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ABSTRACT:

Spatio-temporal crop phenological information helps in understanding trends in food supply, planning of seed/fertilizer inputs, etc. in
a region. Rice is one of the major food sources for many regions of the world especially in monsoon Asia and accounts for more
than 11% of the global cropland. Accurate, on-time and early information on spatial distribution of rice would be useful for stake-
holders (cultivators, fertilizer/pesticide manufacturers and agriculture extension agencies) to effectively plan supply of inputs, market
activities. Also, government agencies can plan and formulate policies regarding food security. Conventional methods involves manual
surveying for developing spatio-temporal crop datasets while remote sensing satellite observations provide cost effective alternatives
with better spatial extent and temporal frequency. Remote sensing is one of the effective technologies to map the areal extent of the
crops using optical as well as microwave/Synthetic Aperture RADAR (SAR) sensors. Cloud cover is the major problem faced in using
the optical datasets during monsoon (June to Sept. locally called Kharif season). Hence, Sentinel-1 C-band (center frequency: 5.405
GHz) RADAR sensor launched by European Space Agency (ESA) which has an Interferometric Wide-swath mode (IW) with dual
polarization (VV and VH) has been used for rice area mapping. Limited studies have attempted to establish operational early season
rice area mapping to facilitate local governance, agri-input management and crop growers. The key contribution of this work is towards
operational near real time and early season rice area mapping using multi-temporal SAR data on GEE platform. The study has been
carried out in four districts viz., Guntur, Krishna, East Godavari and West Godavari from Andhra Pradesh (AP), India during the period
of Kharif 2017. The study region is also called as coastal AP where rice transplanting during the Kharif season is carried out during
mid Jun. till Aug. and harvesting during Oct. to mid Dec. months. The training data for various classes viz, Rice, NonRice-Agriculture,
Waterbodies, Settlements, Forest and Aquaculture have been obtained from GEE, Global Land Cover (GLC) layers developed by ESA
and field observations. We have evaluated the performance of Random Forest (RF) classifier by varying the number of trees and in-
crementally adding the SAR images for model training. Initially the model has been trained considering two images available from
mid June 2017. Further, various models have been trained by adding one consecutive image till end of August 2017 and classification
performance has been evaluated on validation dataset. The classified output has been further masked with agriculture non-agriculture
layer derived from global land-cover layer obtained from ESA. Analysis shows that incremental addition of temporal observations
improves the performance of the classifier. The overall classification accuracy ranges between 78.11 to 87.00%. We have found that
RF classifier with 30 trees trained on six images available from mid June till end August performed better with classification accuracy
of 87.00%. However, accuracy assessment performed using independent stratified random sampling approach showed the classification
accuracy of 84.45%. An attempt is being made to follow the proposed approach for current (i.e. 2018) season and provide incremental
rice area estimates in near real-time.

1. INTRODUCTION identifying the areal extent of prevented/delayed sowing to facil-

itate the timely settlement of insurance cover.

Rice is the staple food for half of the world’s population espe-

cially in monsoon Asia and accounts for more than 11% of the
global cropland (FAO, 2009). The spatio-temporal distribution
and dynamics of rice cultivation in a region helps to understand
growing food demand, water scarcity, etc. Accurate and on-time
information on spatial distribution of rice would be useful for
stakeholders (cultivators, fertilizer/pesticide manufacturers and
agriculture extension agencies) to effectively plan supply of in-
puts, market activities. Also, government agencies can plan and
formulate policies regarding food security. In addition, the data
on rice area would be useful as an input to estimate crop health,
water demand, crop yield at field/regional level. From crop in-
surance standpoint near-real time crop area maps are useful for
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Traditional approach of manually visiting the farms for surveys
and crop cutting experiments is very costly and time consuming
as compared to the information generated through remote sens-
ing. Remote sensing is one of the effective technology to map
the areal extent of the crops. Rice area mapping at field, regional
and national scale has been carried out in the past using various
approaches which involves use of single date or time series opti-
cal as well as microwave/Synthetic Aperture RADAR (SAR) data
(Qin et al., 2015, Nguyen et al., 2015, Neetu et al., 2014). Kary-
das et al., (Karydas et al., 2015) designed an algorithm for rice
mapping using time series of Landsat-8 observations. Time series
images of Landsat-8, MODIS and PALSAR images were used by
(Wang et al., 2015) to map paddy rice planting areas. Pixel and
phenology based algorithms have been implemented by (Qin et
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al., 2015) on time series datasets of MODIS, Landsat 7 and 8 to
map the rice areas. However, the use of optical remote sensing
data is limited during Kharif season (starts in mid Jun. and ends
in Nov.) due to cloud cover and weather dependency. The SAR
has capabilities to penetrate through the clouds, captures the data
day-night and are weather independent which makes them attrac-
tive for rice area mapping during Kharif season. Numerous at-
tempts have been taken in the past to map the rice areas using
multi-temporal SAR data based on the temporal variations in the
SAR backscatter (dB) signal (Kurosu et al., 1995, Nguyen et al.,
2015, Choudhury and Chakraborty, 2006). Spatio-temporal map-
ping of growing pattern of rice and other crops have been carried
out using multi-date RISAT-1 MRS data in Barddhaman district
of West Bengal (Neetu et al., 2014). Wu et al., (Wu et al., 2011)
reported that the HH/VV ratio was best for discriminating rice
from bananas, forest, and water. Literature review suggests that
most of the studies have been limited to map paddy rice from C-
band SAR data either by using single polarization (HH) or a com-
bination of different polarizations (HH/VV, HH/HV or VV/VH).
However, only a few of them have investigated early season VV
and VH backscatter time series for operational near-real time rice
area mapping. Furthermore, to our knowledge, no work using
near real time Sentinel-1 data for rice mapping in the coastal AP
has been published yet. Also, most of the studies have attempted
individual machine learning/rule based algorithms along with full
season time series to estimate the rice area. We have attempted
to use early season time series to provide early information about
estimated acreage of rice in a study region, to the planners and
decision makers. The key objective of this study is development
of operational near-real time and early season rice area mapping
framework using multi-temporal Sentinel-1 SAR data on GEE
platform. Sentinel-1A and 1B are the next generation of C-band
(center frequency: 5.405 GHz) radar sensors with a 12-day revisit
time. The standard L1 product of Sentinel-1A has an Interfero-
metric Wide-swath mode (IW) with dual polarization (VV/VH),
and a spatial resolution of 5 m and 20 m in the range and azimuth
directions, respectively. This open access relatively high spatio-
temporal resolution provides an outstanding data source for rice
mapping. Information on study area, datasets used, and overall
framework of rice area mapping has been described in Section 2.
Details about the data analysis approach, results and classifica-
tion performance using various multi-date images are presented
in Section 3. Finally, summary, conclusions and future prospects
of the study are described in Section 4.

2. OPERATIONAL RICE AREA MAPPING
FRAMEWORK

2.1 Study Area

The study on rice area mapping has been carried out in the four
districts from coastal AP namely Guntur, Krishna, West and East
Godavari. Study region has rich agricultural land, owing to the
delta of the Godavari and Krishna rivers (Figure 1). The prosper-
ity of the region can be attributed to its rich agricultural land and
abundant water supply from these two rivers. Rice is the predom-
inant crop cultivated in the region. The crop is cultivated mainly
during two seasons namely Kharif which starts from mid Jun.
till Nov. and Rabi which starts from mid Dec. and ends in May.
Other crops cultivated in the region are Sugarcane, Cotton, Chilli,
Pulses, Coconut, etc.

Figure 1. Study Area

2.2 Datasets Used

In this study we have used Sentinel-1A and 1B satellite imagery,
GLC dataset (ESA, 2017a) developed by ESA, ground truth data
collected from the field visits and mKRISHI®and crop acreage
statistics from department of agriculture, Andhra Pradesh.

2.2.1 Sentinel-1 Data and Preprocessing: Sentinel-1 satel-
lite was launched by the ESA. The Sentinel-1 mission comprises
a constellation of two polar-orbiting satellites (Sentinel 1A and
1B), operating day and night performing C-band synthetic aper-
ture radar imaging, enabling them to acquire imagery regardless
of the weather. The Sentinel-1A SAR instrument operates at
5.405 GHz (C-band corresponding to a radar wavelength of about
5.6 cm), containing VH and VV polarizations with the revisit cy-
cle of 12 days and a spatial resolution of 5 m by 20 m in the
range and azimuth directions, respectively (ESA, 2017b). It has
an equivalent number of looks of five, and an image resolution
of 10 m (Cazals et al., 2016). We have accessed the Sentinel-
1A and 1B backscatter images from GEE platform (Gorelick et
al., 2017). The GEE collection includes the S1 Ground Range
Detected (GRD) scenes, processed using the Sentinel-1 Toolbox
to generate a calibrated, ortho-corrected product. Each scene is
pre-processed with Sentinel-1 toolbox using the thermal noise
removal, radiometric calibration and terrain correction.The final
terrain corrected values are transformed to decibels (dB) via log
scaling and quantized to 16 bits. In this study we have used both
VV and VH polarization. The S-1A and S-1B images available
from 22 June 2017 till 2 Sept. 2017 were accessed from GEE
datasets and used for analysis.

2.2.2 Global Land Cover Dataset: ESA under their Climate
Change Initiatives (CCI) has developed 300m annual GLC maps
for 24 years spanning from 1992-2015 (ESA, 2017a). The CCI
dataset consist of 22 classes. We have derived Agriculture (class
values 10, 20, 30, 40) vs Non-Agriculture mask (other remaining
class values) using this dataset. The CCI data was available at
300m spatial resolution which has been resampled to 10m spa-
tial resolution to match with Sentinel resolution. This agriculture
non-agriculture mask at 10m is used to reduce misclassification
and get more fine-tuned output classified maps.

2.2.3 Digital Elevation Model: The Advanced Space-borne
Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) was developed jointly by the
U.S. National Aeronautics and Space Administration (NASA)
and Ministry of Economy, Trade, and Industry (METI) Japan.
ASTER DEM covering the study area was accessed from GEE
collection (Gorelick et al., 2017). ASTER DEM is having a spa-
tial resolution of 30m which was resampled to 10m to match it
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Sentinel-1 resolution. Further, DEM tiles were mosaicked and
slope in percent was estimated and used as one of the features in
the classification.

2.2.4 Ground Truth data from Field Visits: Rural Partici-
patory Sensing based android mobile application (Mohite et al.,
2015) was used for ground truth data collection from the fields.
The plot and crop information has been collected using the mo-
bile application. The plot registration includes capturing the GPS
co-ordinates of the plot and crop cultivation details from the reg-
istered plot such as crop name, variety, sowing/transplanting date,
etc. The ground truth data on locations and sowing information
of rice and other crops was also taken from mKRISHI®)(Pande
et al., 2009) database. Further, we have used GEE interface
with Google Maps overlay as a reference for generating training
boundaries of settlements, forest and waterbodies. The data ob-
tained from these sources have been used for model development
and validation. In addition to this, statistics on rice acreage for
Kharif 2017 season was obtained from the Department of Agri-
culture web portal, Andhra Pradesh and used for cross-validation
of our proposed approach.

2.3 Overall Approach
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Figure 2. Rice Area Mapping Framework

In the study area, rice is cultivated during two main seasons
namely Kharif and Rabi. The Kharif season starts with the onset
of monsoon that is during mid. June and ends in Nov. Whereas,
Rabi season starts in Dec. and ends in May. Figure 2 shows
the overall rice area mapping framework. In the study area rice
is transplanted during July and August. The Rice transplanting
is followed by 10-15 days ponding of water in the fields. The
ponding in open field followed by rice transplanting and growth
in crop canopy is well captured using SAR observations. To cap-
ture this cultivation practice we have considered Sentinel-1A and
1B images available from end of June till start of Sept. 2017.
Data available in IW with dual polarization (VV and VH) have
been used for rice area mapping. We have evaluated the perfor-
mance of RF classifier by varying the number of trees and in-
crementally adding the Sentinel-1A and 1B images for the train-
ing. Initially the classifier has been trained considering two im-
ages available from mid June 2017. Further, classifier has been
trained by adding one consecutive image till end of the August
and classification performance has been evaluated on validation
dataset. Finally, GLC agriculture non-agriculture mask at 10m

resolution has been applied on classified output to reduce mis-
classification (ESA, 2017a). The classification accuracy has been
also estimated using stratified random sampling method proposed
by (Olofsson et al., 2014).

3. RESULTS AND DISCUSSIONS

The Land Use/Land Cover (LU/LC) class separability was per-
formed for rice, non-rice agriculture, forest, settlement and wa-
ter. Fig 3 and 4 shows the box plots for LU/LC classes in VH and
VV polarization respectively. It is observed that during the Kharif
season transplanting window (i.e. July and August months) aver-
age backscatter for rice is lower as compared to other months and
this is because of the ponding of water in the fields. Also there
is a clear separation of rice from water-bodies, settlements and
forest in both VH and VV polarizations. For July scenes rice is
mixing with non-rice agriculture whereas separation is for other
months of Kharif season.
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Figure 4. Box Plot for LU/LC Classes in VV Polarization

The random forest classifier has been trained considering two
satellite passes available from mid June to generate classifica-
tion map for 5 July, 2017 (total five features were used for the
analysis i.e. two VV and VH bands for each date and slope in
percent). Total size of the training data for all classes was 18454
pixels and it was divided into 70% of the data for model train-
ing whereas remaining 30% data for model validation. To assess
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the classification accuracy the classifier was trained for number
of trees from 5 to 45 with a interval of five trees. Five classifier
iterations were performed for each combination of training data
and number of trees to average out the classification accuracy.
Further, each available image (VV and VH bands) was added as
the features and classifier was re-trained. In total we have trained
the classifier by considering 2 to 7 dates (i.e. 5 to 15 features)
respectively. The overall classification accuracy ranges between
78.11 to 87.00%. Further, the classification accuracy assessment
was also performed using stratified random sampling approach.
Hundred samples from rice and all other non-rice classes were
selected and accuracy was estimated by comparing them with the
actual class value (collected from field observations). Table 1
shows the validation accuracy and accuracy based on stratified
random samples.

Date Features | Validation Stratified
Used Accuracy Random
(%) Sampling

Accuracy
(%)

5 July 2017 78.11 -

18 July 2017 77.82 -

30 July 2017 81.02 -

12 Aug 2017 11 83.56 -

24 Aug 2017 13 83.62 -

2 Sept 2017 15 87.00 84.45

Table 1. Performance of RF for Multi-Date Scenarios

Performance of the RF classifier was evaluated for varying num-
ber of trees and scenarios (Figure 5). It is observed that for most
of the scenarios RF classifier with 30 number of trees was per-
forming better and thereafter minimal improvement in the classi-
fication accuracy.

R Performance on's uly 2017 R Performance on 18 1uly 2017 R Performance on 30 uly 2017

Figure 5. Average Accuracy using RF for Different Number of
Trees

We have merged all non-rice classes and generated classified
maps for rice vs non-rice. Figures 6 to 11 show the rice vs non-
rice classified map for the season from 5 Jul. 2017 to 2 Sept.
2017. As season proceeds the late-transplanted rice area is added
in the result. The sharp increase in the rice area from 18 Jul. to
12 Aug. is due to majority of the fields are transplanting dur-
ing this period. In Guntur district rice transplantation starts af-
ter end of July, similar trend is observed in both classified maps
and during the field visits. The rice area maps generated during
the transplanting period will help to track the rice cultivation and
this information could be useful to various stakeholders like gov-
ernment to estimate prevented sowing, agri-input companies to
manage the supply of inputs like seeds, fertilizers, pesticides, etc.
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Figure 6. Rice Classified Map for 5 July 2017
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Figure 8. Rice Classified Map for 30 July 2017
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Figure 9. Rice Classified Map for 12 Aug 2017

The results were compared with the statistics available from De-
partment of Agriculture, Government of AP. Table 2 shows the
comparison between rice area obtained using proposed approach,
government statistics and percent difference. The total difference
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Figure 11. Rice Classified Map with All Images

is less than 10%.

District Proposed Govt. Percent
S. approach Statistics Differ-
N. (,000 Ha) (,000 Ha) ence
(%)
Guntur 199.421 208.771 -4.48
1
Krishna 253.556 232.456 9.08
2
East Godavari | 241.13 229.178 5.22
3
West Godavari | 249.116 232.323 7.23
4

Table 2. Comparison of area obtained using proposed approach
with government statistics

4. SUMMARY AND CONCLUSIONS

Early season information on the spatio-temporal dynamics of rice
area is of crucial importance to the various government organiza-
tions, fertilizer companies and farmers for input planning and de-
cision making. The SAR based sensors are one of the fast and ef-
fective ways to get accurate and early season information on rice
area. In this study rice area mapping has been carried out for four
districts of coastal Andhra Pradesh during Kharif 2017 season
using multi-date images of Sentinel-1 (SAR sensor) with update
frequency of 12 days and 10 meter spatial resolution. We have
evaluated the performance of RF classifier by changing the num-
ber of trees and incrementally adding the Sentinel-1 images. The
classified output has been further masked with agriculture non-

agriculture layer derived from GLC layer obtained from ESA.
The mixing between rice and aquaculture was removed using
GLC agriculture non-agriculture mask. Classifier performance
improved by incremental addition of image to training data. The
overall classification accuracy ranges between 78.11 to 87.00 %.
We have found that RF classifier with 30 trees trained on six im-
ages available from mid June till end August performed better
with classification accuracy of 87.00%. Further, accuracy assess-
ment performed using independent stratified random sampling
approach showed the classification accuracy of 84.45%. We con-
clude that, early season Sentinel-1 data in both VV and VH polar-
ization is useful for operational near real time rice area mapping.
The generated rice area maps have potential to plan the agricul-
ture input supply activities, crop insurance, etc. An attempt is be-
ing made to follow the proposed approach for current (i.e. 2018
onwards) cropping season and provide incremental rice area esti-
mates in near-real time.
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