and surrounding structures, the left atrial appendage
and septum in nearly all the cases. Focal breakthroughs rose
predominantly from the PV ostia and left and right appendages.

In the AFACART study (Knecht et al., 2017), ECGi was
used to guide ablation in 118 patients with PsAF lasting <1
year. Reentrant activities were identified in all patients and
were more frequently located around the PVs, at the anterior
interatrial groove and the posterior and inferior left atrium. Focal
breakthroughs were mapped in 95% of the cases and were more
commonly located in the PVs and both appendages.

Metzner et al. (2017) used a noninvasive epicardial and
endocardial system (NEEES) and compared the epicardial and
the endocardial reentrant activity. The authors acquired phase
maps from 6 patients with PsAF. The majority of the epicardial
rotor activity was located in two to three anatomical clusters.
These results were reproduced using invasive mapping by a
multipolar catheter.

The effects of antiarrhythmic drugs were analyzed in a group
of 13 patients who underwent ablation for PsAF (Amraoui
et al., 2016). ECGi recordings were acquired before and after the
infusion of flecainide. Flecainide infusion reduced the number
of regions that hosted reentrant activity (7–4 regions, p< 0.001).
Importantly, AF was terminated to sinus rhythm in 11 cases,
by targeting the regions remaining after flecainide infusion in
9/11 cases. This result suggests that anti arrhythmic drugs select
more stable and important regions that sustain AF. Similarly,
amiodarone was used in patients with structural heart disease
and PsAF and allowed to terminate AF using a shorter duration
of radiofrequency (Cheniti et al., 2016). In our practice, an
antiarrhythmic drug is used before ablation for PsAF order to
limit the effects of the electrical remodeling.

Limitations of Non-invasive Mapping
Non-invasive mapping has some limitations that should be
considered for optimal use. Cardiac signals are attenuated while
crossing the thorax, leading to a “blurred vision” by the recording
electrode on the torso. Subsequently, the recorded signals by each
electrode on the torso represents the average of multiple signals.
However, areas with turbulent activity can still be distinguished
from areas with more organized activity (Figure 5).
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ECGi does not explore intra-mural and endocardial activities.
Subsequently, it is unable to discern the mechanisms of focal
activities that may be microreentry, epicardial breakthrough of
endocardial activity, focal activity (Cuculich et al., 2010). It
is also unable to accurately analyze the septal activity where
wavefronts from the left and right atria can be projected. In
addition, phase transformation can produce phase generated
non-rotational singularity points and false rotors (Vijayakumar
et al., 2016). In our practice, signals at the reentrant site are
manually validated by showing electrograms that cover all the
cycle length.

Invasive Mapping of AF
Invasive mapping is limited by the inability to map
simultaneously both atria, by contact issues, by mechanical
movement of the atrial walls, by the inability to explore intra-
mural and epicardial activities. The meandering nature of the
sources maintaining AF is an additional major limitation to
conventional sequential invasive mapping. Multipolar catheters
with small electrodes improved the mapping of AF by acquiring
high density maps and reducing the influence of farfield signals.

Findings During Invasive Mapping of AF
Konings et al. (1994) used a spoon shaped electrode containing
244 unipolar electrodes to map right atrial free wall in patients
undergoing surgical ablation of accessory pathways. The authors
identified 4 major patterns of activation according to the
complexity of the atrial activation. Single broad wavefronts
propagating uniformly across the right atrium were recorded
in 40% of the cases. One or two non-uniformly conducting
wavelets were recorded in 32% of the cases. Highly fragmented
signals with more than two wavelets and variable direction of
propagation were less frequent and recorded in 28% of the cases.
The authors correlated the morphology of the signals recorded
to the underlying mechanism (Konings et al., 1997). Unipolar
signals were different according to the underlying mechanisms,
showing single potentials in uniform conduction, short double
potentials in areas of collision, long double potentials in areas
with conduction block and fragmented potentials in pivoting
points and in the presence of slow conduction. No preferential
anatomic sites for double or fragmented potentials were found
in the right atrium. The authors hypothesized that electrograms
spanning the entire cycle length of the AF could identify localized
reentries and areas where electrograms displayed fractionation
could be pivotal points of these circuits. Fragmented signals
with long duration are referred to as complex fractionated atrial
electrograms (CFAE) and represented an important target for
AF ablation (Nademanee et al., 2004). Different algorithms were
developed in order to automatically locate the areas of CFAEs
(Scherr et al., 2007; Verma et al., 2008; Seitz et al., 2013; Namino
et al., 2015).

Rostock et al. (2006) performed high density endocardial
mapping during AF using a 20-pole catheter. The authors
identified two patterns of local activation. In the majority of the
cases, they recorded nearly simultaneous activation covering only
a limited part of the cycle length (≤30% of the AF cycle length).
This pattern was correlated to passive activation. More rarely,

they recorded complex activation covering more than 75% of the
cycle length. These signals were correlated either to local burst
activity with activation gradient in the adjacent splines and may
be related to localized reentry.

Haïssaguerre et al. (2006) used a 20-pole catheter with 5
radiating splines covering 3.5-cm diameter tomap both atria. The
authors identified activity spanning 75–100% of the cycle length
suggesting a complex localized activity or localized reentry.
Ablation targeting these areas significantly prolonged the AF
cycle length demonstrating the critical role of these reentries in
the maintenance of AF. This result is consistent with the findings
of Hansen et al. (2016) identified micro-reentrant activity with
average area around 15∗ 6mm with 3mm depth. As such, these
reentries may be mapped using high resolution catheters, but
only if they are located on the endocardial or epicardial surface.

High density endocardial mapping at the drivers’ area
identified prolonged fractionated signals. These signals were
more frequent in the driving area than in the remaining areas
(62 vs. 40%, p< 0.001). Most importantly, electrograms recorded
on the multispline catheter spanned across a greater part of AF
cycle length in the driver regions than elsewhere (71 vs. 47%
of the AF cycle length, P < 0.001) (Haissaguerre et al., 2014).
This suggests a slow conduction or a localized reentry. These
electrograms were rarely recorded for more than five consecutive
beats indicating an unstable local propagation (Haissaguerre
et al., 2016). In addition, these signals may show dynamic changes
that are dependent on the local cycle length (Rostock et al., 2006).
The instability of the electrograms is suggested by the smoothing
of the local activity which shows a turbulent activity. In fact,
unipolar signals at the site of reentry identified complex and
turbulent activity spanning all the cycle length, while activation
in the remaining atria are more homogeneous (Figure 5). In our
experience, the persistence of complex activity at driver sites after
ablation is associated to the persistence of AF and demonstrates
the necessity for further ablation.

Limitations of the Mapping of Fragmented Signals
Multiple parameters may affect the accuracy of invasive mapping.
The electrode size, the inter-electrode spacing, the proximity
to the atrial wall and the duration of the mapping at each
site represent the main parameters. Mapping catheters with
small electrodes provide a higher sensitivity to near-field signals
compared to 4mm tip catheters (Stinnett-Donnelly et al., 2012;
Berte et al., 2015). In addition, fractionation increases as
interelectrode spacing increases (Correa De Sa et al., 2011; Lau
et al., 2015).

The correlation between the fragmented signals and the
underlying mechanism is poor. In fact, complex and fragmented
signals may result from artifacts, inappropriate filtering, remote
activation related to adjacent structure or overlying structures
and alterations in conduction velocities related to wavefront
curvature and tissue discontinuities (De Bakker and Wittkampf,
2010). In addition, these fragmented signals are frequently
passive. Jadidi et al. (2012) acquired high density atrial maps
during sinus rhythm, CS pacing and during AF. The distribution
of the fragmented electrograms was different according to
the site and the rate of activation. During sinus rhythm and
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CS pacing, electrogram fragmentation mainly resulted from
wavefront collision.

Recent work from our laboratory characterized the
mechanism underlying the different types of electrograms
using high density mapping (Rhythmia, Boston Scientific)
during atrial tachycardia. Frontera et al. (2018b). analyzed
electrograms at the sites of slow conduction areas, at the lines
of block, at areas of collision and at pivot sites. Areas with
slow conduction had a significantly lower amplitude and a long
duration. Areas of wavefront collision had a shorter amplitude
and a higher voltage. Electrograms at the lines of block were
not fragmented, the block lines being defined as areas where the
activation completely stopped with the front making a detour
around the obstacle, the downstream activation proceeding
toward the line of block being in an opposite direction to the
upstream one. These characteristics should be assessed during
AF.

Contribution of Imaging Modalities to AF
Mapping
Cardiac magnetic resonance (CMR) studies demonstrated a
higher proportion of atrial fibrosis in patients with AF compared
to healthy patients (Oakes et al., 2009) and in patients with PsAF
compared to those with PAF (Oakes et al., 2009; Daccarett et al.,
2011).

Oakes et al. (2009) validated a processing protocol to detect
atrial fibrosis by using late gadolinium enhancement (LGE) on
CMR. This technique was used to characterize the atrial substrate
in a group of 81 patients undergoing PV isolation. Fibrosis was
present in all cases and its extent predicted the recurrence of
AF after PVI. In the DECAAF study (Marrouche et al., 2014),
Marrouche et al. demonstrated that an increase of 1% in the
proportion of atrial fibrosis was associated to 6% increase in
rate of recurrent arrhythmia after catheter ablation. In addition,
residual fibrosis on MRI, defined as preablation atrial fibrosis
not covered by ablation scar, was associated to the recurrence of
AF (Akoum et al., 2015). These studies confirm the key role of
fibrosis in the pathogenesis of AF.

Electrograms at the areas with fibrosis were analyzed by Jadidi
et al. (2013) in a group of patients undergoing ablation for
persistent and long-lasting PsAF. Atrial fibrosis was associated
with lower amplitude and a slower and more organized activity.
However, complex fractionated atrial electrograms were recorded
outside the areas of fibrosis in 90% of the cases.

Haissaguerre et al. (2016) analyzed the presence of fibrosis
and its density within each 2.5mm spherical atrial volume in
13 patients undergoing CMR. The borders of the fibrotic areas
hosted the majority of the reentrant activities. In fact, 80% of the
reentrant activities were located in areas with a fibrotic density
>70%. Conversely, only 10% of the non-driver region harbored
such a high fibrotic density.

In a recent study, Cochet et al. (2018) used high resolution
LGE-CMR to characterize atrial fibrosis in patients with
AF undergoing ECGi guided catheter ablation. The authors
characterized LGE density at the reentrant sites. Fibrosis was
significantly associated with the number of reentrant regions,

to the left atrial volume and to the AF duration. Interestingly,
reentrant activities were predominantly clustered at the LGE
borders. Moreover, areas with high reentrant activity had a
significantly higher local LGE density.

Fibrosis identified by CMR was shown to be an independent
factor of AF recurrence after catheter ablation. In a post-analysis
of the DECAAF study, Akoum et al. (2015) analyzed LGE CMR
3 months after the ablation in 177 cases. Baseline fibrosis and
residual fibrosis were significantly correlated to the need for
repeat catheter ablation. Similar results were reported in other
studies (Oakes et al., 2009; Malcolme-Lawes et al., 2013; Khurram
et al., 2016). Interestingly, CMR studies demonstrated a low
rate of complete encirclement of the four pulmonary veins, only
in around 7% of the cases (Badger et al., 2010; Akoum et al.,
2015). Incomplete PVI is associated to higher recurrence after
AF ablation (Peters et al., 2009; Badger et al., 2010). These results
raise multiple questions about the efficiency and the durability of
lesions caused by ablation.

IMPLICATIONS FOR AF ABLATION

Clinical AF ablation provides clues about the understanding of
AF pathophysiology. In Table 1 are presented the results of the
main studies and the outcome after percutaneous AF ablation.
Unfortunately, there is a significant heterogeneity between the
different studies leading to poor reproducibility of the results.

Catheter ablation is superior to antiarrhythmic drugs in
preventing AF recurrence (Hazard ratio = 0.53) as reported
in the CABANA trial. However, the best strategy is still to be
identified.

Despite the different techniques, CPVI remains the
cornerstone of the treatment of AF, regardless of the AF
form and of the AF duration (Voskoboinik et al., 2017). No
strategy consistently demonstrated superiority to CPVI in
preventing long term recurrences of atrial arrhythmias.

It is notable that higher rates of success are reported after
multiple procedures (Ganesan et al., 2013). This raises questions
about the identification of the mechanisms underlying AF and
the efficiency and the durability of the lesions created during
index procedures.

Paroxysmal AF
PV isolation (PVI) is the most widely used technique to treat
PAF. The initial strategy targeted the earliest activation site by
performing a focal and discrete ablation (Haïssaguerre et al.,
1998). However, this technique was associated to high rates of
pulmonary vein stenosis (Rostamian et al., 2014). Later, wide
area circumferential ablation that disconnects the PV two by two
became the strategy of choice. This technique is thought to have
better results (Lo et al., 2007) by targeting the trigger sources and
the ostial drivers and also by autonomic denervation (Redfearn
et al., 2007).

PVI is associated with high rates of freedom from AF
recurrence. The freedom rate from AF recurrence varies between
60 and 79% (Katritsis et al., 2008; Takigawa et al., 2015a; Straube
et al., 2016; Kis et al., 2017), 60 and 72% at 3 years (Vogt et al.,
2013; Takigawa et al., 2015a; Takarada et al., 2017) and decreases
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TABLE 1 | Summary of the different approaches of percutaneous ablation of AF.

References Population Ablation technique Acute results/main findings Long term outcome

PVI

Haïssaguerre et al., 1998 45 PAF Earliest site of activation of the

ectopic beat initiating AF

69 ectopic sites, 94% originating from

the PV

62% AF freedom after 8 ± 6months

Chen et al., 1999 79 PAF Earliest site of activation of the

ectopic beat initiating AF

116 ectopic foci, 88.8% originating

from the PV

86% AF freedom after 6 ± 2 months,

Focal stenosis in 42.4% of the PVs

Haissaguerre et al., 2000 70 PAF PV isolation (except RIPV) by

targeting atrial breakthroughs

73% AF freedom after 4± 5 months,

(29 patients had re-ablation session)

Deisenhofer et al., 2003 • 69 PAF

• 6 PsAF

Segmental PVI PVI achieved in 89% of the veins 51% AF freedom after 230 ± 133

days

40% underwent second procedure:

90% due to PV reconnection + 40%

extra-PV foci

Arentz et al., 2003 • 37 PAF

• 18 PsAF

Segmental PVI PVI achieved in 99% of the veins 27 pts underwent a second

procedure

62% event free after one-year

follow-up

70% for PAF, 44% for PsAF

SMART AF

Natale et al., 2014

• 172 PAF • 160 PVI using contact force

sensing catheter

additional atrial ablation in 50% of

the cases

• Atrial arrhythmia freedom after

1-year follow-up

◦ 74%= symptomatic arrhythmia

◦ 69.9%= symptomatic and

asymptomatic arrhythmia

Contact force within the selected

range ≥80% of the time

significantly increased the 12

month AF/AT freedom (88% vs.

66%)

STAR-AF study

Verma et al., 2015

589 PsAF 67: CPVI,

263: CPVI plus CFAE,

259: CPVI plus linear lesions (roof,

mitral isthmus)

CPVI + CFAE and CPVI + lines were

not superior to CPVI alone after 18%

follow-up (AF freedom = 49,46, 59%

respectively, P=0.15)

CHASE-AF trial

Vogler et al., 2015

153 PsAF 78 pts PVI alone,

75 full defragmentation,

• PVI group: SR achieved with

electrical cardioversion

• Full defragmentation group: AF

termination in 60% (AT= 60%,

SR= 40%)

No difference in the AF freedom after

1-year follow-up: 61.4% in the PVI

group, vs. 58.3% in the full-defrag

group

FIRE AND ICE trial

Kuck et al., 2016a

762 PAF • 378: PVI using cryoablation

384: Segmental PVI using

radiofrequency ablation

• Successful PVI

• 97.9% in radiofrequency group

• 98.9% in the cryoballoon group

• AF and AT freedom without

anti-arrhythmic drugs after a mean

of 1.5-year follow-up was not

different between the two groups:

◦ 65.4% in the cryoballoon group

◦ 64.1% in the radiofrequency

group

Alster-Lost-AF Trial

Fink et al., 2017

• 69 PsAF 6- 12

months

49 PsAF ≥ 12

months

• 61 pts CPVI-only

• 57 pts Substrate-modification

group, (CPVI + CFAEs and linear

ablation)

• AF termination

◦ CPVI alone= 3%

◦ Substrate modificatio n = 19%

(P=0.007)

• AF freedom after 1 year

follow-up and a single

procedure without AAD:

◦ 39% in the CPVI group

◦ 323% in the substrate

modification group

• AF freedom after 1-year follow-up

and a single procedure ± AAD:

◦ 54% in the CPVI group

◦ 57% in the substrate modification

group

• AF freedom after 1-year follow-up

and multiple procedures

• 69% in the CPVI group

• 86% in the substrate modification

group

(Continued)
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TABLE 1 | Continued

References Population Ablation technique Acute results/main findings Long term outcome

CASTLE AF trial

Marrouche et al., 2018

• 363 pts NYHA

II,III,IV with PAF

or PsAF, LVEF

≤35% and an

ICD

• 118 PAF

• 245 PsAF

• 106 PsAF >

12months

• Ablation = 179 pts vs. medical

therapy= 184

• Ablation consisted in PVI plus

additional lesions at the discretion

of the operator

• Ablation significantly reduced death

from any cause and hospitalizations

for worsening heart failure

◦ 28.5% after ablation

◦ 44.6%with medical treatment

(hazard ratio, 0.62; 95% confidence

interval, 0.43 to 0.87; P=0.007)

TIlz et al., 2018 161 PAF CPVI using EAM and double-Lasso

technique

• All PVI were isolated during the

index procedure

• Up to 5 redo procedures were

performed

• Recurrence were mainly due to PV

reconnections

• 10-year AF freedom

◦ 32.9% after a single procedure

◦ 62.7% after multiple procedures

• 6.2% progression to persistent AF

after 10 years

CFAE ABLATION

Nademanee et al., 2004 • 57 PAF

• 64 PsAF

CFAE ablation Acute termination without

antiarrhythmic drugs

• PAF: 86%

• PsAF: 62%

• AF freedom after 1 procedure at

1year follow-up= 76%

• Overall 91% AF freedom after 1

year follow-up

Oral et al., 2007 100 PsAF CFAE ablation Acute termination without

antiarrhythmic drug: 16%

• AF freedom after 14 ± 7 months =

33%

• Redo ablation = 44%

• Overall AF freedom after 13 ±7

months = 57%

Oral et al., 2009 119 long lasting

PsAF

• 19 PVI

• 50 CFAE ablation

• 50 cardioversion

• AF termination by PVI only= 16%

• Acute AF termination during CFAE

ablatio n = 18%

AF freedom after 1 procedure: 36% in

the absence of CFAE ablation and

34% after CFAE ablation (P= NS)

:No benefit of additional CFAE

ablation

SELECT-AF study

Verma et al., 2014

• 48 PsAF

• 28 PAF

• 38 pts: CPVI and all CFAE

• 39 pts: CPVI and selective CFAE

with continuous electrical activity

• CFAE ablation prolonged AF cycle

length and resulted in similar rates

of

• AF termination (37% vs. 28%;

P=0.42)

AF, AFL and AT freedom without

anti-arrhythmic drugs after 1-year

follow-up significantly lower after

selective CFAE ablation (28% vs.50%)

Atienza et al., 2014

RADAR-AF

• PAF= 115, AF

induced in 95

pts

• PsAF= 117, AF

induced in 22pts

• PAF= CPVI or high frequency

sources ablation (HFSA)

• PSAF= CPVI or CPVI+ HFSA

• AF termination

◦ PAF

• CPVI= 38%

• HFSA= 58%

◦ PsAF

• CPVI= 26%

• CPVI + HFSA= 46%

• AF/AT freedom after 1 year-follow-

up after a single procedure

◦ PAF

• 79% after CPVI

• 81% after HFSA

• PsAF

◦ 72% after CPVI

• 76% after CPVI + HFSA

Faustino et al., 2015 PAF: 150 • 75 PVI alone

• 75 PVI + stepwise ablation (CFAEs

+ linear ablation)

• AF termination and non-inducibility

achieved in 100% of the stepwise

approach

• AF freedom after a first procedure

at 1-year follow up significantly

higher in the stepwise group:

◦ 73,3% in the stepwise group

◦ 53.3% after PVI (p<0.01)

• Similar results after a second

procedure

Seitz et al., 2017 33 PAF

119 PsAF

• 105= ablation only regions

displaying electrogram dispersion

during AF

• 47= PVI and stepwise approach

• Ablation only at dispersion areas

terminated AF in 95% of the pts.

PVI/stepwise approach terminated

AF in 60% of the pts

• AF freedom after a mean of 1.5

procedures per patient procedures

after 18 month-follow-up:

◦ 85%= ablation only at regions

displaying electrogram dispersion

• 59%= PVI/Stepwise approach

(P<0.001)

(Continued)
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TABLE 1 | Continued

References Population Ablation technique Acute results/main findings Long term outcome

ROTOR ABLATION AND FIRM ABLATION

Cuculich et al., 2010 • PAF: 11

• PsAF ≤12

months: 19

• PsAF >12

months:6

Driver domains identified by ECGi • Multiple wavelets: most common

pattern (92% of the patients)

• Rotor activity detected in only 15%

of the cases and only in patients

with PsAF

• AF complexity increased with the

AF duration

N/A

Haissaguerre et al., 2014 • PsAF in SR= 26

• PsAF AF≤12

months= 57

• PsAF > 12

months= 20

Driver domains identified by ECGi 80% AF termination after 28 ±

minutes of RF ablation. AF complexity

increased with AF duration

85% AF freedom at 12 months in

group, no difference compared to the

control group

Lim et al., 2017 • PsAF in SR= 32

• PsAF AF≤12

months= 45

• PsAF > 12

months= 28

Driver domains identified by ECGi • 70% AF termination,

• Increased AF complexity and

reduced success rate with the

increase of AF duration

NA

Knecht et al., 2017 • PsAF in SR= 32

• PsAF AF≤12

months= 45

Driver domains identified by ECGi in 8

different centers

64% AF termination after 46 ± 28min

RF ablation

• AF freedom after 1-year follow-up

was 77%

• Of the patients with no AF

recurrence, 49% experienced at

least one episode of atrial

tachycardia (AT) which required

either continued AAD therapy,

cardioversion, or repeat ablation

Narayan et al., 2012b • PAF= 31

• PsAF= 76

FIRM guided: 36

Conventional ablation: 71

FIRM guided AF termination in 56%

of the cases vs. 9% with conventional

ablation

82% in the FIRM guided ablation vs.

45% AF freedom after 9 months

Pappone et al., 2018 PsAF: 81 • Group I: ablation of

repetitive-regular activities followed

by modified CPVI (mapping group;

n = 41)

• Group II: modified CPVI (control

group; n = 40)

61% (25/41) AF termination in the

mapping- guided ablation vs. 30%

(12/40) with conventional strategy

(P<0.007)

• AF freedom after 1-year follow-up

◦ 73.2% AF-free recurrence in the

mapping group

◦ 50% in the control group

(P=0.03)

Honarbakhsh et al., 2017 20 PsAF • Driver domains identified by basket

catheters

• Drivers identified using global

activation propagation and not

phase mapping

• 30 potential drivers: 19 showing

rotational activity and 11 focal

• 26 drivers were ablated with a

predefined response 84% of the

cases (AF terminated with 12 and

CL showed prolongation ≥30ms

with 10)

N/A

Cochet et al., 2018 PsAF = 41 Driver domains identified using ECGi

during AF

• Left atrial (LA)LGE imaging

significantly associated with the

number of re-entrant regions

(R=0.52; P= 0.001)

• Clustering of re-entrant activity at

LGE borders

• Areas with high re-entrant activity

showed higher local LGE density as

compared with the remaining atrial

areas

• Failure to achieve AF termination

during ablation was associated

with higher LA LGE burden, higher

number of re-entrant regions and

longer AF duration

AF freedom after 11 +/1 2

month-follow-up 25/34 (74%) pts.

(Continued)
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TABLE 1 | Continued

References Population Ablation technique Acute results/main findings Long term outcome

LINEAR ABLATION

Jais et al., 2004 PAF= 100 PVI + MI line vs. PVI + CTI line PVI was achieved in all the pts,

MI block was achieved in 92% of the

pts

87% AF freedom without anti

arrhythmic drugs after MI ablation

after 1-year follow-up vs. 69 in the

PVI group

Fassini et al., 2005 • PAF= 126

• PsAF= 61

Randomization: 92 PVI vs. 95 PVI +

MI line

MI block was achieved in 72% of the

pts

AF freedom at 1-year follow-up:

PsAF: 74% after MI line vs. 36%, p <

0.01

PAF: 76% after MI line vs. 62%, p<

0.05

Hocini et al., 2005 • PAF= 90 • PVI + roof line

• PVI

• Ablation of CTI and ostial PV

fragmented signals and non PV

triggers in all cases

Roof line blocked in 96% of the cases

Perimitral flutter inducible in 22% of

the cases

87% Af freedom after roof line after

15month-follow-up vs. 69% in the PVI

group

Gaita et al., 2008 • PAF=125

• PsAF and long

lasting

PsAF=79

• 67 PVI alone (41 PAF + 26 PsAF)

• 137 PVI plus left linear lesions (84

PAF + 53PsAF/Long-standing AF)

• PVI was acutely achieved in all pts.

• MI block in 31% of the cases

• Roof block in 92% of the cases

• CTI block in all patients

• AF freedom after a single

procedure at 12-month follow-up,

◦ PVI alone= 46% for PAF

◦ PVI alone= 27% for PsAF

◦ PVI + lines= 57% for PAF

◦ PVI + lines= 45% for PsAF

• AF freedom after a single

procedure at 3-year follow-up,

◦ PVI alone: 29% for PAF

◦ PVI alone: 19% for PsAF

◦ PVI + lines: 53% for PAF

◦ PVI + lines: 41% for PsAF

• After a second procedure (in about

50% of the cases), long term AF

freedom without AAD:

◦ PVI: 62% for PAF

◦ PVI: 39% for PsAF

◦ PVI + lines: 85% for PAF

◦ PVI + lines: 75% for PsAF

Mun et al., 2012 • PAF= 156 • 52= CPVI,

• 52= CPVI+ roof line

• 52= CPVI+ posterior box

• CPVI = 100%,

• CPVI +Roof line block= 80.8%

• CPVI + posterior box= 59.6%

• AF freedom after 15.6 ± 5 months

of follow-up,

◦ 88.5%= CPVI

◦ 78.8%= CPVI + roof line

◦ 80.8%= CPVI + posterior

(P=0.44)

Kim et al., 2015 • PAF= 100 • 50 CPVI

• 50 CPVI + posterior box lesion and

anterior linear ablation

• CPVI + CTI block= 100%

• Anterior Line block= 68%

• Posterior box isolatio n = 60%

• AF freedom after 16.3±4-month

follow-up without AAD:

◦ CPVI= 88%

◦ CPVI + posterior box + anterior

line= 84%

Kettering et al., 2017 PsAF= 250 • CPVI + roof line

• CPVI alone

• Additional MI line (6 pts), and right

atrial ablation (11 pts)

• Roof blocked in all cases • AF freedom after 1-year follow-up

◦ 81% after roof line vs.

◦ 74% after PVI (p= NS)

• AF freedom after 3-year follow-up

◦ 72% after roof line 63% after PVI,

P= 0.04

SUBSTRATE MODIFICATION (FIBROTIC AREAS AND LOW VOLTAGE AREAS)

Jadidi et al., 2016 PsAF=151 • Group 1: 85: PVI + ablation at

low-voltage areas (LVA <0.5mV in

AF) with fractionated activity or

rotational activity or discrete rapid

local activity

• Group 2: 66: PVI (control group)

• AF termination targeting LVAs with

specific electrogram patterns =

73%

• AF termination sites colocalized

within LVA in 80% and at border

zones in 20%

• Single- procedural AF-free survival

after 13-month follow-up

◦ 69% = group 1

◦ 47% = group 2 (P<0.001)

(Continued)
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TABLE 1 | Continued

References Population Ablation technique Acute results/main findings Long term outcome

Yamaguchi et al., 2016 PsAF= 117 • Group I: 101= targeting

low-voltage areas (<0.5mV in SR)

◦ Group Ia:39 = PVI + ablation of

LVA

◦ Group Ib:62 = PVI only (LVA not

identified)

• Group II: 16= LVA non ablated

group, only PVI

• Complete low voltage areas

elimination in 92% of the cases

• Additional linear lesions in 82% of

the cases in group Ia

• AF freedom after a single

procedure after 18 ±7 months

◦ 72%= No LVA identified

◦ 79% LVA ablation

◦ 38% No LVA ablation

BIFA trial

Schreiber et al., 2017

• PAF= 34

• PsAF= 49

• Long lasting

PsAF= 9

• 92 PVI + box isolation of fibrotic

area (BIFA) (<0.5 mV bipolar

signals in sinus rhythm)

• 49 PVI (no fibrotic area identified

during mapping)

• Different stages of Fibrotic atrial

cardiomyopathy (FACM)

◦ 0= no detectable voltage < 1.5

mV

◦ I= very limited severe fibrosis

◦ II= confluence scar fibrotic areas

(< 0.5mV)

◦ III= pronounced ≥ 2 scar fibrotic

areas (<0.5 mV)

• IV= diffuse fibrosis (“strawberry”)

• AF freedom after 16 ± 8 months

◦ Single procedure=69%

◦ Multiple procedures= 83%

• The extent of fibrosis significantly

associated to AF recurrence

STABLE SR

Yang et al., 2017

PsAF=229 pts • STABLE-SR group: 114=CPVI +

CTI + ablation-homogenization of

areas with low-voltage (LVZ

0.1–0.4mV in SR) and complex

electrograms

• Stepwise group:115= CPVI +

linear lesions + CFAEs

• AF termination in STABLER-SR

group =12.3%

• AF termination in stepwise

group=32.5%

AF-free survival after 18-month

follow-up

STABLE-SR group: 74%

Stepwise group: 71.5% (P=0.325)

AF, atrial fibrillation; AFL, atrial flutter; AT, atrial tachycardia; CTI, cavo-tricuspid isthmus; EAM, electro-anatomical mapping; LVEF, left ventricular ejection fraction; CPVI, circumferential

pulmonary veins isolation; MI, mitral isthmus; PAF, paroxysmal AF; PsAF, persistent AF; PVI, pulmonary veins isolation.

to 53–68% at 5 years (Neumann et al., 2013; Takigawa et al.,
2015a, 2017; Kis et al., 2017). The long term freedom from AF
may reach 77% (Vogt et al., 2013) after redo PVI. AF recurrence
may be related to non PV triggers in one half of cases (Takigawa
et al., 2015b) and to the reconnection of the PVs in the remaining
cases.

Substrate modification in addition to PVI was tested by Di
Biase et al. (2009) who randomly assigned 103 consecutive
patients undergoing PAF to PVI alone (n = 35), PVI followed
by CFAE ablation (n = 34) or CFAE ablation alone (n =

34). There was no difference in terms of success rate between
PVI alone and PVI followed by CFAE ablation. However,
CFAE ablation alone was associated with the highest rates
of AF recurrence after 1-year follow-up. Similar results were
reported in subsequent studies (Deisenhofer et al., 2009; Chen
et al., 2011; Hayward et al., 2011). In addition, techniques
aiming at incomplete PVI (Kuck et al., 2016b) or not
isolating PV (Mikhaylov et al., 2011) were associated to worse
results.

CFAE Ablation
Targeting the complex fractionated signals was commonly used
as a strategy to ablate PsAF forms. Originally in 2004; Nademanee
et al. (2004) included 121 patients with paroxysmal AF (57
patients) or chronic AF (64 patients) and performed ablation
by targeting fragmented electrograms without additional PVI.
They reported a high rate of acute success by targeting areas of
CFAE (without PVI) with 95% of AF termination by ablation
(associated to ibutilide in 28% of the cases) and 76% of AF

freedom at 1-year follow-up after one procedure. However,
this result was not reproduced by Oral et al. (2007) who
included 100 patients with chronic AF where they ablated
CFAEs in the left atrium and the coronary sinus without
performing PVI. Only 33% of the patients were free from
AF or AT recurrence after a follow-up of 14 ± 7 months
after one procedure. A second procedure was performed in
44% of the patients, pulmonary vein tachycardia originating
from the targeted veins sustained atrial tachycardia in all
cases.

Oral et al. (2009) performed a randomized study and included
119 consecutive patients with long-lasting PsAF. All patients
underwent PVI that allowed termination to sinus rhythm in 19
(16%) of the cases. In the remaining 100 cases, patients were
equally assessed to either electrical cardioversion or ablation of
the CFAE in the left atrium or the coronary sinus. After 10 ±

3-month follow-up, there was no difference in the rate of sinus
rhythm without anti-arrhythmic drugs between the 3 groups.

In the STAR AF II study, Verma et al. (2015) performed
a prospective randomized multicenter study that included
589 patients with PsAF. Ablation consisted in PVI alone
in 67 patients, PVI and ablation of complex fractionated
electrograms (263 patients) or PVI and additional linear
ablation (259 patients). Acute termination of AF during
ablation was significantly higher in patients undergoing
PVI and complex electrograms ablation or PVI and linear
ablation than patients undergoing PVI alone. However,
the freedom from AF was not different between the three
groups.
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AF Drivers’ Ablation
In a recent meta-analysis, Parameswaran et al. (2018) analyzed
the outcome after rotor ablation in 11 studies with a total of 556
patients undergoing FIRM ablation for paroxysmal AF (n= 166)
or PsAF (n = 390). Pooled single-procedure freedom from AF
was around 37.8% PAF and 59.2% for PsAF after a mean follow-
up of 1 year. Heterogeneity between the different studies was
significantly high.

In the AFACART study (Knecht et al., 2017), non-invasive
mapping was used to guide the ablation for 118 patients with
PsAF lasting <1 year. Ablation targeted the drivers identified
by the system, followed by PV isolation and linear ablation
when AF could not be terminated. Ablation targeting the
drivers’ sites terminated AF in 64% of the cases after a mean
radiofrequency ablation duration of 46± 28min. AF termination
rate increased to 72% when additional PVI and atrial linear
ablation were performed. Extra-PV sources played a key role in
the maintenance of PsAF and their ablation is associated with the
termination of AF in the majority of the cases and arrhythmia
freedom up to 77% at a 1-year follow-up.

Surgical Treatment for AF
Surgical treatment for AF was first described by Dr Cox (Cox,
1991). The surgery consisted in linear incisions of the atrial
walls that aimed to interrupt the multiple wavelets and reentrant
circuits and subsequently direct atrial activation through a maze-
like system involving both atria. Different surgical techniques
were developed later (Fragakis et al., 2012; Xu et al., 2016), all
associated to high rates of arrhythmia free outcome (Prasad et al.,

2003; Ballaux et al., 2006; Barnett and Ad, 2006; Weimar et al.,
2012; Gillinov et al., 2015).

Hybrid approach (Tahir et al., 2018) overcomes the limitations
of the catheter based ablation and of the surgical ablation.
Epicardial thoracoscopic ablation followed by endocardial
ablation is associated to high rates of long term freedom from AF
recurrence exceeding 70% in patients with paroxysmal or PsAF
(Krul et al., 2011; Pison et al., 2012, 2014; La Meir et al., 2013;
Kurfirst et al., 2014; Bulava et al., 2015).

CONCLUSION

Mechanisms underlying AF are complex and remain
incompletely understood despite extensive research. Translating
AF mechanisms described in basic science to the clinical
practice remains challenging. In contrast with PAF, therapeutic
interventions for PsAF are still inadequate, mainly limited by
the identification of the sources maintaining AF. PsAF is driven
by focal and reentrant activity which are initially clustered in
a relatively limited atrial surface. These drivers disseminate
everywhere because of the atrial remodeling which increases the
complexity of AF. Accurate mapping techniques that consider
the spatio-temporal variation of AF are essential to identify these
sources.
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