
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 89, Issue 15, June/July 2018, Pages 72–89

https://doi.org/10.7250/csimq.2018-15.04

Automated Creation and Provisioning of Decision
Information Packages for the Smart Factory

Eva Hoos1,2⋆, Pascal Hirmer1, and Bernhard Mitschang1,2

1Institute of Parallel and Distributed Systems, University of Stuttgart, 70569 Stuttgart, Germany
2Graduate School of Excellence Advanced Manufacturing Engineering, University of Stuttgart,

70569 Stuttgart, Germany

Eva.Hoos@ipvs.uni-stuttgart.de, Pascal.Hirmer@ipvs.uni-stuttgart.de,
Bernhard.Mitschang@ipvs.uni-stuttgart.de

Abstract. In recent years, Industry 4.0 emerges as a new trend, en-
abling the integration of data-intensive cyber physical systems, Internet
of Things, and mobile applications, into production environments. Even
though Industry 4.0 concentrates on automated engineering and man-
ufacturing processing, the human actor is still important for decision
making in the product lifecycle process. To support correct and efficient
decision making, human actors have to be provided with relevant data
depending on the current context. This data needs to be retrieved from
distributed sources like bill of material systems, product data man-
agement and manufacturing execution systems, holding product model
and factory model. In this article, we address this issue by introducing
the concept of decision information packages, which enable to com-
pose relevant engineering data for a specific context from distributed
data sources. To determine relevant data, we specify a context-aware
engineering data model and corresponding operators. To realize our ap-
proach, we provide an architecture and a prototypical implementation
based on requirements of a real case scenario. This article is a revised
and selected version of the previous work.
Keywords: Industry 4.0, Context-awareness, Data Provisioning.

1 Introduction

Industry 4.0 is a new trend that drives the digitization of production environments. Especially
data-driven cyber physical systems, advanced data analytics and Internet of Things [1], [2], [3]
enable new approaches, such as self-organization of production processes. However, human
interaction and decision making is still mandatory and beneficial in the smart factory [4], [5].
This especially holds in the domain of pre-production plants that manufacture the first
prototypes of a product. Hence, lots of failures may occur that have to be quickly resolved
by human workers. An efficient decision making process to find appropriate solutions to
⋆ Corresponding author

© 2018 Eva Hoos et al. This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).
Reference: E. Hoos, P. Hirmer, and B. Mitschang, “Automated Creation and Provisioning of Decision Information
Packages for the Smart Factory,” Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 15, pp.
72–89, 2018. Available: https://doi.org/10.7250/csimq.2018-15.04
Additional information. Author’s ORCID iD: P. Hirmer – orcid.org/0000-0002-2656-0095. Article PII
S225599221800089X. Received: 14 February 2018. Accepted: 04 June 2018. Available online: 31 July 2018.

these failures has to consider different kinds of data. Examples are 3D-geometry data or a
bill of material (BOM) representing the product structure, simulation data, process data, or
measurement data of the exact dimensions of the product. These data are distributed onto
heterogeneous Information Technology (IT) systems that are not integrated yet [6], [7], [8].
At the moment, workers have to manually collect all data relevant for decision making.
We call this set of relevant data decision information packages (DIP). The composition
of relevant data is a cumbersome task, since workers are trained to solve domain-specific
problems, and not to find relevant data. This requires comprehensive IT skills. To address
this issue, we provide an approach to automatically compose DIPs in a compact manner in
order to relieve the decision maker from browsing complex IT systems and to redirect his
focus on domain-specific problem-solving. We augment and go beyond existing approaches
in providing relevant data via context-aware filtering [9], [10], [11] and data integration in
engineering [6], [8] in order to fulfill domain-specific requirements. Key requirements are
generation of DIPs without comprehensive IT knowledge; and integration of context-aware
filtering into the existing engineering IT landscape. This article is the realization of the vision
introduced in [12]. Detailed contributions of the article are:

(1) Definition of DIP Structure: We performed a case study in the pre-production
plant to identify requirements regarding DIPs. The IT landscape is composed of heteroge-
neous IT systems. Each of them represents a specific view of product data. To combine these
views and assign the appropriate data to it, we design a generic schema for DIPs reflect-
ing the product structure as well. The focus on the product structure is important so that
workers can easily interpret relevant data with respect to their current context.

(2) Context-Aware Composition of DIPs: Since there is a large amount of engineering
data, it is important, for an efficient decision making process, that the amount of data is
reduced and only relevant data is composed. Context data can be used to filter meaningful
data. In the pre-production plant, for instance, the context of shop floor workers is dependent
on their current task, location and of the state of the environment, which often can, e.g. be
captured by sensors [13]. Hence, context data has to be linked to engineering data to derive
meaningful data for decision making. This should be possible without comprehensive IT
knowledge. To address these issues, we develop a context-aware engineering data model and
operators to process the data. They abstract from technical details of IT systems and context
data, which facilitates the linking by domain experts.

(3) Architectural Realization for the Engineering Domain: The architecture to
automatically compose and acquire DIPs needs to be integrated into the existing engineering
IT landscape which is composed of legacy systems and dynamically appearing IT systems.
Therefore, we define a system architecture that realizes our approach. The architecture serves
as a basis for our prototypical implementation, which is evaluated based on our real-world
case scenario.

(4) Design and Prototypical Implementation of an Application to Provide
DIPs: To provide DIPs to the worker in a location-independent manner, a mobile application
is needed which applies the automatic generation of DIPs and displays the corresponding
DIP to the user. In order to improve the decision making process, we define a goal regarding
the implementation of a mobile app and perform requirements analysis. On this basis, we
define the functionality and the user interface for the app. Furthermore, we prototypically
implement the app as a proof of the concept.

This article is a revised and extended version of the paper “Context-Aware Decision In-
formation Packages: An Approach to Human-Centric Smart Factories” as presented at the
21st European Conference on Advances in Databases and Information Systems (ADBIS) in
2017 [14]. The extension comprises a detailed scenario how to generate DIPs as well as a
prototypical implementation of a mobile application to provide DIPs in the Smart Factory.

73

This article is structured as follows: Section 2 introduces the use case scenario and defines
the structure of DIPs. Section 3 contains the main contribution of our article: an approach
to compose DIPs. Section 4 introduces a system architecture, which serves as the basis for
the evaluation of our approach conducted in Section 5. In Section 6, we introduce DIPPing,
a mobile application to manage DIPs. Finally, Section 7 covers related work and Section 8
summarizes the article.

2 Decision Information Packages in Engineering

This section introduces our case study at a German car manufacturer, which emphasizes
the demand and utility of DIPs. Based on this, we derive a generic schema for DIPs in the
engineering domain.

2.1 Case Study: Pre-production Plant

The case study is part of the manufacturing of car prototypes, also known as pre-production
test. During the production in a preproduction plant, the cars pass several assembly stations
of a production line. At each station, a shop floor worker assembles multiple parts. Since
the product and the process are not as well defined as in series production, plenty of failures
may occur. For instance, parts cannot be assembled because the tolerances do not match. In
the following, we describe a case scenario, in which the part “console” does not fit into the
apparatus of the front-end assembly station, that assembles the front section of the car shell:
The worker at the front-end assembly station recognizes the problem and has to resolve it.
There could be many of causes for this problem. In the following and due to space reason,
we only look into three representative kinds of information to identify an error:

1. Basic information about the part is required to identify name, version and material. These
are stored in the bill of material (BOM) system, which contains information about all
parts necessary to manufacture the product [15].

2. The visualization of the 3D-Geometry model is necessary to check the correctness of the
part’s geometry. The worker has to access the product management system (PDM) to
find the appropriate 3D geometry file with respect to different versions and variants [16].

3. Measurement reports are necessary to check tolerances. Measurement reports are stored
in a file system in PDF format and contain the exact dimensions of an assembly.

The corresponding DIP is shown in Figure 1 and discussed in the next subsection.

. . .

Data from Data Source 1

Data from Data Source 2

Related Engineering Artefacts

Engineering Artifact 1

Engineering Artifact 2

Engineering Artifact 3DIP

BOM
Name: Front End Assembly
Version: 001.02

PDM
P1-CAD-Modell.jt

P2, P5, P6

P1

F1

P3

Figure 1. Left: Generic schema of the DIP, right: DIP of the case study

74

2.2 Decision Information Packages

DIPs provide required information for decision making. They compose data from multiple,
heterogeneous data sources with respect to the context of the problem. Thereby, different
views of the data should be combined. To enhance the comprehensibility of the worker,
DIPs should reflect the product structure. The product structure defines the relation between
parts. Accordingly, we use engineering artifacts as structuring elements. Engineering artifacts
virtually represent all parts and components required to build a product, also including
manufacturing parts. They have a unique identifier already used in product model and
factory model. Figure 1 shows an abstract model of a DIP. A DIP encapsulates data of
multiple engineering artifacts. For each engineering artifact, information from different data
sources is composed. The data format of the data sources varies from relational data and
XML data to file-based data. Also, related engineering artifacts are provided. For instance,
related engineering artifacts of a part can be subcomponents or machines at which the part
is manufactured.

In the depicted example, on the right of Figure 1, the DIP contains information about the
engineering artifacts P1, F1 and the P3. These are the unique identifiers. The name of the
part P1 and the current version number are acquired from the BOM. From the PDM system,
the file containing the 3D model is included, called P1-CAD-Modell.jt, which is necessary to
visualize the part. P1 is related to P2, P5, and P6, which are subcomponents.

3 Context-Aware Composition of Decision Information Packages

This section presents, first, the context-aware engineering data model (CAEM) to link engi-
neering data and context data, and, second, context-aware operators to compose the DIPs
based on this model.

3.1 Context-Aware Engineering Data Model

In order to link engineering data and context data in the CAEM, we introduce a context
model which structures the context data and enables to define situations of users. We use
the definition of context models as introduced in [17]. The context model is based on context
entities and context attributes, characterizing the entities. Furthermore, it contains relations
between entities. Figure 2 shows a simple context model for the engineering domain. This
simple model is sufficient since the focus of the article is not to provide a comprehensive
context model, but rather to link the context with engineering data. Context entities are
station, actor, and project. The actor is characterized by its context attributes name, role,
and task. Each new product, e.g. a new car model, is defined as development project, which is
divided into various phases such as pre-production test batches. The values of the attributes
define the state of an entity. Situations derived from this context model can describe at
which station an actor works, and also in what project. An exemplary situation for our case
scenario is: (i) the actor has the role prototype engineer, (ii) the phase is the pre-production
test batch 2, and (iii) the station is the front-end assembly station.

The context-aware engineering data model is shown in Figure 3. It models context values,
engineering artifacts and data sources as entities as well as links between these entities. Note
that the context value is the value of the context attribute defined in Figure 2, such as
that “front-end-assembly station” is the value of the context attribute “station name”. Data
sources represent an abstraction of data sources, in which engineering data are stored, e.g.
the bill of material. Engineering links describe the semantic relation between engineering
artifacts, such as “is part of” or “is manufactured by”. Data links describe in which data
sources information about the engineering artifact is stored. Context links describe in which

75

context the engineering artifact is relevant. They can be established between context elements
and data sources.

Actor

Name

Role

Task

Station

Project

Name

Name
Works on

Works in

Belongs to

Context
Entity

Context
Attribute

Phase
Legend

Figure 2. Our context model

Data Source
Engineering

Artifact
Engineering

Link

Data Link

Context ValueContext
Link

Context
Link

Figure 3. Context-aware engineering model

Figure 4 shows an excerpt of a CAEM instance according to our use case scenario. The
semantics of the excerpt is as follows: (i) at the station front-end assembly, the part front-
end is manufactured; (ii) the prototype engineer is interested in information from the data
sources: BOM, PDM and reports, whereas the shop floor worker is only interested in BOM
and PDM data; (iii) the front-end assembly station manufactures the right-hand-drive and
the left-hand drive; (iv) at the pre-production test batch 2 (second test batch) only the
right-hand-drive variants are manufactured.

Station.Name:
Front End

Assembly Station

Front End
Assembly RHD

Front End
Assembly LHD

Project.Phase:
Pre-Production

test batch 2

Project.Phase:
Pre-Production

test batch 1

BOM PDM Reports

ConsoleFront End
Assembly 1.2

Longitudinal
member left

Longitudinal
member right

Actor.Role:
Prototype
engineer

Actor.Name:
Actor1

Actor.Role:
Shop floor

worker
Legend

Context Value

Data Source

Eng. Artifact

Figure 4. Excerpt of a CAEM instance for the use case scenario

3.2 Operators for Decision Information Package Composition

The composition of DIPs is supported by four operators which interact with the CAEM. In
order to define operators, we interpret the CAEM as a set of items and define set-operators
for it. According to our context-aware engineering model shown in Figure 3, we define three

76

sets:

EngineeringArtifacts : EA = {ea1, ea2, ..., ean}
ContextV alues : CV = {cv1, cv2, ..., cvm}

DataSources : DS = {ds1, ds2, ..., dsp}

We model the links of the CAEM as relations between target and source artifacts.

ContextEALinks : CEA ⊆ {(cvi, eaj)|cvi ∈ CV, eaj ∈ EA}
ContextDSLinks : CDS ⊆ {(cvi, dsj)|cvi ∈ CV, dsj ∈ DS}

DataLinks : DL ⊆ {(eai, dsj)|eai ∈ EA ∧ dsj ∈ DS}
EngineeringLinks : EL ⊆ {(eai, eaj)|i ̸= j ∧ eai, eaj ∈ EA}

We define a particular situation of a user X as SITx = {cvx1, cvx2, ...}.
Engineering Artifact Selection: The operator SelectEA selects all engineering artifacts which
are relevant for the given situation SITx:

SelectEA(SITx) =
∩

cvxj∈SITx

{eai|(cvxj, eai) ∈ CEA} (1)

Selection of relevant data sources: The operator SelectDS filters the relevant data sources
for a particular situation SITx:

SelectDS(SITx) = {dsi|(cvxj, dsi) ∈ CDS ∧ cvxj ∈ SITx} (2)

Discovery of data sources: The operator DiscoverDS identifies all data sources which provide
information about the relevant engineering artifact ea:

DiscoverDS(ea) = {dsi|(ea, dsi) ∈ DL} (3)

Discovery of related engineering artifacts: The operator DiscoverEA discovers engineering
artifacts that are related to another particular engineering artifact:

DiscoverEA(eaj) = {eai|(eai, eaj) ∈ EL ∨ (eaj, eai) ∈ EL} (4)

To compose a DIP for a given situation SITx, SelectEA creates the list of engineering
artifacts relevant for the situation. This operator uses an intersection to be more restrictive
and reduces the number of engineering artifacts more than using union. Afterwards, the data
sources are determined using SelectDS or DiscoverDS. If SelectDS has an empty set as the
result, which means that no context value is assigned to a data source, DiscoverDS explores
the data sources. Finally, DiscoverEA finds the related engineering artifacts for each relevant
engineering artifact defined by SelectEA. Figure 5 visualizes a DIP and how to construct
it using the operators. Furthermore, it shows the result for applying the operators to the
context model.

Note that all these operators are set-oriented, because the result of an operation execution
may end in a set of selected or discovered EAs and DSs. Furthermore, the operators let to
hide from, e.g. connectivity, data source types and access mechanisms to the data sources.
Hence, the realization approach of the operators has to cope with this abstract operator level
and provide a transformation to the underlying IT environment, e.g. to the sources of the
systems. All these issues are covered in the next section.

77

Given: Situation 𝑆𝐼𝑇1 = {𝑠ℎ𝑜𝑝𝑓𝑙𝑜𝑜𝑟𝑊𝑜𝑟𝑘𝑒𝑟,
𝑝𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ2, 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝑆𝑡𝑎𝑡𝑖𝑜𝑛}

Construction:
(1) Relevant Engineering Artifacts:
𝑆𝑒𝑙𝑒𝑐𝑡𝐸𝐴 = 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑𝑅𝐻𝐷

(2) Relevant Data Sources for 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑𝑅𝐻𝐷:
𝑆𝑒𝑙𝑒𝑐𝑡𝐷𝑆 = {𝐵𝑂𝑀, 𝑃𝐷𝑀}

(3) Related Engineering Artifacts:
DiscoverEA = {𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑟𝑖𝑔ℎ𝑡,
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑙𝑒𝑓𝑡, 𝐹𝑟𝑜𝑛𝑡 𝐸𝑛𝑑 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 1.2, 𝐶𝑜𝑛𝑠𝑜𝑙𝑒}

Data from BOM

Data from PDM

Longitudinal member right,
Longitudinal member left,
Front End Assembly 1.2,
Console

FrontEndRHD

Figure 5. Construction of a DIP using the operators with respect to the use case scenario

4 Architecture to Provide Decision Information Packages
In order to realize our approach, we introduce the system architecture depicted in Figure 6.
The architecture enables to integrate the concept of decision information packages into the
engineering environment. The environment is characterized by the users and their applica-
tions and the engineering context, which comprises all data in the engineering domain such
as data stored in IT systems and context data such as sensor data, machine data, and user
data. The architecture consists of three components, namely Context-Aware Provisioning,
Resource Access Platform and Context Management.

Environmental context is gathered by the Context Management, which processes the low-
level engineering context into higher-level context, also known as situations. For instance, it
derives given GPS coordinates of a user into the situation that the user “is in the manufac-
turing plant”. Note that we do not focus on the Context Management and assume that there
is an appropriate implementation available such as the ones introduced in [18] and [13].

Resource
Access
Platform Adapter

Management

Data
Provisioning

Data Source
Adapter

Data Source
Adapter

Data Source
Adapter

Adapter
Repository

Context-Aware
Provisioning

CAEM
Automatic Link Creation Link Management

DIP Composition

Data Service
Catalogue

Context
Management

User and
Application

Engineering
Context

Data Service Data Service Data Service

BOM …PDM

Equipment GPS-Sensor Machine

Figure 6. System Architecture to provision DIPs

4.1 Context-Aware Provisioning
The context-aware provisioning layer consists of a database managing context-aware engi-
neering data model (CAEM) and of the subcomponents DIP Composition, Link Management
and Automatic Link Creation.

78

In order to realize the CAEM, we use an entity-relationship model to implement it into
a relational database. The link management provides an API to create and delete links as
well as to store the engineering artifacts, context elements, and data sources in the CAEM.
This simplifies the definition of context links and engineering links for domain experts. The
automatic link creation facilitates the creation of context links, which is a high effort task
when conducted manually. It enables to create a set-based definition of links, for instance, if
the engineering artifacts have common attribute values. Second, it allows to import relations
from other systems. For instance, sometimes the information about which part is manufac-
tured, and on which station, is stored in another IT system. Engineering links could be also
derived from a system model describing the relationships between different parts and manu-
facturing equipment. In addition, data links can be derived from this model, since it stores,
e.g. the relationships between the engineering artifacts and its simulation model [19]. Finally,
it is possible to integrate learning mechanisms so that the domain expert gets proposals for
context links if relationships with similar engineering artifacts exist. The DIP Composition
component gathers all the information required to compose a DIP as shown in Figure 5. It
receives the situation from the context management. According to the situation determined
by the context values, the DIPs are constructed using the operators.

4.2 Resource Access Platform
The Resource Access Platform (RAP) serves as a single entry point to access data sources
through uniform interfaces. The RAP provisions data sources to the DIP Composition. The
Resource Access Platform consists of two components: (i) the adapter management compo-
nent, and (ii) the data provisioning component.

The adapter management component is responsible for binding data sources to the Re-
source Access Platform. This component consists of the Data Source Adapter Repository
that stores adapters used for binding, and of a runtime environment to deploy and execute
them. Adapters can be automatically and dynamically deployed using software provisioning
technologies such as TOSCA [20]. To bind data sources, adapters for each data source are
extracted from the Data Source Adapter Repository, are parameterized, and are then auto-
matically deployed. The data provisioning component is accessed by the DIP Composition
and contains the Data Service Catalog that provides meta-information about all available
data sources. Furthermore, it contains Data Services that offer access to the actual data.
First, the RAP is accessed by the DIP Composition in order to search for relevant data
sources found in the CAEM in the Data Service Catalog. The RAP then provides references
to corresponding Data Services that encapsulate access to underlying data using proper
adapters.

The Resource Access Platform is based on the Resource Management Platform (RMP) as
introduced by Hirmer et al. [21]. We extend this platform to support specific needs of the
engineering domain. By doing so, we support data sources of the engineering domain, e.g.
CAD models, sensor data, or simulation data. In addition, we automate the lookup in the
Data Service Catalog, which was previously done manually. The interface to applications
accessing the RAP (e.g. the DIP Composition) remains the same.

4.3 DIP Composition – Example Scenario
In order to clarify how DIPs can be created based on the introduced architecture, we
describe an examplary scenario based on our case study (see Section 2.1). The cor-
responding procedure for this examplary scenario is depicted in Figure 7. For better
clarity, unnecessary components have been omitted in this architecture. In this sce-
nario, a shopfloor worker encounters an issue when assembling the car shell and re-
quires a DIP in order to get all information necessary to solve this issue. In this case,

79

the part does not fit into the apparatus of the car shell. The situation of the worker
is SIT1 = {shopfloorWorker, FrontEndAssembly, FrontEndAssemblyStation}, which
means that the shopfloor worker is working on the front end assembly of the car shell at
station FrontEndAssemblyStation.

RAP

Adapter
Management

Data
Provisioning

Data Source
Adapter

Data Source
Adapter

CEAM DIP Composition

Data Service
Catalog

Context
Management

Engineering
Context

Data Service Data Service

BOMPDM

Tools GPS Sensor Machine

Users and
Applications

Sit_x Sit_x1
2

Operators3

/BOM4

/BOM/Engineering
Artefakt{?ID}

5

{Name: Front End
Assembly, Version

001.02}

6

CAP

7

Figure 7. Example scenario to compose DIPs

In order to create the DIP for this scenario, different steps need to be conducted. These
steps, also depicted in Figure 7, are:

1. The application for which a DIP is generated, in this case, for instance, a mo-
bile application used by the shopfloor worker, picks up the situation SIT1 =
{shopfloorWorker, FrontEndAssembly, FrontEndAssemblyStation} from the context
management component.

2. This situation SIT1 is passed to the DIP composition.
3. Taking the situation into account, the operators described in Section 3.2 are executed,

identifying the relevant engineering artifacts, relevant data sources, and dependent engi-
neering artifacts.

4. In the next step, relevant data is extracted from the data sources. By applying the
operators, it is known that the BOM and PDM data sources are required to obtain
information about the unfitting part. To realize this, the DIP composition component
queries the data service catalog of the RAP for the appropriate data services of the BOM
and PDM data sources and gets its REST URI back. The REST URI of the BOM data
source for the case scenario is “/BOM”.

80

5. Afterwards, information how the corresponding REST resource needs to be invoked
in order to get the data of an engineering artifact is requested at the RAP. This
is done by a “HTTP GET request” using the URI “/BOM”. This request gets back
the possible operations regarding the REST interface of the data service, which is
“/BOM/EngineeringArtifact?ID” for the BOM system. This operation can be used to
get information about a specific engineering artifact with the corresponding ID.

6. The REST call “GET/BOM/EngineeringArtifact?ID=EA1” now extracts the data via
the data service from the BOM data source using the corresponding adapter. In
this example, the DIP composition component receives the JSON object {name :
FrontEndAssembly, version : 001.002}.

7. The DIP composition collects the data and passes it to the DIP application.

Note that the results of these steps are examplary for this scenario, e.g. the URI of the
REST call; and differ in other application scenarios. Through the described steps, DIPs can
be generated for this or any other scenario in the industrial domain.

5 Evaluation

We evaluate our approach according to the goal of DIPs which is to improve decision making
on the shopfloor. With our approach, we enable to automatically compose and provide DIPs
in the engineering domain. We aim to reduce the amount of information according to the
context of the users in order to provide compact DIPs. This is important in order to relieve
workers from meaningless information. Therefore, we apply our approach on a real data set
of the introduced case scenario and investigate the reduction of information.

5.1 Case-oriented Evaluation of Information Reduction

In order to evaluate how well context can be used to filter relevant data, we apply our
approach on a real data set and determine the information reduction. The data set originates
from our case study introduced in Section 2. We look into data to assemble the bottom of
the car shell. Table 1 shows the number of items in the CAEM. Engineering artifacts are
the parts of the bottom of the car shell. The context values are belonging to the entities
station, actor, and project. The data sources are BOM, PDM, and measurement reports.
Engineering links describe the part-of relationships of the parts. In order to evaluate how
well context can be used to filter data, we investigate the compactness of the DIPs. The
compactness of DIPs is dependent on the number of engineering artifacts and the data size
of the information packages of engineering artifacts. We assume, the smaller the DIPs are,
the more effective the context-aware filtering.

Table 1. CAEM data

Data Type Number
EngineeringArtifacts 785
ContextAttributes values 88
ContextLinks 5261
EngineeringLinks 964
DataLink 2355

Reduction of Number of Engineering Artifacts We analyze the reduction number
of engineering artifacts per DIPs using different kinds of situations. A situation consists of
values from the names of actors and stations as well as from the phases of projects. We

81

have calculated 1348 DIPs and counted the number of engineering artifacts per DIP. The
results are shown in Table 2. The first three columns indicate which context attributes are
used to define a situation. We build every valid situation according to the context attributes.
Column number of DIPs reflects only DIPs for valid situations. The next column reports the
average number of EAs per DIP. Without our approach, in the worse case, a human worker
would have to examine all 785 engineering artifacts. The results show that with two different
kinds of context attributes, we get comparatively small DIPs, which contain between 1 and
6 engineering artifacts in average. We conclude that using at least two different kinds of
context values reduces the number of engineering artifacts by a factor of 100.

Table 2. Reduction of engineering artifacts

Station Phase Actor Number of Average number
DIPs of EA per DIP

yes no no 34 3.44
no no yes 41 9.41
no yes no 13 366
yes no yes 46 2.3
yes yes no 383 1.17
no yes yes 453 6.5
yes no yes 46 2.3
yes yes yes 332 1.17

Reduction of the DIP size We also investigate the DIP sizes resulting from the consid-
ered situations. Therefore, we calculate the DIP size for each possible situation based on two
or three different kinds of context attributes. In our case, the critical file size is the one of
the geometry model, which is required to visualize the 3D-Model of the car. We neglect data
from the BOM since they are only key-value pairs and the measurement reports, since their
size is constant. Figure 8 shows the results via a box-plot. Despite few huge outliers, such as
a DIP with size of 18.12 GB, over half of the DIPs range between 97 MB and 687 MB.

Outlier 18129,58
17721.37;
9129,36;
6868,21;

Max 1,408.83

3.Quartile 687.87

Median 205.29

1.Quartile 97.95

Min 0.057

Figure 8. Boxplot of DIP size

The evaluation of the reduction shows that the size of DIPs can be reduced significantly
by filtering them via the context. This enables a more efficient decision making process

82

because the worker does not have to browse meaningless data. Station, actor and phase are
appropriate types of context, since they reduce the number of EAs in DIPs drastically and,
thus, influence the size of DIPs.

6 DIPPing – A Mobile Application to Provide DIPs
This section describes a mobile application, named DIPPing (Decision Information Packages
Provisioning App), that we developed to provide DIPs. In order to build the DIPPing appli-
cation, we first defined a goal with respect to the process improvement and then conducted
a requirements analysis. Based on this analysis, we defined the functions of the application
and specified implementation aspects. As a result, we designed and implemented the appli-
cation’s user interface. This mobile application was prototypically implemented as part of a
cooperation project with a German car manufacturer.

6.1 Goal
As a basis for the requirement analysis of the DIPPing application, we use the previously
described scenario regarding the case study in the pre-production plant (see Section 2).

There are two major weaknesses in the case study. On the one hand, the manual creation
of a DIP is time-consuming and knowledge-intensive, as the information has to be gathered
from many heterogeneous data sources. On the other hand, the information can only be
retrieved at the in-house engineer’s office so that the engineer has to cycle back and forth
between the workplace and the station where the issue occurs.

These weaknesses should be addressed by the DIPPing application. For this purpose, the
DIPPing app was designed specifically to be available on mobile devices and to generate and
display DIPs by using the previously introduced architecture. To evaluate if it is benefical
to use mobile devices, we performed the ValueApping Method [22]. Consequently, the goal
of the DIPPing app is composed of the following sub-goals:
• DIPs should be generated automatically based on the current situation. The implemen-

tation should follow the DIP approach and use the corresponding architecture (see Sec-
tion 4.3).

• DIPs should be available on the go, so that the decision making can take place location-
independently and the running distances are saved.

• DIPs should be displayed in a clear manner, considering reduced screen size of mobile
applications.

6.2 Requirement Analysis
Based on the goal, the functions of the DIPPing app are defined. These functions are se-
quentially executed. An overview is given in Figure 9. In detail, the functions are:

1. Capture Situation: The current situation should automatically be recorded by the DIP-
Ping app, i.e. which worker works at which station, handling which specific part and
variant.

2. Check Situation: The detected situation should be shown to the user. The user can man-
ually check if the situation is correct and adjust it as needed. This is required in order to
handle the uncertainty of captured context values.

3. Generate DIP: The DIP is generated using the context-aware provisioning layer of our
architecture as introduced in Figure 6.

4. Display DIP: The app displays the DIP produced by the DIP composition component
with respect to the DIP structure introduced in Section 2. This is necessary in order to
guarantee that the users will easily understand the given information.

83

Capture
Situation

Generate
DIP

Display
DIP

Check
Situation

Figure 9. Functionality of DIPPing

6.3 DIPPing Implementation

In the following, we describe implementation aspects of the DIPPing app with respect to
the required functions defined in the previous sub-section.

Capture Situation: We decided to use beacons [23] to realize this function. These beacons
can be applied to automatically detect at which station a worker currently works. To do that,
the stations are equipped with beacons. The DIPPing app can then detect the nearest beacon
and then determine the current station of the worker. Finding out the role and expertise
of this worker can be determined by an authorization function of the DIPPing application.
Which variant is currently being produced or which part is involved can be found out using,
e.g. QR-Codes.

Check Situation: After the situation was automatically determined, the DIPPing user
can manually check the situation. By doing so, the user verifies that the detected situation
provided by the DIPPing app is correct. Otherwise, the situation can be revised. For this
purpose, two additional options for context capture were implemented: scanning QR codes
and adding information manually.

Generate DIP: The function to generate DIPs is implemented using the introduced DIP
architecture (see Figure 6) serving as the basis for this implementation. The implementa-
tion of the context-aware provisioning is as follows: The CAEM itself is implemented as a
relational model used as schema for an SQLite3 database, which can be accessed through a
Java-based interface connecting to the database with the corresponding SQLite driver. The
Java interface is hosted on an Apache Tomcat application server. For the implementation
of the Context Management, we used the existing tool SitOPT [18], [13], which provides
an interface to register on situations that are derived based on context data. The Resource
Access Platform consists of two components. For the implementation of the adapter layer,
we use MongoDB4 as adapter repository as well as an Apache Tomcat Java runtime envi-
ronment for the adapters. Hence, all adapters are implemented in Java, exclusively. For the
deployment of adapters, we use the TOSCA runtime OpenTOSCA [24]. To implement the
data provisioning layer, we use Java REST services as well as a Java-based implementation
of the Data Service Catalog, which stores its data into a MySQL database. The DIP itself
is generated based on this implementation and as described in Section 4.3.

Display DIP: In order to realize the display of the DIP, a mobile user interface was
designed on the basis of the DIP structure (see Figure 1). The presentation is separated into
two layers: On the first layer, all relevant engineering artifacts for the current situation are
shown and, on the second layer, the corresponding data for each relevant engineering artifact
are displayed. The details are described in the next section.

6.4 User Interface of DIPPing

We provide a user interface for the DIPPing app which is depicted in Figure 10. This user
interface contains the following screens:
3 https://sqlite.org/
4 http://mongodb.com/

84

• Screen 1: This screen shows the automatically detected situation. The displayed situation
is structured according to the context model using context entities and their attributes
(see Figure 2). For a better understanding, context entity icons are used as specified
in [17]. Furthermore, it contains the functionality of adding manual context values using
the button plus and scanning QR-Code.

• Screen 2: This screen shows the first level of the DIP structure, i.e. the relevant engineer-
ing artifacts for a specific situation. For instance, this can be the parts involved in the
problem.

• Screen 3: This screen shows a detailed view of an engineering artifact. It displays infor-
mation from the BOM, the PDM system, and various measurement reports. The CAD
geometries can be shown via the button Visualize. Measurement reports are listed and
can be opened in the PDF format by clicking on them.

The user interface was implemented as a web application. For this purpose, the tech-
nologies HTML5, CSS, and JavaScript were used. The advantage of implementing a web
application is that the implementation is independent of the operating system of the mobile
application.

Situation

Icon

Station
Name: Value1
Attribute2: Value2
Attribute3: Value3

Icon

Vehicle
Attribute1: Value1
Attribute2: Value2
Attribute3: Value3

Icon

Part
Attribute1: Value1
Attribute2: Value2
Attribute3: Value3

DIP Engineering Artifact 1

Engineering artifact 1

Engineering artifact 2

BOM
Name:
Version:

PDM

Messreports

Meas. report 23433450

Visualize

Meas. report 24329374

Related
Engineering artifacts:
Engineering artifact3

Figure 10. User interface of the DIPPing prototype

6.5 Evaluation of DIPPing
In order to evaluate the usability and the benefits of DIPPing, we conducted an expert
evaluation in the pre-production plant. Therefore, six experts were interviewed based on the
prototype demonstration of DIPPing. The experts differed in age, gender, responsibilities
and process they work in. We identified the following benefits with respect to the process in
the pre-production plant:
• Reduction of traveling distance: Normally the engineer has to go to his office in order to

search for the information. With DIPPing he is able to search directly at the station and
has not to travel anymore. All experts revealed that the app reduced the time of finding
a solution extremely.

• Reduction of information search time: Due to the provision of DIPs, the engineers have
all required information for their task at once and do not have to search in different IT-
Systems. However, the interviews showed that this time reduction is dependent on the

85

knowledge about the IT-system. Persons who have good knowledge in the IT-Systems
did not see a search time reduction in contrast to persons without that knowledge.

• Availability of engineering data: The interview participants pointed out that the quality
of their decision were increased since they could directly compare the as-is state of the
car with the should-be state defined in the engineering data.

• Flexibility of information search: The experts highlighted the fact, that with DIPPing
they could perform the search anytime and anywhere they wanted. In the past, it was
often the case, that they were unscheduled in the pre-production plant and were asked
by the shopfloor workers for possible solutions of their current problems.

7 Related Work
The DIP approach can be seen as virtual integration. Yet, in contrast to federated database
systems [25] and recent ontology-based integration approaches [26], [27], DIPs do not require
a complex mediated schema nor schema matching process to include domain experts without
IT knowledge into the integration process. With respect to related work, we differentiate four
groups according to automatic context-aware provisioning of DIPs. The first group reviews
approaches to abstract data sources for automatic data provisioning. The second group
comprises approaches in the engineering domain that acquire engineering data in the client
side without filtering relevant data. The third and fourth groups focus on filtering relevant
data either on data level or on application level.

A lot of middleware platforms have been developed that abstract from accessing data
sources [28], [29], [30], belonging to the first group. However, none of the existing approaches
provides the functionality needed to provide DIPs. First of all, dynamic environments of the
engineering domain need to be handled with frequently (dis-)appearing data sources. In this
article, we introduce the RAP to bind these data sources dynamically through adapters that
are deployed using TOSCA. Furthermore, the RAP is generic, i.e. it supports all kinds of
sources assuming that a corresponding adapter exists for them. Consequently, the RAP fits
our approach very well and was used instead of other approaches.

Approaches belonging to the second group, provide data acquisition from multiple engi-
neering IT systems. Katzenbach et. al introduce a common engineering client, where data
are provisioned by an engineering service bus [6]. Similarly, the authors of [8] suggest a
system-level integration using standards and harmonized human interfaces. However, none
of them consider filtering relevant data.

The third group integrates the context into data sources. Martinenghi and Torlone [31]
and Roussous et al. [32] extend the relational data model with its context and define an ap-
propriate query language. Stavrakas et al. [33] integrate the context into XML by developing
a multidimensional semi-structured data model and a query language to process the context
data [34]. Since all approaches integrate the context into an existing data model, there is no
generally defined context model involved. Furthermore, the databases have to be adapted
to integrate the context in contrast to our approach which integrate the context virtually.
The fourth group addresses linking the context and data on the application level. Bobillo et
al. [11] develop a model to manage context-relevant knowledge in ontologies. This is based
on the domain ontology of the knowledge-based system and on a context ontology. Barkat
et al. [10] define a context ontology to integrate context into the semantic databases, called
OntoDB. Hence, their approach is restricted to applications using exactly this database.
Bolchini et al. [35] introduce a context ontology based on a self-developed context model to
define the portions of the ontology which are relevant. Similar to this, they provide a method
to define context-aware views for relational databases [9]. Hence, many related approaches
try to achieve similar goals regarding context-aware filtering of relevant data using ontology
models. In our approach, we decided to omit the use of ontologies to reduce the complexity.

86

Most advantages of ontologies come with reasoning and linking to other ontologies. For our
approach, a simple meta-model is sufficient.

8 Summary

In this article, we introduce an approach to compose and provide decision information pack-
ages (DIPs) to support problem resolving in the smart factory. We introduce DIPs on the
basis of a real use case at a German car manufacturer. DIPs are constructed using a meta-
model and corresponding operators. The meta-model links engineering data to context data.
The operators process this model to find data relevant for specific situations, e.g. of a shop
floor worker being faced with issues assembling a specific part. To realize this approach
and to integrate it into the engineering domain, we introduce a system architecture. The
approach is evaluated through a prototypical implementation to demonstrate its feasibility
and a case-oriented evaluation using real data to highlight the compactness of DIPs. Our
approach leads to a significant reduction of amount of information.

This article is an extended version of the paper “Context-Aware Decision Information
Packages: An Approach to Human-Centric Smart Factories” presented at the 21st European
Conference on Advances in Databases and Information Systems (ADBIS) 2017 [14].

Acknowledgments

This work is partially funded by the German Research Foundation (DFG) as part of the
Graduate School of Excellence Advanced Manufacturing Engineering project GSaME-C2-
008.

References

[1] N. Jazdi, “Cyber physical systems in the context of Industry 4.0,” in Automation, Quality
and Testing, Robotics, 2014 IEEE International Conference on, 2014. [Online]. Available:
https://doi.org/10.1109/aqtr.2014.6857843

[2] C. Gröger, “Building an industry 4.0 analytics platform,” Datenbank-Spektrum, vol. 109,
no. 2, p. 5, 2018. [Online]. Available: https://doi.org/10.1007/s13222-018-0273-1

[3] O. Vermesan and P. Friess, Internet of Things: Converging Technologies for Smart Environ-
ments and Integrated Ecosystems. River Publishers, 2013.

[4] D. Lucke, C. Constantinescu, and E. Westkämper, “Smart factory - a step towards the
next generation of manufacturing,” in Manufacturing Systems and Technologies for the New
Frontier, M. Mitsuishi, K. Ueda, and F. Kimura, Eds. London: Springer London, 2008, pp.
115–118. [Online]. Available: https://doi.org/10.1007/978-1-84800-267-8_23

[5] C. Gröger, L. Kassner, E. Hoos, J. Königsberger, C. Kiefer, S. Silcher, and B. Mitschang,
“The Data-driven Factory - Leveraging Big Industrial Data for Agile, Learning and
Human-centric Manufacturing,” in ICEIS 2016, vol. 1, pp. 40–52, 2016. [Online]. Available:
https://doi.org/10.5220/0005831500400052

[6] A. Katzenbach, “Automotive,” in Concurrent Engineering in the 21st Century. Springer, pp.
607–638, 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-13776-6_21

[7] R. Stark, H. Hayka, J. H. Israel, M. Kim, P. Müller, and U. Völlinger, “Virtuelle
Produktentstehung in der Automobilindustrie,” Informatik-Spektrum, 2011. [Online].
Available: https://doi.org/10.1007/s00287-010-0501-z

87

https://doi.org/10.1109/aqtr.2014.6857843
https://doi.org/10.1007/s13222-018-0273-1
https://doi.org/10.1007/978-1-84800-267-8_23
https://doi.org/10.5220/0005831500400052
https://doi.org/10.1007/978-3-319-13776-6_21
https://doi.org/10.1007/s00287-010-0501-z

[8] D. Trippner, S. Rude, and A. Schreiber, “Challenges to Digital Product and Process
Development Systems at BMW,” in Concurrent Engineering in the 21st Century. Springer,
pp. 555–569, 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-13776-6_19

[9] C. Bolchini, E. Quintarelli, F. A. Schreiber, and M. T. Baldassarre, “Context-Aware
Knowledge Querying in a Networked Enterprise,” in Methodologies and technologies for
networked enterprises. Lecture Notes in Computer Science. Vol. 7200, Springer, pp. 237–258,
2012. [Online]. Available: https://doi.org/10.1007/978-3-642-31739-2_12

[10] O. Barkat and L. Bellatreche, “Linking Context to Ontologies,” in 2015 11th International
Conference on Semantics, Knowledge and Grids (SKG), 2015. [Online]. Available:
https://doi.org/10.1109/skg.2015.36

[11] F. Bobillo, M. Delgado, and J. Gómez-Romero, “Representation of context-dependant
knowledge in ontologies: A model and an application,” Expert Systems with Applications,
2008. [Online]. Available: https://doi.org/10.1016/j.eswa.2007.08.090

[12] E. Hoos, P. Hirmer, and B. Mitschang, “Improving Problem Resolving on the Shop Floor by
Context-Aware Decision Information Packages,” in In Proceedings of the CAiSE 2017 Forum,
2017.

[13] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, S. G. Sáez, and
F. Leymann, “Situation recognition and handling based on executing situation templates and
situation-aware workflows,” Computing, vol. 99(2), pp. 163–181, 2016. [Online]. Available:
https://doi.org/10.1007/s00607-016-0522-9

[14] E. Hoos, P. Hirmer, and B. Mitschang, “Context-Aware Decision Information Packages:
An Approach to Human-Centric Smart Factories,” in Proceedings of the 21st European
Conference on Advances in Databases and Information Systems (ADBIS). Springer
International Publishing AG 2017, August 2017, Konferenz-Beitrag, pp. 42–56. [Online].
Available: https://doi.org/10.1007/978-3-319-66917-5_4

[15] H. Hegge and J. C. Wortmann, “Generic bill-of-material: A new product model,” International
Journal of Production Economics, vol. 23(1–3), pp. 117–128, 1991. [Online]. Available:
https://doi.org/10.1016/0925-5273(91)90055-x

[16] J. Stark, Product Lifecycle Management. Springer International Publishing, 2015.

[17] E. Hoos, M. Wieland, and B. Mitschang, “Analysis Method for Conceptual Context Modeling
Applied in Production Environments,” in Proceeding of the 20th International Conference
Business Information Systems, Lecture Notes in Business Information Processing , vol. 288,
pp. 313–325, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-59336-4_22

[18] M. Wieland, H. Schwarz, U. Breitenbücher, and F. Leymann, “Towards Situation-Aware Adap-
tive Workflows,” PerCom, 2015.

[19] M. Eigner, T. Dickopf, H. Apostolov, P. Schaefer, K.-G. Faißt, and A. Keßler, “System
lifecycle management: Initial approach for a sustainable product development process based
on methods of model based systems engineering,” in A Short Portable PLM Course, ser.
IFIP Advances in Information and Communication Technology, J. Sauza Bedolla, J. Martinez
Gomez, and P. Chiabert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, vol.
442, pp. 287–300. [Online]. Available: https://doi.org/10.1007/978-3-662-45937-9_29

[20] OASIS, “Topology and orchestration specification for cloud applications.”

[21] P. Hirmer, M. Wieland, U. Breitenbücher, and B. Mitschang, “Automated Sensor Registration,
Binding and Sensor Data Provisioning,” in Proceedings of the CAiSE 2016 Forum, 2016.

88

https://doi.org/10.1007/978-3-319-13776-6_19
https://doi.org/10.1007/978-3-642-31739-2_12
https://doi.org/10.1109/skg.2015.36
https://doi.org/10.1016/j.eswa.2007.08.090
https://doi.org/10.1007/s00607-016-0522-9
https://doi.org/10.1007/978-3-319-66917-5_4
https://doi.org/10.1016/0925-5273(91)90055-x
https://doi.org/10.1007/978-3-319-59336-4_22
https://doi.org/10.1007/978-3-662-45937-9_29

[22] E. Hoos, C. Gröger, S. Kramer, and B. Mitschang, “Valueapping: An analysis method to
identify value-adding mobile enterprise apps in business processes,” in Enterprise information
systems, ser. Lecture Notes in Business Information Processing, J. Cordeiro, S. Hammoudi,
L. Maciaszek, O. Camp, and J. Filipe, Eds. Cham: Springer, 2015, vol. 227, pp. 222–243.
[Online]. Available: https://doi.org/10.1007/978-3-319-22348-3_13

[23] Y. Sung, J. Kwak, Y.-S. Jeong, and J. H. Park, “Beacon distance measurement
method in indoor ubiquitous computing environment,” in Advances in Parallel and
Distributed Computing and Ubiquitous Services, J. J. J. H. Park, G. Yi, Y.-S. Jeong,
and H. Shen, Eds. Singapore: Springer Singapore, 2016, pp. 125–130. [Online]. Available:
https://doi.org/10.1007/978-981-10-0068-3_15

[24] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and S. Wagner,
“OpenTOSCA - A Runtime for TOSCA-based Cloud Applications,” in ICSOC, 2013.
[Online]. Available: https://doi.org/10.1007/978-3-642-45005-1_62

[25] A. P. Sheth and J. A. Larson, “Federated database systems for managing distributed,
heterogeneous, and autonomous databases,” ACM Computing Surveys, 1990. [Online].
Available: https://doi.org/10.1145/96602.96604

[26] N. F. Noy, “Semantic integration,” ACM SIGMOD Record, 2004.

[27] M. Wauer, J. Meinecke, D. Schuster, A. Konzag, M. Aleksy, and T. Riedel, “Semantic
Federation of Product Information from Structured and Unstructured Sources,” in Web-based
multimedia advancements in data communications and networking technologies. IGI Global,
2013. [Online]. Available: https://doi.org/10.4018/978-1-4666-2026-1.ch008

[28] A. Langegger, W. Wöß, and M. Blöchl, A Semantic Web Middleware for Virtual Data
Integration on the Web. Springer Berlin Heidelberg, 2008, pp. 493–507. [Online]. Available:
https://doi.org/10.1007/978-3-540-68234-9_37

[29] A. C. P. Barbosa, F. A. A. Porto, and R. N. Melo, “Configurable data integration
middleware system,” Journal of the Brazilian Computer Society, 2002. [Online]. Available:
https://doi.org/10.1590/s0104-65002002000200002

[30] A. Grant, M. Antonioletti, A. C. Hume, A. Krause, B. Dobrzelecki, M. J. Jackson, M. Parsons,
M. P. Atkinson, and E. Theocharopoulos, “Ogsa-dai: Middleware for data integration:
Selected applications,” in eScience, 2008. eScience ’08. IEEE Fourth International Conference
on, 2008. [Online]. Available: https://doi.org/10.1109/escience.2008.131

[31] D. Martinenghi and R. Torlone, “Querying Context-Aware Databases,” in Flexible Query
Answering Systems. FQAS 2009. Lecture Notes in Computer Science . vol. 5822, Springer,
2009. [Online]. Available: https://doi.org/10.1007/978-3-642-04957-6_7

[32] Y. Roussos, Y. Stavrakas, and V. Pavlaki, “Towards a Context-Aware Relational Model,” in
International Workshop on Context Representation and Reasoning, 2005.

[33] Y. Stavrakas and M. Gergatsoulis, “Multidimensional Semistructured Data: Representing
Context-Dependent Information on the Web,” in Advanced information systems engineering.
Springer, 2002. [Online]. Available: https://doi.org/10.1007/3-540-47961-9_15

[34] Y. Stavrakas, K. Pristouris, A. Efandis, and T. Sellis, “Implementing a Query Language
for Context-Dependent Semistructured Data,” in Advances in databases and information
systems. Springer, 2004. [Online]. Available: https://doi.org/10.1007/978-3-540-30204-9_12

[35] C. Bolchini, C. Curino, F. A. Schreiber, and L. Tanca, “Context Integration for Mobile Data
Tailoring,” in 7th International Conference on Mobile Data Management (MDM’06), 2006.
[Online]. Available: https://doi.org/10.1109/mdm.2006.52

89

https://doi.org/10.1007/978-3-319-22348-3_13
https://doi.org/10.1007/978-981-10-0068-3_15
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1145/96602.96604
https://doi.org/10.4018/978-1-4666-2026-1.ch008
https://doi.org/10.1007/978-3-540-68234-9_37
https://doi.org/10.1590/s0104-65002002000200002
https://doi.org/10.1109/escience.2008.131
https://doi.org/10.1007/978-3-642-04957-6_7
https://doi.org/10.1007/3-540-47961-9_15
https://doi.org/10.1007/978-3-540-30204-9_12
https://doi.org/10.1109/mdm.2006.52

	Automated Creation and Provisioning of Decision Information Packages for the Smart Factory

