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ABSTRACT:

In recent years, the requirements in the industrial production, e.g., ships or planes, have been increased. In addition to high accuracy
requirements with a standard deviation of 1mm, an efficient 3D object capturing is required. In terms of efficiency, kinematic laser
scanning (k-TLS) has been proven its worth in recent years. It can be seen as an alternative to the well established static terrestrial laser
scanning (s-TLS). However, current k-TLS based multi-sensor-systems (MSS) are not able to fulfil the high accuracy requirements.
Thus, a new k-TLS based MSS and suitable processing algorithms have to be developed. In this contribution a new k-TLS based MSS
will be presented. The main focus will lie on the (geo-)referencing process. Due to the high accuracy requirements, a novel procedure
of external (geo-)referencing is used here. Hereby, a mobile platform, which is equipped with a profile laser scanner, will be tracked
by a laser tracker. Due to the fact that the measurement frequency of the laser scanner is significantly higher than the measurement
frequency of the laser tracker a direct point wise (geo-)referencing is not possible. To enable this a Kalman filter model is set up and
implemented. In the prediction step each point is shifted according to the determined velocity of the platform. Because of the non-
linear motion of the platform an iterative extended Kalman filter (iEKF) is used here. Furthermore, test measurements of a panel with
the k-TLS based MSS and with s-TLS were carried out. To compare the results, the 3D distances with the M3C2-algorithm between
the s-TLS 3D point cloud and the k-TLS 3D point cloud are estimated. It can be noted, that the usage of a system model for the
(geo-)referencing is essential. The results show that the mentioned high accuracy requirements have been achieved.

1. INTRODUCTION

Terrestrial laser scanning (TLS) is a well established method for
an efficient acquisition of 3D point clouds of arbitrary objects. In
the industry high accuracy requirements with a standard devia-
tion of 1mm for the 3D point cloud are requested. In such cases,
the 3D point clouds are typically captured by means of static-
TLS (s-TLS). For large scale objects, e.g., planes or ships, several
3D point clouds, taken from different stand points, are necessary.
Afterwards all captured 3D point clouds must be referenced to a
combined point cloud of the whole object with one unique co-
ordinate system. That leads to a very high amount of data and
furthermore to many redundant detected areas. In addition, the
data processing can be very time-consuming. Alternatively, the
3D acquisition can be carried out with kinematic TLS (k-TLS).
In order to fulfil the mentioned high accuracy requirements, the
3D point cloud acquisition, the system calibration or the synchro-
nisation, and the (geo-)referencing must be carried out with high
accuracy. Modern terrestrial laser scanners are able to measure
a 3D point cloud with an accuracy of less than 1mm (Zoller +
Fröhlich GmbH, 2018). Furthermore, appropriate methods for
the system calibration and synchronisation are available, see Sec-
tion 2. Regarding the total accuracy of a k-TLS based multi-
sensor-system (MSS) the (geo-)referencing can be seen as a crit-
ical issue. The tracking of the mobile platform can be carried out
by internal and external sensors or with a mixture of both meth-
ods. For the (geo-)referencing with internal sensors, e.g., inertial
measurement units, line scanners, odometer or camera systems
are used. All acquired data are usually fused and processed in a
Kalman filter, which estimates the pose (position and orientation)
of the mobile platform. A well-known method in the robotics

community is the the simultaneous localisation and mapping al-
gorithm (SLAM). Examples for such indoor systems are pre-
sented in (Trimble Navigation Limited, 2017), (ViAmetris, 2018)
and (Nüchter et al., 2015). A different way to (geo-)reference
the mobile platform is the use of an external sensor, e.g., a to-
tal station. However, the accuracy and the tracking frequency of
available total stations are limited (Lienhart et al., 2016). Ex-
amples of recently developed k-TLS based MSS with external
(geo-)referencing by a total station are given in (Leica Geosys-
tems AG, 2016) and (Keller, 2016). It can be noted, that both
mentioned (geo-)referencing methods are not sufficient enough
to reach an total accuracy of ±1mm for the captured point cloud.
In case of the external (geo-)referencing an improvement in terms
of higher accuracy and faster tracking of the mobile platform can
be achieved by using a laser tracker and thereby a more highly
accurate determination of the pose with a maximum frequency of
1000Hz is possible (Hexagon Metrology, 2015). The synchroni-
sation of the sensors is achieved by a trigger signal. At each pro-
file a pulse is generated by the laser scanner and send to the laser
tracker. Afterwards a (geo-)referencing measurement is carried
out and the platform is tracked continuously. Strictly speaking
only the first point of each profile is (geo-)referenced exactly. For
a high accurate point wise (geo-)referencing the movement of the
platform between the laser tracker measurements must be consid-
ered. This can be realized by a Kalman filter. Hereby the motion
of the platform will be determined and all points can be shifted.
The implementation of such a filter model is shown in Section 3.
Than in Section 4 the results of a k-TLS test measurement will be
compared with an high accurate s-TLS measurement. Here, the
3D distances between the k-TLS and s-TLS point clouds are es-
timated. Thus, it is possible to evaluate the influence and quality
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of the (geo-)referencing process.

2. A MULTI-SENSOR-SYSTEM BASED ON
KINEMATIC LASER SCANNING

The principle of the k-TLS based MSS is shown in Fig. 1. Here,
a terrestrial laser scanner, which operates in profile mode (2D),
moves along the object on a mobile platform. A laser scanner
with the highest accuracy specifications is used. The total 3D
uncertainty in a maximal range of less than 10m is given with
< 1mm (Zoller + Fröhlich GmbH, 2018). Further influencing
factors concerning the slope distance measurement, the angle of
incidence of the laser beam and the material properties of the ob-
ject have to be taken into account. For a highly accurate direct
(geo-)referencing of pose of a mobile platform, a laser tracker
(Leica AT960), in addition with a Leica T-Probe, is used. The
T-Probe is mounted on the laser scanner, see Fig. 1. The T-Probe

Figure 1. K-TLS based MSS consisting of a laser tracker (Leica
AT960) and T-Probe for (geo-)referencing and laser scanner

mounted on the mobile platform.

consists of a reflector and ten LEDs. Thus, the pose can be mea-
sured directly with its 6 degrees of freedom (DoF) measurement,
consisting of three translations and rotations. The translations are
calculated by the measured polar elements: distance (d), hori-
zontal direction (φ) and vertical angle (θ). The laser tracker is
equipped with an absolute interferometer (AIFM). That means, d
will be measured with the accuracy of an absolute distance me-
ter and with the speed of an interferometer. Thus, fast and ac-
curate measurements are possible without using a bird path for
the interferometer. The horizontal direction and the vertical an-
gle are determined by the angular encoders of the laser tracker.
The accuracy, here in the form of a maximum permissible er-
ror (MPE), is given by ±15µm + 6µm/m for the 3D position
(Hexagon Metrology, 2015). Additionally, the laser tracker is
equipped with a camera to observe the LEDs at the T-Probe for
the determination of the rotations. The accuracy for each rota-
tion is given by an MPE of 0.01◦ = 18µm/100mm (Hexagon
Metrology, 2015). Finally, the laser scanner and the laser tracker

must be synchronised, which can be achieved by a trigger signal
generated by the laser scanner at each start of the profile and send
to the laser tracker. Afterwards the (geo-)referencing measure-
ment is carried out by the laser tracker. The 3D transformation
of each measured single point Ps from the coordinate frame of
the laser scanner (s−frame) into the coordinate frame of the laser
tracker (l−frame), is obtained within two steps

P b = t(X,Y, Z)bs +R(yaw, pitch, roll)bs · P s (1)

and

P l = t(X,Y, Z)lb +R(yaw, pitch, roll)lb · P b. (2)

The first step (Eq. 1) is a transformation from the s−frame to
the body coordinate frame (b-frame). The origin of the b-frame
is located in the coordinate system (CS) of the T-Probe. Hereby
the vector tbs represents the three translations in the coordinate
directions (x,y,z) and Rb

s the rotation matrix with the three ro-
tation angles (yaw, pitch, roll). These 6 DoF are also known
as lever arm and bore sight angles. The determination of these
parameters is accomplished by means of an extrinsic calibration
in advance. A suitable approach was published in (Strübing and
Neumann, 2013). Here, known reference geometries (planes) are
measured by the laser scanner. Afterwards the 6 DoF are es-
timated in an Gauss-Helmert model by the restriction, that the
distance between the scanned points to the reference geometry
is zero. The determined lever arm has a standard deviation of
≤ 1mm and for the boresight angles a standard deviation of a few
millidegrees (Hartmann et al., 2017) and (Heinz et al., 2017) is
obtained. If all sensors are stable, it can be assumed that the lever
arm and the bore sight angles are constant for the whole mea-
surement. The second transformation in Eq. 2 from the b−frame
to the l−frame, is realised by the laser tracker, which is similar
to the first. Hereby, the translations t(x, y, z)lb and the rotation
matrixR(yaw, pitch, roll)lb are used. These translations and ro-
tations are measured by the laser tracker. Additionally, if neces-
sary, a third transformation from the l−frame to a superordinate
reference coordinate frame (ref−frame) can be carried out. If so
known reference points in the ref−frame have to be measured by
the laser tracker. Afterwards all transformation parameters can
be estimated by a 3D-Helmert transformation.

3. PRINCIPLE OF POINT WISE (GEO-)REFERENCING

As mentioned in section 2, the synchronisation of the laser scan-
ner and the laser tracker is obtained by a trigger signal. If the
platform is moving the pose of the moving platform is tracked
continuously. That leads to the fact that only the first point of
each profile is (geo-)referenced exactly. However, referring to
the settings of the laser scanner, every profile of the laser scan-
ner consist of a fixed amount of points. Hence, for a point wise
(geo-)referencing, the movement of the platform from one pose
to the other has to be considered. A simple way to do this is a lin-
ear interpolation. This was already done in test measurements of
reference geometries (Stenz et al., 2017). The results show that a
3D point cloud acquisition by k-TLS in the range of 1 − 2mm is
possible. These point clouds were measured with a trolley, which
was moved with nearly constant speed. Within this contribution a
k-TLS based MSS exemplarily based on a rope guided platform
is introduced, see Fig. 2. With this platform several test mea-
surements were made, whereby the movement of the platform
was nonlinear. Hence, a linear interpolation between the pose
measurements is not sufficient. Therefore, an alternative method
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Figure 2. The k-TLS based MSS mounted on the wire rope
guided construction.

for a point wise (geo-) referencing has to be used. An approach
has to be developed where the movement of the platform can be
predicted between two (geo-)referencing measurements (states).
Ideally, this is carried out in real time. The prediction can be
realised by means of a Kalman filter. In case of the mentioned
(geo-)referencing method, the trajectory of the moving platform
is defined by states. Between two consecutive states all points in
one 2D profile can be (geo-)referenced with a prediction step. As
a result, all points at each 2D profile are shifted, see Fig. 3. The

Figure 3. Principe of the point wise (geo-)referencing with the
k-TLS based MSS.

functional relationship is given by

l(k) =

[
t
r

]b
l

= h(x
(k)
+ ,∆t). (3)

Here x (k)
+ is defined as the state vector of the k-TLS based MSS

and the observation vector is l(k). The vector l(k) consist of three
translations (vector t) and three rotations (vector r), determined
by the laser tracker. The parameter ∆t is the time span between
each point of the laser scanner profile. The index k stands for the
epoch of the measurements.

3.1 Filter model - system and observation equation

We begin by assuming that the system state and the associated
measurement relationship may be written in the form

x(k) = fk−1(x(k−1),u(k−1),w(k−1)) (4)

l(k) = hk(x(k),v(k)) (5)

where fk−1 and hk are known functions, vector u(k−1) consist
of the known input parameters (deterministic changes of the sys-
tem, e.g., control or sensor platfrom motion), w(k−1) and v(k)

are white noise of system and measurement process. The physical
knowledge about the system state, given by fk−1(.), and captured
measurements of the the state vector, given by hk(.), can be com-
bined in an optimal way through a filtering approach. A filter in
state space has usually three steps: initialisation, prediction and
filtering step. The Kalman filter is a recursive optimal procedure
to combine the predicted system state and the measurement vec-
tor in each epoch if the system and the measurement equations
are linear. In the prediction step the new state is predicted based
on the previous filtered state. In the filtering step the predicted
state vector is updated by means of the captured measurements,
see, e.g., (Kalman, 1960). A well known analytical approxima-
tion to handle a nonlinear system is to linearize the measurement
and the system equations using Taylor series expansions (known
as extended Kalman filter (EKF)). To reduce the linearization er-
ror in the measurement equations of the EKF an iterated step is
needed. The filter is known as iterative EKF (iEKF), see (Simon,
2006). In order to simplify the physical model of the filter the
movement of the platform should be constant and steady. That
ensures on the one hand a unique resolution of the point cloud and
one the other hand better results in the (geo-)referencing. How-
ever, this might be difficult due to different local conditions, e.g.,
large objects with difficult access. Thus, different platforms and
stabilising sensors had to be used. To handle this situations, the
laser scanner and the T-Probe are mounded on a carrier, which
can be moved along a fixed rope, see Fig. 2. For the first testing
the suspension of this carrier was kept deliberately simple. That
means different forms of movements, for example vibrations, can
occur. Furthermore, a constant velocity was not realised because
of a missing motor control. That means higher dynamics of the
k-TLS based MSS can occur. To consider all these facts in the
processing an iEKF is chosen here. The state vectorx(k) at epoch
k is defined as

x(k) = [t(k),v(k),a(k), r(k),ω(k),α(k)]lb
T

(6)

whereby the translation, velocity and acceleration vectors (t,v
and a), as well as the rotation angel, angular speed and the angu-
lar acceleration vectors ( r,ω and α) are integrated additionally.
As mentioned in Eq. 3, the translations t and rotations r are ob-
served directly by the laser tracker. To consider the movement
of the platform between these states the prediction step is carried
out by

Φ(k−1) =
∂fk−1

∂x

∣∣∣
x̂

(k−1)
+

(7)

G(k−1) =
∂fk−1

∂w

∣∣∣
x̂

(k−1)
+

(8)

Q
(k)
x̂x̂, − = Φ(k−1) ·Q (k−1)

x̂x̂, + · Φ(k−1)T (9)

+G(k−1) ·Qww ·G(k−1)T

x̂
(k)
− = fk−1

(
x̂

(k−1)
+ ,w(k−1)

)
(10)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-81-2018 | © Authors 2018. CC BY 4.0 License.

 
83



where the transition matrix Φ(k−1), which defines the transition
between a state and the next state, the noise input matrixG(k−1)

comes from the linearized system equations, Q (k)
x̂x̂, − is the vari-

ance covariance matrix (VCM) of the predicted system andQww

is the VCM of the process noise. It has to be noted that the vec-
tor u(k−1) was not considered in the system state, see Eq. 10.
After the prediction step the filter step (measurement update) is
executed:

For i = 0 : max. iteration

A
(k)
i =

∂hk
∂x

∣∣∣
x̂
(k)
i,+

(11)

K
(k)
i =Q

(k)
x̂x̂,− · A(k)T

i · (A
(k)
i ·Q(k)

x̂x̂,− ·A(k)T

i

+ Qll)
−1

x̂
(k)
i+1, + = x̂

(k)
− + K

(k)
i

[
l(k) − h(k)(x̂

(k)
i, +)

− A
(k)
i · (x̂

(k)
− − x̂

(k)
i, +)

]
Q

(k)
x̂x̂,i+1,+ = (I −K (k)

i ·A (k)
i ) ·Q(k)

x̂x̂,−

End For

In Eq. 11A(k)
i is the design matrix and is set up by linearizing the

measurement equations h(k) (refer to Eq. 5) at the Taylor point
x̂

(k)
+ , if the measurement equations are nonlinear. The Kalman

Gain matrix K (k)
i determines the power of the correction of the

prior estimate of the state vector (given in Eq. 10) by adding the
appropriately weighted measurement residual indicated by Qll.
In the first iteration, the predicted state corresponds to the fil-
tered state (x̂ (k)

i=0, + = x̂
(k)
− ). If the termination condition (e.g.

the relative update of the filtered state vector smaller or equal to
10−8) is fulfilled, then x̂ (k)

+ = x̂
(k)
i+1, + and the corresponding

variance covariace matrix Q (k)
x̂x̂, + = Q

(k)
x̂x̂,i+1,+ of the filtered

system state are obtained.

3.2 Filter model - implementation

For the system model the physical characteristics of the used k-
TLS based MSS have to be considered. Because of the mentioned
higher dynamics the angular acceleration were introduced in the
state vector, see Eq. 6. This ensures that the rotations are not
limited by constant rotation speeds. Thus, the transition matrix
Φ(k−1) and the physical model according to (Pentenrieder, 2005)
have to be extend. The system model is given by

x(k) = fk−1(x(k−1),w(k−1)) (12)

=



t(k−1) + ∆t · v(k−1) +
1

2
· ∆t2 · a(k−1)

v(k−1) + ∆t · a(k−1)

a(k−1)

r(k−1) + ∆t · ω(k−1) +
1

2
· ∆t2 ·α(k−1)

ω(k−1) + ∆t ·α(k−1)

α(k−1)


.

As already mentioned, three translations and three rotations are
observed and defined as observations, referring to Eq. 3. That
means all these components of the state vector are determined
directly. The observation model is defined by

l(k) = hk(x(k),v(k)) =

[
t(k) + vt(k)

r(k) + vr(k)

]
. (13)

Whereby v are the residuals between the predicted state and the
measured observations of the new epoch. To initialise the filter
start values for the state vector x̂(0)

+ as well as the corresponding
VCMQ

(0)
x̂x̂,+ have to be set up. The state vector is defined in Eq.

6. For the first epoch (0) the translations t(0) and rotations r(0)

of the first measurement were introduced. The velocity, accelera-
tion, angular speed and the angular acceleration of the first epoch
are unknown. Thus, the vectors v(0), a(0), ω(0) and α(0) are
filled with zero values. This leads to the following state vector
for the first epoch

x(0) = [t(0),0,0, r(0),0,0]lb
T
. (14)

The VCM Q
(0)
x̂x̂,+ is set up approximately, whereby the lowest

variance was assumed for the direct observations. In addition, all
covariances were assumed to be zero. Because of the fact that
the starting values are improved in the filtering steps, they do
not have to be chosen exactly. The VCM Qww of the process
noise of the system is unknown and can usually only be mod-
elled by extensive investigations. It has a significant influence on
the prediction step. Thus, it is necessary to carefully set up the
VCM. One method is to consider the highest order of parame-
ters (accelerations) in the system states as constant over time ∆t.
This leads to uncorrelated jumps in the respective parmeters be-
tween the epochs. The parameters with low-order are given with
a white noise depending on the highest-order parameter. The pro-
cess noise is given by

Qww =

[
ιtransl ·$ 0

0 ιrot ·$

]
(15)

whereby ιtransl and ιrot are weighting factors. In (Bar-Shalom et
al., 2001) the Wiener-sequence acceleration model is mentioned.
Here, it is assumed that the acceleration increment is an indepen-
dent (white noise) process. That leads to the following values for
$ =

∆t4

4
0 0

∆t3

2
0 0

∆t2

2
0 0

0
∆t4

4
0 0

∆t3

2
0 0

∆t2

2
0

0 0
∆t4

4
0 0

∆t3

2
0 0

∆t2

2
∆t3

2
0 0 ∆t2 0 0 ∆t 0 0

0
∆t3

2
0 0 ∆t2 0 0 ∆t 0

0 0
∆t3

2
0 0 ∆t2 0 0 ∆t

∆t2

2
0 0 ∆t 0 0 1 0 0

0
∆t2

2
0 0 ∆t 0 0 1 0

0 0
∆t2

2
0 0 ∆t 0 0 1


(16)

The VCM of the measurements is given by

Qll = diag(σ2
tX , σ

2
tY , σ

2
tZ , σ

2
roll, σ

2
pitch, σ

2
yaw). (17)

Here, all standard deviations were derived from the MPE given
in the user manual (Hexagon Metrology, 2015). This was done
according to the Guide to the expression of uncertainty in mea-
surement (GUM) (JCGM, 2008). The standard deviations of the
translations σ2

tX , σ
2
tY , σ

2
tZ are calculated by variance propaga-

tion with the standard deviations σ2
phi, σ

2
θ , σ

2
d of the originally

measured polar elements φ, θ and d.
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4. DATA PROCESSING AND VALIDATION

In the context of test measurements a test panel was used, see
Fig. 4. The test panel was captured by k-TLS and s-TLS, respec-
tively. In order to compare the data sets, reference points were
fixed at the edge of the test geometry. The coordinates were deter-
mined by a laser tracker measurement to a corner cube reflector,
with an 3D uncertainty (MPE) of ±15µm + 6µm/m (Hexagon
Metrology, 2015). Thus, these reference points were used to
(geo-)reference the static and kinematic data set in a unique CS.
The origin of these CS is shown in Fig. 4. The position of the test
panel over the period of the measurement can be considered as
stable. For the k-TLS based measurements a rope in a distance of
3−4 m at the height of the centre of the test panel was fixed. The

Figure 4. Test panel with reference points and origin of the local
coordinate system.

suspension of the rope on one side was slightly higher than on
the other. Due to the weight a downward movement of the plat-
form is realised, which leads to a nonlinear movement. The main
direction of the movement of the kinematic platform was along
the X-axis of the local CS. The rotation speed in the 2D mode of
the laser scanner was 50Hz. That means the time difference be-
tween to consecutive triggered (geo-)referencing measurements
(states) is 20 ms. The number of points at each profile was set
to 10000. This results in a constant time difference of 2 µs be-
tween two scanned points. Approximately 1000 profiles were
recorded during the entire measurement process. All captured
points were (geo-)referenced according to the described method
in Section 3. In Fig. 5 the results of all parameters of the state
vector, which was defined in Eq. 6, over the iterations (ticks) of
the iEKF are shown. It can be seen in the data that the movement
of the platfrom started at profile 480. Because of the inclination
of the rope an acceleration occurs. This can primarily be seen
in the X- and Y-direction. At the end of the measurement the
platform was slowed down. After the start event a higher scatter-
ing in the accelerations of the translations a and rotations α can
be seen. Because of missing damping elements a direct trans-
mission of vibrations to the laser scanner occurs. The influence
of the accelerations in the rotations have to be critically consid-
ered. They have to be taken into account here due to the fact that
the influence depends on the measuring distance. To evaluate the
quality of the iEKF solution, the residuals v, see Eq. 13, are cal-
culated. It can be seen as the difference between the predicted
state, which is transmitted to the observation space, and the ob-
servation data. The residuals are minimal if the predicted state
and the measurement are fitting well together. Because of the

mentioned high accuracy of the laser tracker, the measurement
can be seen as very reliable and accurate. The residuals shown
in Fig. 6 also show a start event at tick 480. In general it can be
noted, that there is a higher scattering after the start event. The
residuals in the translations are under ±0.5mm. The most sig-
nificant differences can be seen in the y-direction. In case of the
rotations, the most significant differences (±0.005rad) can be
seen in the yaw-rotation. The reason for this larger deviations is
probably a pendulum motion around the z-axis, which will be not
adequately taken into account in the predicted state. Furthermore,
the 3D point cloud (geo-)referenced with the iEKF is compared
with a s-TLS 3D point cloud of the test panel. Here, the M3C2-
algorithm is used to calculate the distances between two point
clouds with different densities, detailed information’s are given
by (Lague et al., 2013) and (Barnhart and Crosby, 2013). The
computed distances, can be seen as an overall deviation of the
k-TLS 3d point cloud with respect to the s-TLS 3D point cloud.
This includes the uncertainties of the (geo-)referencing, system
calibration, synchronisation and of the 3D point cloud capturing.
However, in case of the presented k-TLS based MSS, the influ-
ence of the (geo-)referencing is the most significant. In order to
demonstrate this, the processing was carried out in addition to the
iEKF without a system model and by linear interpolation. With-
out a motion model means here that there is no movement consid-
ered between two consecutive (geo-)referencing measurements
(states). The results of the calculated M3C2 3D distances as well
as their distributions are plotted in the Fig. 7, 8 and 9. It can be
seen that the distances without a system model are significantly
higher than with the linear interpolation. For the case with no
constant movement, the mean value is 3.07mm and the standard
deviation is 2.27mm. These value are significantly reduced with
the linear interpolation. Here, the mean value is 0.29mm and the
standard deviation is 1.53mm. With the iEKF the mean value is
0.14mm and the standard deviation is 1.00mm. That means the
filter leads an improvement of 2.93mm in the mean and 1.27mm
in the standard deviation, in comparison to the (geo-)referencing
without a system model.

5. CONCLUSIONS

In recent years, s-TLS has become a well established measure-
ment method for the 3D point cloud capturing of large objects.
In terms of efficiency k-TLS can be seen as a promising alterna-
tive. However, current k-TLS based MSS are not able to fulfil the
high accuracy requirements of ±1mm. Thus, a new k-TLS based
MSS and suitable processing algorithms have been developed. In
this contribution the focus lies on the (geo-)referencing. Hereby
a mobile platform, which is equipped with a terrestrial laser scan-
ner operating in profile mode, is tracked by a laser tracker. The
synchronisation is realised by a trigger pulse which is send to the
laser tracker at each starting point of a profile. That leads to the
fact, that only the first point of each 2D profile is (geo-)referenced
exactly. To (geo-)reference all points the motion of the platform
must be considered. This is done with a Kalman filter. In the
prediction step, each point is shifted according to the determined
velocity and acceleration of the platform. Within test measure-
ments a panel was measured with the k-TLS based MSS. Here, a
rope guided platform was used. Due to the high non-linearity of
this platform, the processing was made with an iEKF. For com-
parative purposes a high accurate 3D point cloud was captured
by s-TLS. To analyse the quality of the (geo-)referencing, the
3D distances in the M3C2 between the k-TLS and s-TLS 3D
point clouds were estimated. The computed distances include
the whole uncertainties of the 3D point cloud capturing, system
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Figure 5. Results of the state vector from the iEKF.
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Figure 6. Residuals of the forward proceeded iEKF.

Figure 7. Computed 3D distance (M3C2) between s-TLS and k-TLS with no motion model.

Figure 8. Computed 3D distance (M3C2) between s-TLS and k-TLS with linear interpolation.

calibration, synchronisation and (geo-)referencing. To quantify
the influence of the (geo-)referencing the processing was made
without a motion model and by linear interpolation. The results
show that a (geo-)referencing without a motion model is not suf-
ficient enough to fulfil the mentioned accuracy requirements of
±1mm. A significant improvement can be achieved by a linear
interpolation. However, this will be not sufficient enough in case

of a non-linear moving platform. Here, the processing with an
iEKF showes the best results. A mean value of 0.14mm and the
standard deviation of 1.00mm for the computed 3D distances in
the M3C2 were reached. It can be summarised, that the required
accuracy can be achieved by a suitable (geo-)referencing method-
ology.
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Figure 9. Computed 3D distance (M3C2) between s-TLS and k-TLS with iEKF forward.
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