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Analysis of “omics” data is often a long and segmented process, encompassing multiple
stages from initial data collection to processing, quality control and visualization. The
cross-modal nature of recent genomic analyses renders this process challenging to both
automate and standardize; consequently, users often resort to manual interventions that
compromise data reliability and reproducibility. This in turn can produce multiple versions
of datasets across storage systems. As a result, scientists can lose significant time
and resources trying to execute and monitor their analytical workflows and encounter
difficulties sharing versioned data. In 2015, the Ludmer Centre for Neuroinformatics
and Mental Health at McGill University brought together expertise from the Douglas
Mental Health University Institute, the Lady Davis Institute and the Montreal Neurological
Institute (MNI) to form a genetics/epigenetics working group. The objectives of this
working group are to: (i) design an automated and seamless process for (epi)genetic data
that consolidates heterogeneous datasets into the LORIS open-source data platform;
(ii) streamline data analysis; (iii) integrate results with provenance information; and
(iv) facilitate structured and versioned sharing of pipelines for optimized reproducibility
using high-performance computing (HPC) environments via the CBRAIN processing
portal. This article outlines the resulting generalizable “omics” framework and its benefits,
specifically, the ability to: (i) integrate multiple types of biological and multi-modal
datasets (imaging, clinical, demographics and behavioral); (ii) automate the process of
launching analysis pipelines on HPC platforms; (iii) remove the bioinformatic barriers
that are inherent to this process; (iv) ensure standardization and transparent sharing
of processing pipelines to improve computational consistency; (v) store results in a
queryable web interface; (vi) offer visualization tools to better view the data; and
(vii) provide the mechanisms to ensure usability and reproducibility. This framework
for workflows facilitates brain research discovery by reducing human error through
automation of analysis pipelines and seamless linking of multimodal data, allowing
investigators to focus on research instead of data handling.

Keywords: workflow, omics analysis, integrative neuroscience, reproducibility, database, HPC, genomics,
biostatistics
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INTRODUCTION

Genomic analysis and bioinformatics have undergone a
technological revolution over the past few decades, one that
holds great promise for scientific discovery but also poses
significant big-data challenges. To increase accessibility for
researchers with varying levels of informatics expertise, the
‘‘Big Data’’ components of ‘‘omics’’1 analyses need to be
integrated into an automated and seamless workflow. To this
end, in 2015 the Ludmer Centre for Neuroinformatics and
Mental Health2 created a genetic/epigenetic working group
composed of three member institutions of McGill University:
(i) the Douglas Mental Health University Institute, focusing
on biological questions; (ii) the Lady Davis Institute at the
Jewish General Hospital, focusing on tools for statistical analysis;
and (iii) the McGill Centre for Integrative Neuroscience at the
Montreal Neurological Institute (MNI), responsible for the
neuroinformatics infrastructure (Das et al., 2016, 2017).

The goal of the working group is the integration of
‘‘omics’’ data into the LORIS data platform3, a web-based
open-source data and project management platform (Das et al.,
2011) to streamline analysis, integrate results, and facilitate
structured sharing for optimized reproducibility, using high-
performance-computing (HPC) environments via CBRAIN4

(Sherif et al., 2014), a web-based open-source platform that
allows computationally intensive analyses of data by connecting
researchers to HPC facilities. The pilot use-case for multimodal
‘‘omics’’ workflow integration focused on analysis outputs
from the Methylation450k5 pipeline, a functional normalization
pipeline for epigenomic data from a Ludmer Centre-based study.

This article describes an extensible and adaptable framework
that addresses critical gaps in integrating ‘‘omics’’ data with
multi-modal phenotypic datasets (imaging, behavioral, clinical,
demographic, . . .) using HPC and databases, while leveraging
standardization and automation to provide GUI-based
workflows for less technical researchers. Analysis of data,
specifically genomic or imaging, can involve multiple parallel
paths. These workflows typically begin with the processing of
biological samples, followed by quality control and analysis
using data-specific pipelines, and culminate in querying and
visualization of summary data. The complexity of such analyses
often requires a framework that can comprehensively integrate
these steps across data modalities, an element that is currently
lacking in many existing ‘‘omics’’ toolboxes and workflows
(Kanwal et al., 2017).

In designing such a framework, it is also important to consider
features that would simplify and strengthen effective data sharing
mechanisms, especially as we enter the era of Open Science.
The processing of raw data is often performed by third-party
platforms, whereby the resulting files are processed using one or
more bioinformatic pipelines by the host laboratories.

1Such as transcriptomics, proteomics, blood sugar, anthropometry, etc.
2http://ludmercenter.ca
3http://www.loris.ca
4http://mcin-cnim.ca/technology/cbrain/
5https://github.com/GreenwoodLab/methylation450KPipeline

One of the inefficiencies of this model is that each processing
step typically generates a new version of the dataset, which
is often stored on a local workstation or distributed across
multiple drives. As quality control and post-processing tasks
remove aberrant values, additional versions can multiply across
storage systems, but without having sufficient transparency in
the options or environment parameters used in the execution
to generate each version (Glatard et al., 2015). Not surprisingly,
this also leads to ineffective data-sharing, whereby it becomes
unclear which copies of the data contain the most comprehensive
and accurate information, requiring researchers to sift through
redundant data.

A few systems have been created, such as the Galaxy platform
for genomic data (Afgan et al., 2016, 2018) to integrate biological
data and streamline genetic analysis (Kanwal et al., 2017). Many
software platforms exist for sharing workflows to capture and
promote the execution of reproducible analyses, such as Jupyter
notebooks6. While such models seek to increase reproducibility
in computational biology, they do not prioritize cross-modal
data integration. Importantly, the field would benefit from
a structured workflow that links organized cross-sectional or
longitudinal multimodal data (genetics, imaging, behavioral)
with HPC platforms for analysis (Poldrack et al., 2017).

We have leveraged existing architectures to create a model
that aims to abstract the complexities of multi-modal processing
and analysis. This combined framework builds upon systems
documented in previous publications (Das et al., 2016, 2017) and
integrates additional technologies and feature-layers to support
an approach that prioritizes the: (i) integration of heterogeneous
biological data with multi-modal datasets (imaging, clinical,
demographics and behavioral); (ii) automation in launching
analysis pipelines on HPC platforms; (iii) removal of technical
barriers that are inherent to this process (Pool and Esnayra,
2000); (iv) standardization and transparent sharing of processing
pipelines to improve computational consistency; (v) storage
of results into a queryable web interface; (vi) feature rich
visualization tools; and (vii) provision of mechanisms to
ensure usability and reproducibility. The result is a streamlined
approach for cross-modal analysis (such as imaging genetics)
that also promotes the FAIR principles (Findable, Accessible,
Interoperable and Reproducible) for data sharing (Wilkinson
et al., 2016). The framework presented in this article can
be used by researchers interested in integrating ‘‘omics’’ data
with other multimodal datasets, such as those utilized in
behavioral and/or imaging genetics projects, and can be readily
modified to accommodate the specific needs of other users and
projects.

MATERIALS AND METHODS

The goal of this ‘‘omics’’ framework is to take individual
processing and analysis tasks, including any manual steps that
might already exist, and integrate them into a more automated
model that leverages: (i) standardization and harmonization
tools; (ii) HPC resources; and (iii) application programming

6http://jupyter.org/
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interface (API) interoperability for automation between the
existing platforms. In this section, we describe the components
of software and platforms, and recent extensions, which
together support workflows for processing and transferring
‘‘omics’’ data.

The complexities of cross-modal workflows in ‘‘omics’’
analyses is a significant challenge for researchers given that such
workflows are difficult to automate and require regular user
intervention, support and maintenance. Tool development and
integration at iterative stages of development is time-consuming
and mandates thorough testing to successfully build a workflow.
To this end, identifying the labor-intensive steps (file transfers,
versioning, user access, etc.) of a data processing workflow and
automating them is an essential priority.

Building a generalized framework by extending the MNI
ecosystem’s combined platform of LORIS and CBRAIN starts
with populating the LORIS database with participant data for
all modalities (such as behavioral, imaging and ‘‘omics’’). For
the two systems to communicate and exchange data as input
or output of a given pipeline, a shared space must be defined.
(This role can be served by a CBRAIN DataProvider, accessible

to the LORIS filesystem). That is followed by the installation
of tools on CBRAIN such that they can be launched on HPCs.
Finally, customizations and extensions to LORIS can support
new formats of data. Figure 1 shows the cyclical flow of data
between LORIS and CBRAIN, whereby stored datasets are
processed and their outputs returned as results.

A typical use-case begins with biological samples and
phenotypic data collected during a subject’s visit. The
biological/phenotypic samples are then processed on-site
or shipped to a specialized facility for genomic analysis or
image capture, after which raw data files are created and
made available for statistical and/or bioinformatics analysis.
Files containing raw data are stored in a LORIS database and
then subsets are queried, selected and sent to CBRAIN to be
processed by an analysis tool. The output is returned back
to LORIS for storage along with its provenance metadata
from the processing task. Summary and aggregate data can be
parsed and explored through various LORIS modules and then
queried to create new datasets linked to provenance metadata.
This model allows for iterative processing as data selections
can be resubmitted from LORIS for further processing and

FIGURE 1 | Generalized Workflow cycle between the LORIS data-management platform and the CBRAIN processing platform. Data from LORIS (Storage) can be
queried and filtered (Genomic Browser and other tools) to select a set of variables and/or files. The newly created dataset is then transferred to the CBRAIN
DataProvider for processing (Task Launching) and analysis (high-performance computing, HPC). The output is synced back to LORIS with the provenance data.
Results can be examined and a new iteration can begin with the added derived variables. For stepwise details of this model, please see Figure 2 in “Results” section.
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FIGURE 2 | Genomic processing cycle between LORIS and CBRAIN through the DataProvider. Methylation450K pipeline—Brown path (1): IDAT files are transferred
to the DataProvider, then the methylation normalization pipeline is launched. The Beta-values output file is returned to the DataProvider, and then loaded into LORIS
using the Genomic Uploader. The inserted results can be browsed or visualized in the Genomic Browser module. ImputePrepSanger pipeline—Green path (2): PLINK
files are added to LORIS via the Genomic Uploader, selected in the DatasetBuilder, and sent to CBRAIN for the imputePrepSanger tool to be run. The resulting
Variant Call Format (VCF) output file is stored in LORIS—Pink path (4). Statistical analysis—Blue path (3): using the DatasetBuilder module in LORIS, data from any
source (Orange path (5), Red path (6)) can be packaged in a new dataset and sent to CBRAIN via the DataProvider for statistical analysis using (e.g.,) the principal
component of explained variance (PCEV) pipeline.

analysis tasks via CBRAIN, with derived results returned once
again into LORIS for storage and dissemination. It should
be noted that a specific use-case will be demonstrated in the
Results section that focuses on genomic and epigenomic data;
however, similar procedures would apply for other ‘‘omics’’ data
types.

To illustrate this framework with a genomic processing
workflow, the relevant components of the LORIS and CBRAIN
platforms (and feature extensions) are described below.
Also outlined are the structural design elements facilitated
by RESTful7 API interoperability between the two systems
including: (i) the data transfer mechanisms; (ii) the abstraction
of data organization; and (iii) the pipeline execution flow. Key

7Representational State Transfer (REST) is an software architecture style
compliant with Hypertext Transfer Protocol (RFC 2616) where each url is a
resource that can be interact with using verbs (GET, PUT, POST, DELETE, etc.).

auxiliary components and technologies interfacing with these
platforms are integral to the multimodal framework, including
containerization of pipelines, visualization of genomic and
epigenomic data and NoSQL data storage.

LORIS Data Platform
The LORIS platform is the entry point for data in most workflows
deployed on this integrated framework. LORIS can house data
at various stages of the processing lifecycle, and can typically
be customized with import pipelines to accept and validate files
of any type. Imported files can then be parsed to extract and
store any relevant values in relational database tables, which
are accessed by web-facing front-end modules. For large files,
the filesets themselves will be organized on the LORIS data
partition, and linked by their file paths from individual database-
table entries, which serve as pointers to the data location on the
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server. Metadata for these files can also be stored in database
tables in a key-value pair format, which is also an extensible
structure that accepts any data format. File paths and metadata
are easily accessible via LORIS’ front-end modules, through
which users can peruse, filter, visualize and retrieve these datasets
for download or export to other systems via the user-friendly web
interface. Later in under the ‘‘LORIS Genomic Browser’’ section,
we expand upon new ‘‘omics’’ features in LORIS.

CBRAIN
CBRAIN’s web-based portal for the Compute Canada8 network
enables user-friendly deployment and execution of pipelines
across the Canadian HPC grid. For LORIS to launch a data
processing task9 through CBRAIN, the interface between these
systems must define the expected types and formats for both
inputs and outputs.

Several key CBRAIN features support the workflow model
across platforms. First, data storage and transfers are handled by
a DataProvider (a designated file server space which connects to
CBRAIN and the HPC grid), which caches and tracks data files
across the HPC network. Second, CBRAIN’s ToolConfiguration
profile enables rapid setup and user-friendly re-use of a
scientific tool, describing where and how it is available on the
supercomputer clusters, as well as defining the cluster setup
parameters (environment setup, CPUs used, queue name, etc.)
and input parameters required for executing the tool.

The ToolConfiguration can be automatically generated
in CBRAIN through a Boutiques descriptor (Glatard et al.,
2018) which provides a standard JSON protocol for defining
the command-line and input and output variables for
pipeline execution. Typically, this initial setup needs to be
configured only once, thereafter allowing for re-use of the
same software setup by providing the proper input parameters.
Together, the DataProvider and ToolConfiguration abstract
the infrastructural complexities of data storage, transfer and
processing parameters for the user while promoting transparency
and reproducibility.

While CBRAIN supports the direct installation of pipelines
for execution on HPC clusters, it has also introduced support for
container technologies to specify the environment and package
versions for optimally pre-defined execution of such pipelines.

LORIS DataProvider for CBRAIN
The DataProvider acts as a shared file system, such that
CBRAIN and LORIS can interoperate with file-level read and
write access of both the data and metadata. On the CBRAIN
side, files are read from the LORIS DataProvider repository
and made available to the HPC network. Once processing has
been completed on the HPC grid, results from the pipeline
execution on CBRAIN are written to the LORIS DataProvider,
and subsequently recognized and imported back into the LORIS
database and file system.

8www.computecanada.ca
9A task is an instance of a tool running on CBRAIN where a tool is any piece of
software that take inputs and generates outputs installed on CBRAIN.

To make the file system interaction easier for LORIS’ web
application, a dedicated directory on the LORIS server is
designated as the DataProvider. Both CBRAIN and LORIS
can read and write to this directory, which effectively allows
for communicating datasets between platforms along with
accompanying metadata.

Preparation of Pipelines (Containers)
To facilitate the flexible and reproducible integration and
deployment of new tools across different HPC resources,
CBRAIN and other execution platforms support containerization
technology such as Docker10 and Singularity11. A container
encapsulates the setup of the processing environment as well
as any specific support packages that are needed, thereby
making installation of software architecture independent, which
improves reproducibility of analysis. Typically, an accompanying
container description file12 describes every step necessary to
construct the container. This provides the benefit of organizing
and recording each aspect of the pipeline, and facilitates
transparency in defining the runtime environment in a shareable,
versionable document.

Additionally, by documenting the input parameters for the
pipeline, specific aspects of the pipeline run can be adjusted
and tracked in a controlled manner ensuring that all other
factors stay the same, such as running the same pipeline
using a different R package for functional normalization. For
instance, the Methylation450k pipeline, which provides quality
control (QC) and functional normalization of the Illumina 450k
beadchip array data, currently integrates the funNorm (Fortin
et al., 2014) R package. However, the flexibility offered by
container-defined plug-ins and parameters enables a user to
rapidly relaunch the same pipeline on a similar R package
funtooNorm (Oros Klein et al., 2016), providing a clearly
documented trace of provenance for comparison of results
between the two normalization algorithms.

Another example is the imputePrepSanger13 pipeline from
the Ludmer Centre. This tool prepares PLINK genotype files to
be sent to the Sanger Institute’s online Imputation Service14 by
performing quality control, adjusting the positions and strand
alignment of PLINK files, then converting them to VCF15

for submission to the Sanger server. The pipeline execution
parameters were defined in a container on CBRAIN.

A third pipeline, principal component of explained variance
(PCEV)16, was prepared to run a dimension-reduction algorithm
to explain a maximum of variance in a response vector
governed by a set of covariates. Specifically, this tool can be
run multiple times, using different genomic-ranges to provide

10Docker containers are units of processing where tool versions, an environment
(OS), and sequences of operations can be reproduced on any system.
11Singularity is another container technology that has been privileged over Docker
on HPC units served by CBRAIN.
12Container description files are versioned text files that contain the recipe to
(re)build a given container image; they present themselves as a sequence of shell
commands.
13https://hub.docker.com/r/eauforest/imputeprepsanger/
14https://www.sanger.ac.uk/science/tools/sanger-imputation-service
15Variant Call Format. A specification to encode genetic variations in a text file.
16https://github.com/GreenwoodLab/pcev_pipelineCBRAIN
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a new set of methylation Beta-values and genomic variants
and/or a different set of covariates from behavioral and imaging
metrics.

This model can be adapted for larger workflows, enabling
reproducible execution of pipelines as a generalizable concept
that could be applied to many use-cases. Examples include
automatically running a piece of software when new data are
available, performing quality control or validation, or ensuring
that users run the same tool version in the same runtime
conditions throughout the lifecycle of a study.

CBRAIN/LORIS Hooks
In order for data to pass seamlessly from one system to another,
communication occurs between LORIS and CBRAIN using a
RESTful (web) API for requests, and the DataProvider for
data transfer and registration. A client for the CBRAIN API
written in the PHP programming language has been created
using SwaggerEditor17 with a schema18 following OpenAPI
specification v2.0, which allows LORIS to look at available
files and tools on CBRAIN. This PHP client also abstracts the
handling of HTTP GET and POST requests which trigger the
creation of new processing tasks on the HPC grid via CBRAIN.
For a newly generated dataset, LORIS starts by registering the
files in CBRAIN, making it possible to run relevant tasks. The
type of the tasks, their parameters, and input files are then
communicated through the API to CBRAIN, which launches
them.

A LORIS process running in the background monitors a
CBRAIN task’s status. The task progress can be followed from
LORIS’ Server Processes Manager module. Capture of logs from
data insertion and the task’s output from CBRAIN, as well as
queries used to generate the new dataset, will be stored in a
header file or in the database. This way, at the time of publication,
all information describing provenance can be formatted in a file
compliant with the Neuroimaging Data Model (NIDM; Keator
et al., 2016).

LORIS Genomic Browser
The Genomic Browser module (Rogers et al., 2015) is the
principal LORIS component for visualization, querying,
validation and storage of genomic and genetic data, and is part
of an open-source feature set available on GitHub. This module
enables browsing of single-nucleotide polymorphisms (SNPs)
and copy number variants (CNVs) data, but has been expanded
for this application to allow exploration of epigenomic data
using the same functionalities. Any filtered subset of data can
be downloaded and exported for further analysis, in addition to
being passed to the visualization utilities embedded within the
module. This allows for a genomic dataset to be viewed alongside
behavioral and imaging data. The system includes functionality
for viewing, filtering and linking of summary genetic data
[CNV, SNP and other results from genome wide association

17https://editor.swagger.io/
18https://github.com/aces/cbrain/blob/master/BrainPortal/public/swagger/
cbrain-4.5.1-swagger.yaml

studies (GWAS)]. Links to reference databases (UCSC genome
browser19, dbSNP) have also been added.

Genomic Uploader
Genomic data is loaded into LORIS from raw or processed
files using the web interface in the Genomic Uploader. This
rudimentary upload tool is provided to facilitate loading and
linkage of data files and records in the database. In addition to
maintaining a reference for uploaded files, the uploader creates
relations between inserted values, their annotations, and the
study subject they belong to within the file header. When the file
type fits a study’s expected types, user-defined scripts tailored to
the genotyping platform of interest are provided. Inserted data
are accessible and browsable in the module’s tabs.

Profile Summary Tab
The first tab of the Genomic Browser is called the Profile
Summary tab and provides researchers with a high-level
understanding of the data types available for individual subjects
as well as summary statistics. This tab displays a sortable view of
this information and enables filtering by population of interest
and subject metadata for available genomic datasets stored in
LORIS. The number of CNVs and SNPs or methylation CpGs
found for each subject can be reviewed, filtered and sorted at a
glance. By applying filters based on cohort or phenotypic gender,
users can view these summary statistics for a sub-population of
interest.

Genomic Browser Tabs: CNV, SNP, Methylation
Other tabs of the Genomic Browser provide subject-specific
results for each data type from various epi-genomic and -genetic
analyses (e.g., for CNV, SNP, or methylation results). When
pipeline outputs are imported into LORIS and matched with
an expected file format, the appropriate tab is automatically
populated with data that is visible to the user. Each tab enables
filtering by specific genomic regions around genes of interest or
shared properties.

Genomic Viewer
An additional tab within the Genomic Browser was added to
provide advanced exploration for epigenomic data, with genomic
data aligning these points along the genome in superimposed
tracks. This visualization technique is found in many domain-
specific softwares and was developed for LORIS using React.js20

components for each track to dynamically render as page
elements. Interactive display features are also created using
D3.js21 visualization libraries for HTML5 canvas and SVG image
generation. These combined technology layers can efficiently
manage large volumes of data.

In our example implementation, the Methylation450k
normalization pipeline produced a single output file containing
Beta-values for all samples across all probes which were
uploaded as a batch into LORIS via CBRAIN. Upon loading

19https://genome.ucsc.edu/
20https://reactjs.org/
21https://d3js.org/
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FIGURE 3 | Relationship between three files required for loading of methylation data in LORIS’ Genomic Browser. The Beta-values file contains a value for each
biosample tested on each probe. Each biosample in the Beta-values file is linked to a study subject in the Sample mapping file, using a subject identifier
(Participant_id). Each probe from the Beta-values file is linked to a set of properties in the Annotations file provided by the chip manufacturer (Illumina).

Beta-values22 into LORIS, each probe must be associated with
an annotation record provided by the manufacturer of the
array (Illumina). These annotation records are stored in the
genomic_cpg_annotation database table which is populated
using a script23 provided in the LORIS codebase. Each probe
is then linked to a sample ID and a corresponding subject in
the database. A mapping file is used in this process to link each
sample to the subject ID.

The MySQL database contains paths to the three files
(Figure 3) that comprise the dataset: the Beta-values file,
the sample mapping file, and an annotation file. Once
registered in the database, any type of biological data can
be linked to behavioral and imaging data for each subject
using their subject ID. The relationship between subjects and
their biological data records is defined at the sample level,
allowing for metrics from duplicate biosamples to be linked
to the same subject. Once this link has been established,
visualization tools within the Genomic Browser are used
to look at available data for regions of interest on the
genome. The SNP and CpG locations are aligned with histone
marks or CpG islands, providing additional information about
genomic features and regulatory interactions in the same
locus.

Building Cross-Modal Queries
Within LORIS, a prototype DatasetBuilder module allows users
to create new datasets by joining filtered genomic data with
phenotypic data and/or imaging files queried from the Data
Querying Tool (DQT; MacFarlane et al., 2014), to rapidly handle
large datasets on the scale of genomic results, and provide that
data to the user-facing frontend.

Both the DQT and the DatasetBuilder are built upon
CouchDB, a file-based NoSQL database that provides a REST

22Beta-values represent levels of DNA methylation at a given probe (CpG) and
range from 0 to 1, representing 0%–100% DNA methylation at a given site.
23https://github.com/aces/Loris/blob/master/modules/genomic_browser/tools/
HumanMethylation450k_annotations_to_sql.py

API for querying and filtering prebuilt data views. The views
are generated by applying MapReduce24 algorithms, where each
document is transformed using a mapping function and then
summarized by the reducer function to create an indexed set of
key-value pairs.

The DatasetBuilder processes an HTTP request issued for
a specified genomic_range or DNA chip probe identifier, and
retrieves all data records corresponding to the indexed range. For
each record returned, a filter function identifies the samples of
interest and extracts the Beta-values for display in the module.
The subject IDs corresponding to these records are identified and
a request is made to run an existing query saved in the DQT to
select other phenotypic variables of interest (e.g., demographics,
behavioral measures, etc.). The phenotypic datasets returned by
the DQT are then joined with the biosample subject data to
produce a combined dataset of fields across all modalities. These
results are exported as CSV files to the CBRAIN DataProvider for
further processing.

RESULTS

To demonstrate this framework for ‘‘omics’’ workflows, a specific
‘‘use-case’’ implementation from the Ludmer Centre working
group is discussed, which includes genotyping, methylation
assessments and typical phenotypic data (age, sex, etc.). The data
was collected and derived from human subjects participating
in a longitudinal study conducted by Ludmer researchers at
the Douglas Mental Health University Institute in Montreal.
The Methylation450k pipeline was run on the study dataset,
and the outputs transferred via CBRAIN to LORIS. Using the
Genomic Browser in LORIS, users could then query, select
visualize and download data across phenotypic and epigenomic
datasets. Further containers were created for additional pipelines
such as PCEV, and installed and launched on the HPC grid

24Category of functions that split a problem into parallelizable parts so it can run
on multiple threads and/or distributed computers.
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via CBRAIN. The output of each task is transferred to the
DataProvider and can then be loaded in the database, where it
is linked to the provenance history of the task parameters and
inputs.

Throughout this example, end-users seeking to reproduce,
review, and use the data and metadata have the ability to use
this complex pipeline with little technical knowledge through
transparently accessible computing, negating the need to focus
on: (i) transferring files across servers and clusters; (ii) managing
versions; (iii) controlling user access; (iv) connecting with
HPC units; (v) launching tasks; (vi) tracking progress; and
(vii) capturing processing status, parameters and results. Once
the outputs are stored and accessible in the main data platform,
users can explore their data across modalities using additional
web-based tools.

Loading Raw Files Into the Relational
Database
In a typical implementation of a workflow in this framework,
raw data is imported into the LORIS data system and
stored or linked in its relational tables. For the Ludmer
Centre’s pilot implementation, data on 328 subjects from the
Maternal Adversity, Vulnerability and Neurodevelopment study
(MAVAN; O’Donnell et al., 2014) were processed and stored
in LORIS. Data collected and stored on these subjects included
questionnaires, demographic and phenotypic information and
imaging scans.

Biosamples from each subject were collected, stored, and then
processed by a third-party genotyping facility. The resulting
IDAT files were run on the the Methylation450k pipeline and
then transferred via a project-specific DataProvider to CBRAIN.

This output was stored on CBRAIN as a large (CSV) matrix
of 328 columns (samples) and 450,000 rows (probes) of Beta-
values. This file was transferred to the LORIS server via SFTP
and its contents were loaded into LORIS along with the Illumina
annotation records. The Genomic Uploader module in LORIS
was used to do this, creating a bio-sample record that associated
over 450,000 values with each subject in LORIS. As a result,
more than 147,600,000 values were stored in the genomic_cpg
table.

In parallel, SNP data from these processed biosamples were
transferred in the form of PLINK files (.PED and .MAP format)
from a private FTP site to the LORIS server. These data points
were transformed via PLINK commands and loaded into the
LORIS database. SNP annotations were taken from the dbSNP25

resource database to build filters on individual SNP values in the
Genomic Browser.

Selection, Filtering and Visualization Within
the LORIS Data Platform
With several modalities of data for the population now stored in
LORIS, the Genomic Browser and Genomic Viewer were used to
select and filter variables of interest across data types. With the
DatasetBuilder, new datasets were then defined by joining across
other modalities, and can serve as input for later processing tasks
to be launched on the HPC grid via CBRAIN.

Genomic Browser
For researchers, a key feature is linking cross-modal data
using a simple interface with querying, visualization, and

25https://www.ncbi.nlm.nih.gov/projects/SNP/

FIGURE 4 | LORIS Genomic Browser: Profiles tab. Filter applied to search for subjects based on Site, Gender, Subproject, External ID and the availability of genomic
data. In the table, detailed subject data can be accessed by clicking on the link that appears on each item.
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FIGURE 5 | Filters and Methylation Beta-values in the Genomic Browser. Filters are applied on subject information, genomic range and the probe’s annotations. The
filtered data view can be downloaded as a CSV file. Hyperlinks on each “CpG Name” column cell will bring the user to the online UCSC genome browser[10], which
provides detailed information about a given CpG from the most recent human genome build version.

search capabilities. The Genomic Browser (Figures 4, 5) enabled
filtering values by their annotations, such that genomic data
was uploaded and imported into LORIS, and then analyzed and
visualized.

Genomic Viewer
For each subject’s methylation data, the Genomic Viewer tab
(Figure 6) displayed detailed genomic information. In this
tab, users could view aggregated CpG Beta-value distributions

FIGURE 6 | Example Genomic Viewer shows the context for single-nucleotide polymorphisms (SNPs) and CpGs in a small region of CpGs. Visualized context
includes features from external sources, for chromosome Y from position 15010000 to 15039953. The upper section of the visualization plot presents the transcripts
of gene DDX3Y with 5′UTR, as well as exons and transcription direction dynamically queried from the UCSC Genome browser. In the middle track, box plot
distributions show Beta-values for each CpG. In the lowest track, in this view, users can view SNP and CpG positions stored in LORIS.
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FIGURE 7 | Prototype DatasetBuilder module. The preview panel displays all records returned from jointly querying the database, using the “BMI underweight”
pre-built query stored in the data querying tool (DQT) module. This is joined with all subject-samples on which CpGs were found on chromosome 1 between position
15865 and 1266504 from the Methylation450k dataset Beta-values.

visually aligned with SNP data alongside salient gene features
for a given range on the genome. This module complemented
more sophisticated and domain-specific tools by providing an
intuitive web-accessible exploration utility directly within the
context of the database, aligning all data points for all subjects of
interest on the genome. The ability to ‘‘zoom in’’ on the genome,
to better contextualize the measurement of interest, facilitates

understanding of the data within a unified platform. Additional
‘‘tracks’’ from the UCSC Genome Browser are dynamically
displayed to provide context for displayed CpGs and SNPs.

DatasetBuilder
Once genomic data have been filtered and collated, the
DatasetBuilder (Figure 7) allows users to aggregate phenotypic,

FIGURE 8 | Prototype of LORIS Imaging Browser with PhantomPipeline processing launch capability using a single button. A user can click on the “Launch” button,
under the “PhantomPipeline”column to initiate transfer of the scan dataset to CBRAIN to begin execution of the task.
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FIGURE 9 | View of task (PhantomPipeline) running on CBRAIN web portal, launched from LORIS Imaging Browser module in Figure 8. The task was launched
automatically through CBRAIN’s application programming interface (API), but can also be viewed and monitored interactively this way.

imaging, and other modalities of data for a range of variables
across all subjects. A custom dataset can be filtered for specific
genomic regions of interest. An intuitive interface design leads
users through a process of selecting a genomic fileset, targeting
ranges of interest on the genome, and then cross-joining these
results by subject ID based on a pre-constructed query across
other modalities. The results are saved on the DataProvider
directory file structure, ensuring that they are available to
CBRAIN.

CBRAIN Execution of Containerized Tools
Several pipelines have been made available through CBRAIN
for the MAVAN study, such as the Methylation450K and
imputePrepSanger26 PCEV, all described and running in
containers. Once installed on CBRAIN and freely available to
the community, users can launch these pipelines for their project
easily on a number of available HPC resources without any need
for additional installation or setup.

The above-mentioned pipelines are spawned as tasks on HPC
clusters, where they process data accessed via the DataProvider.
The output formats described for the pipeline are predefined and
remain consistent. These pipelines can be updated on CBRAIN
with new versions which may include updates to data format
definitions.

Recent work on both LORIS and CBRAIN allows for task
creation to spawn processes on CBRAIN where each instance
is logged in the LORIS database. Provided an existing tool is
registered on CBRAIN and the DataProvider is set up, LORIS
can register files on CBRAIN and launch an analysis process on
them using CBRAIN’s RESTful API. Once files are registered on
a DataProvider, they are recognized by CBRAIN, and transferred
to HPC units without any user intervention.

Applications of Additional Pipelines for
Derived Data
After pre-processing datasets using containerized pipelines on
CBRAIN, additional pipelines can be executed on selected
datasets from LORIS in a similar manner. Populations and fields
of interest are identified, the datasets are sent to CBRAIN, and

26https://hub.docker.com/r/eauforest/imputeprepsanger

then a particular container-defined pipeline can be launched.
All of these steps can be customized in order to enable
execution from the LORIS front-end. Derived datasets from
pipeline runs can be generated and returned to LORIS in
a similar manner. As mentioned above, users also have the
flexibility to re-run desired pipelines with altered parameters
in subsequent stages to compare the results within or between
pipelines.

Beyond the Ludmer Centre pilot project, applications of
this model have been tested on neuroimaging datasets for the
Canadian Consortium for Neuroimaging in Aging (CCNA,
Mohaddes et al., 2018, this issue). Derived data from MRI lego
phantom processing (Fonov et al., 2010) plays a key role in
identifying and correcting scanner distortion on scans collected
across the CCNA network. LORIS’ Imaging Browser (Figure 8)
is being customized to support automatic launching of the
PhantomPipeline (Fonov et al., 2010) for execution through
CBRAIN (Figure 9).

A key advantage of this framework is reproducibility of
results, facilitated by detailed provenance capture (logs and
parameter definitions from each processing step), as well
as container technology (Merkel, 2014) to encapsulate the
software environment used for processing and enabling rapid
re-deployment.

DISCUSSION

This article focuses on the integration of ‘‘omics’’ data
with phenotypic data to describe a novel framework for
multimodal workflows. One of the key advantages of
this model is the variety of functions and tasks covered
within a single access-controlled system, such as enhanced
monitoring of tasks, provenance tracking and storage
of results and visualization features. Improving setup
time for installation and re-deployment of containerized
pipelines, and abstraction of HPC execution complexities
also serve to remove constraints on researchers embarking
on the computational learning curve. That being said, the
most important aspect of a generalizable framework is to
streamline processing and analysis through automation
and standardization. Our use-case concretely exemplifies
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those steps through: (i) containerizing the Methylation450K
and ImputePrepSanger pipelines in CBRAIN; (ii) launching
and relaunching analysis from LORIS using APIs; and
(iii) returning results to the Genomic Browser module in a
structured manner.

Another important element to consider is that in many
research environments, workflows are typically processed
without the benefits of automated tools or computational
infrastructure leading to inefficiencies, disorganization and
with time, unmaintained datasets (Siebra et al., 2012).
This has become increasingly evident in collaborations
that require data sharing, scaling, or re-analysis. As such,
we have leveraged established infrastructure to remove
or abstract the complexities of data management from
the end-user. This is of particular importance given that
not all researchers have the time, interest, or expertise
to manage the technical aspects of pipeline design and
implementation of HPC execution on large datasets. The
benefits of organized and curated datasets (Van Horn and
Toga, 2009; Kanwal et al., 2017; Nichols et al., 2017; NIH
Data Sharing Policy) have been reinforced through the
generalizable framework described in this article. While it
is true that there are a plethora of software tools and platforms
that seek to reduce the technical burden on researchers,
not all of them incorporate the full array of best practices
necessary for ensuring reproducibility and accuracy in scientific
analysis. Our main focus has been to leverage those missing
pieces, namely standardization, provenance capabilities,
interoperability between systems (such as HPCs) and enhance
them with multimodal capabilities and effective visualization
of data.

The ability to cross-link -omic output with phenotypic and
imaging datasets is becoming an increasingly important factor
in analysis. Cross-modal linking enables centralized sharing
of richer study datasets within a network of investigators,
establishing common dataset versions among researchers,
and reducing the diffusion of multiple versions of similar
datasets. In environments where computational infrastructure
is lacking, a great deal of time is typically spent manually
organizing datasets in spreadsheets and linking multi-modal
data (Calabria et al., 2015). The Genomic Browser we describe
provides an at-a-glance view of the available data for each
participant within LORIS. It also provides a transparent
and reproducible capability for visualizing genomic data
by enabling filtering and querying across all available data
types on shared properties and specific genomic regions
around genes of interest. All of these features are graphically
displayable on the Genomic Viewer. At the same time,
the DatasetBuilder assembles multimodal datasets to run
on processing pipelines in an automated and reproducible
manner to significantly improve reliability of data outputs and
traceability of targeted datasets. Looking towards a broader use-
case, integration of genetics with other data types in a single
platform can facilitate validation of genotypic vs. phenotypic
characteristics. Basic validations of reported/phenotypic sex
compared to genomic sex in a population and comparing
reported ethnicity to genomic population markers are common

examples. Such functions, which consider participant-specific
phenotypes, allow for multi-level data integration, which
are lacking in many existing online informatic resources
e.g., GTEx.

Pursuant to utilizing an established data management
platform, the benefits of standardization are an important
topic and become evident in the execution of pipelines.
A key example is how standardizing software installation
through container technology reduces potential errors in
the configuration and deployment of such pipelines. At
the same time, it enhances portability to other platforms,
irrespective of the operating systems (Roure et al., 2011;
Cito et al., 2016; Sochat et al., 2017), while ensuring the
pipelines are consistently executed across networks and research
applications. This standardized execution and storage model
can be generalized and scaled to larger, more complex
workflows and multimodal data types ranging from other
kinds of biological ‘‘omics’’ data (transcriptomics, proteomics,
blood sugar, anthropometry) to behavioral, imaging and
electrophysiological data, among others (Zhao et al., 2008).
Beyond the example of the Methylation450k pipeline, this
framework can be used to run any other processing task
supported in CBRAIN, yet launched through LORIS. Currently,
development is underway to use Galaxy to design additional
workflows, and further optimize the PCEV27 pipeline. This
pipeline is however only one amongst many other analysis
methods that can be used in imaging genetics (Vilor-Tejedor
et al., 2018).

Provenance also remains an important issue in any kind
of analysis, especially in a multi-modal and multi-software
environment, such as the generalizable workflow proposed in
this article. To ensure complete accessibility of provenance
information:

• task log details from CBRAIN’s internal records are
communicated to LORIS with each set of returned results and
made queryable via the LORIS front-end.

• standard file formats (e.g., JSON, XML, TSV) are used for
the re-insertion process for derived data, as well as metadata
to facilitate integration into LORIS with minimal interface
development.

• quality control results are stored alongside raw and processed
outputs which improves usability.

• increasing adoption of Boutiques descriptors (Glatard et al.,
2018) as a framework for sharing and defining task creation on
HPC resources will support standardization and transparency
in neuroinformatic analyses.

The ultimate aim is to produce results and maintain
provenance information that is compatible with
emerging neuroimaging standards (e.g., the NIDM,
Keator et al., 2016).

Interoperability between systems and datasets has become a
requirement for sharing and collaboration in numerous fields
involving many complex analytics, such as machine learning
algorithms which are a rising interest in the field of imaging

27https://github.com/GreenwoodLab/pcev_pipelineCBRAIN
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genetics. Making use of APIs that can seamlessly operate from
one environment to another is a key consideration in our model.
Linking to other systems to share data, or simply for reference
pointers (e.g., links to the UCSC Genome Browser), is an
important step in data harmonization (Zaveri, 2017). Developing
APIs that are streamlined across platforms and easily fulfill
community standards and workflow requirements provides an
important asset for interoperability in large-scale consortia and
open data initiatives (Poline et al., 2012; Poldrack et al., 2013;
Van Horn and Toga, 2014; Craddock et al., 2016; Das et al.,
2017).

One key advantage of this infrastructure is ‘‘Privacy by
Design’’ which uses several mechanisms from acquisition to
dissemination to ensure privacy, such as anonymous identifiers
that link epigenetic data to a subject record, encryption methods
to secure data transfers, specific anonymization techniques and
other best practices (Cavoukian, 2009). This method largely
removes the need to store personally identifying information
(e.g., research participants and patient names) further mitigating
the risk of re-identification. This facilitates sharing of other
available data elements with a detailed provenance history
when publishing analyses of genomic data through LORIS,
where permissible, and in compliance with ethical regulations.
Rendering these datasets non-identifiable is an active research
area, giving rise to masking algorithms, which may be of interest
to data-sharing initiatives.

Another major challenge in analysis is reproducibility. This
becomes particularly evident in workflows that span different
domains such as imaging and genetics (Nekrutenko and Taylor,
2012). In its process design and technical implementation, this
generalizable framework aims to adhere to the FAIR (Wilkinson
et al., 2016) data principles. In our workflow, inputs and outputs
of each processing task are available to platform members
alongside provenance information from container descriptions
and pipeline execution logs, and each step of the workflow can
be re-run locally or on other systems. Using the open-source
constituent tools of this workflow, capturing the same outputs in
the same manner from a reproduction of this workflow provides
a powerful means to directly compare each aspect of an analysis
that has been re-run.

Through the development of this combined framework
and across several infrastructure initiatives, best practices have
emerged. These have been articulated in Appendices 1 and
2 as guidelines summarizing both the principles and practical
recommendations for implementations of this framework.

Future extensions of this infrastructure, based on user
feedback, will add richer features and more seamless automation
at several stages. As a result, a number of features will be
developed and improved:

• Streamlining the data-loading processes in LORIS via the
release of open-source tools will facilitate easier adoption of
this framework for other ‘‘omics’’ workflows.

• Integrating formats from other platforms will expand the
scope of this technology.

• Address scaling challenges through increasing use of NoSQL
schema-less databasing to flexibly handle increasing volumes

of genomic data and its significant variability across data types
and structures.

• Boutiques descriptors for CBRAIN to generalize LORIS
task-launching capabilities and ease the development burden
of deploying new pipelines.

• A well-defined API using the OpenAPI28 standard, registered
on SmartAPI29, to facilitate the creation of specialized tools to
interact with LORIS programmatically.

• Interoperability with data discovery platforms like DataLad30,
to support querying, packaging and return of LORIS-hosted
data into BIDS31-formatted data objects. Adding enhanced
support for API endpoints will support these operations.

• Encapsulating the Genomic Viewer into a Javascript module
would help portability across platforms.

While these components will fulfill the vision for a fully
robust feature-set in LORIS and CBRAIN, further developments,
documentation, unit tests and integration tests will be important
to include beyond the prototyping stage, to ensure the resulting
combined framework does not amass technical debt for future
workflows.

CONCLUSION

The goal of this article is to present a novel framework that
can facilitate brain research discovery by reducing human error
through the automation of analysis pipelines and seamless
linking of multimodal data workflows. The described framework
for ‘‘omics’’ workflows integrates multi-modal data support in
a mature databasing system with analysis on HPC platforms,
with a wide array of capabilities including provenance tracking,
a well-defined processing environment, visualization, querying
and links with other existing genomics databases. Ultimately, this
framework aims to create an optimally user-friendly experience
to allow researchers to focus on scientific aims rather than the
obstacles that otherwise occur with complex data handling.
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Preface to Appendices: The authors have developed and
recommend community-supported best practices for adhering to
FAIR principles in both the development of infrastructure and its
implementation in practice.

APPENDIX 1

Best Practices checklist for technology design and development
for FAIR Multimodal Framework integration:

Findable:

– Recognized by SmartAPI registry
– Use DOI for datasets and link them to LORIS API endpoint
– Softwares openly available via public repositories, and free (as

in Freedom32)
– Connect datasets using technologies like DataLad
– Publish and cite others

Accessible:

– Must be governed by the study and subject consent
– Ensure protection of https but no institution-restricting

firewall (hospitals)
– Sustainable infrastructure plan to backup, support and

maintain the server and storage. This includes software
security upgrades to keep data safe as well as accessible

Interoperable:

– API endpoints for datasets + version (GitAnnex/DataLad)
– Converters for BIDS—import/export of datasets
– Provide guidance where possible on use with other standards

such as NIDM

Reusable:

– Container technologies
– Boutiques descriptors

32https://www.gnu.org/philosophy/free-sw.en.html

– Software pipelines coded in a way that it can be
reused

– Reuse of analysis results: ensure execution parameters
and Provenance information is readily accessible and
shareable with the data (so they can be exported
together)

APPENDIX 2

Implementation Guidelines for FAIR Multimodal Workflow
integration:

– Store raw data at an early stage; this facilitates the linkage
between subjects and the provenance ‘‘trail’’

– Use a centralized database system with user authentication for
full auditing and data organization

– Describe entities, agents and activities with PROV33 family
vocabulary.

– Use https and ssh as protocols of communication
– Use a network with known geographical location of nodes

(HPC, Storage, Hubs)
– Design pipelines with checkpoints where the state of the data

can be reused with alternative paths (forks)
– Use container technology to describe the execution

environment setup
– Publish software (web-apps, pipelines, containers) in a public

hub with appropriate licenses—ideally free (as in freedom)
– Document software for users but also future contributors,

including ‘‘contribution guidances’’
– Describe pipeline requirements: space, CPUs, nodes, formats

(Kanwal et al., 2017)
– Cite all used software and datasets
– Publish datasets on sustainable platforms
– Describe your datasets with common terms and standard

community-supported formats (JSON-LD, RDF)

33https://www.w3.org/TR/prov-overview/ PROV is a family of standards for inter-
operable interchange of provenance information.
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