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ABSTRACT: 

 

In Geographic Information Science, polynomial methods such as linear estimation and non-polynomial methods including Inverse 

Distance Weighting and Kriging have been used for elevation data interpolation. In this paper, 3D data interpolation using linear and 

non-linear homotopy continuation as well as advanced polynomial interpolation methods are researched. Continuous deformations that 

reconstruct straight lines or algebraic curves between any pair of 3D data are presented. The implemented topological mathematical 

algorithm for 3D elevation data interpolation is compared to Inverse Distance Weighting and Triangulated Irregular Network (TIN) 

methods. The presented linear and non-linear mathematical algorithms show better results compared to Inverse Distance Weighting 

and TIN in terms of Root Mean Square Error and L-infinity. 

 

 

1. INTRODUCTION 

 

Geographic Information Science (GIS) could be defined as an 

integration of hardware, software, data and humans to analyse, 

integrate and manage geographically referenced information.  

In this definition, humans are included because just having the 

hardware and software cannot produce the desired result 

unless it is managed by an expert. In a GIS environment, the 

user is able to view, recognize, infer, examine and control 

spatial data in many ways to show relationships, patterns and 

trends linking the examined spatial data (Jamali, 2012). 

 

The 3D GIS modelling technology can generate a more 

functional and insightful perspective. In 3D GIS, surface 

reconstruction is one of the most important aspects. Surface 

reconstruction is an old issue (Sharma and Anton, 2011). 

Several researches including Keppel (1975) and Fushs et al. 

(1977) addressed the issue. Hoppe et al. (1992) addressed the 

issue of object reconstruction from point cloud data. For 

surface reconstruction, Carr et al. (2001) used radial basis 

function and Amenta and Bern (1999) used Voronoi diagram-

based filtering. 

 

The Digital Elevation Model (DEM) derived from the Shuttle 

Radar Topography Mission (SRTM) in February 2000 and its 

other versions are one of the most important free spatial 

datasets which contain void values (Reuter et al., 2007). 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer Global Digital Elevation Map (ASTER GDEM) is 

another free spatial dataset which was released in October 

2011. Void values are required to be calculated with data 
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interpolation algorithms. For small and medium sized void 

areas, Kriging (Stein, 2012) and Inverse Distance Weighting 

(IDW) (Lu et al., 2008) are the most appropriate choices. In 

flat areas, spline interpolation for small and medium sized 

areas with high altitude is the proper algorithm. In flat areas 

with large void values, the TIN and IDW are the proper 

choices. For large void values in other terrains, an advanced 

spline method is required (Reuter et al., 2007). 

 

Topological surface reconstruction from elevation data has not 

been addressed properly. Topological and geometrical surface 

reconstruction using continuous deformation (homotopy 

continuation) is introduced and discussed in this paper. This 

research intends to investigate 3D elevation data interpolation 

based on several advanced mathematics including linear non-

linear homotopy continuation. 

 

Following this introduction, in Section 2, a literature review 

related to DEM and interpolation algorithms is presented. The 

study area and elevation data set are explained in Section 3. In 

Section 4, continuous deformation methods are discussed. 

Results of data interpolations are presented in Section 5. 

Section 6 presents conclusions and future research. 

2. BACKGROUND 

 

Laser scanning technology began in the 1990s (Amato et al., 

2003) and it can measure a 3D object surface with a fast pulse. 

This technology is considered as a means of remote and quick 

data collection and it can be utilized in a wide range of 

applications from urban and regional planning (Sampson et al., 
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2012; De Graff et al., 2012) to architecture (Lefsky and 

MacHale, 2008; Liu et al., 2012) as well as topography 

(Huising and Pereira, 1998; Chen et al., 2014), smart cities 

(Garnett and Adams, 2018) , remote sensing (Lefsky et al., 

2002) and automatic feature recognition (Xing et al., 2018). 

 

Laser scanning includes three types of data acquisition: 

terrestrial laser scanning (TLS), mobile laser scanning (MLS) 

and aerial laser scanning (ALS). This technology 

(ALS/LiDAR) emits and captures signals returned from the 

surface of the Earth. An inertial measurement unit (IMU), a 

GNSS (GPS, GLONASS, COMPASS, or BEIDOU) unit and 

a laser scanning system are the three main parts of an ALS 

system (Tse et al., 2008). DEMs and Digital Surface Models 

(DSMs) can be captured by using Airborne Laser Scanning 

(ALS).  

In spatial modelling and monitoring, DEMs are one of the 

most important sources of information (Reuter et al., 2007). 

Prediction of soil properties in environment and earth science, 

road construction in civil engineering and scene simulation in 

computer games are examples of DEM applicability (Hengl 

and Evans 2007). 

Most of DEM data are required to be pre-processed to fill void 

values. Void values in elevation data have a bimodal 

distribution with peaks of the distribution, mostly in deep 

sloping areas and in flat areas (Gamache, 2004; Falorni et al., 

2005). 

DEM errors were categorized into three groups including 

gross error such as system malfunctions, systematic errors and 

random errors (Fisher and Tate, 2006). Void values are part of 

systematic errors which can be solved by interpolation 

algorithms. 

Void filling methods are categorized into surface, volumetric 

(Vedera et al., 2003) and example-based (Sharf et al. 2004) 

algorithms. Linear estimation and cubic spline are examples of 

polynomial algorithms. Non-polynomial algorithms include 

Kriging and IDW. Hoffer et al. (2006) used an advanced cubic 

spline and compared its result graphically without a statistical 

comparison. 

 

3. STUDY AREA AND ELEVATION DATA SET 

 

The elevation data is from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Global Digital Elevation 

Map Version 2 (ASTER GDEM 2) data set with longitude of 

103.63402:103.64153 and latitude of 1.55597:1.56345 in the 

WGS84 coordinate reference system of Universiti Teknologi 

Malaysia (UTM) region (see Figure 1). 

 

Figure 1. Elevation data extracted from SRTM data set. 

 

4. CONTINUOUS DEFORMATION 

 

Cubic interpolation, shape-preserving piecewise cubic 

interpolation and linear interpolation are three continuous 

interpolation algorithms. Cubic interpolation and shape-

preserving piecewise cubic interpolation are in C2 and require 

at least four points for interpolation. Linear interpolation is in 

C0  and requires at least two points. 

 

3D terrain modelling using piecewise cubic interpolation and 

smoothing piecewise cubic interpolation is shown in Figures 2 

and 3 respectively.
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Figure 2. 3D terrain modelling from elevation data using piecewise cubic spline interpolation. 

 

 
Figure 3. 3D terrain modelling from elevation data using smoothing piecewise cubic spline interpolation. 

 
 

A homotopy is a continuous deformation of geometric figures 

or paths or more generally, functions: a function (or a path, or 

a geometric figure) is continuously deformed into another one 

(Allgower and Georg, 1990; Jamali et al., 2017; Jamali et al., 

2018). A homotopy between two continuous functions f0 and 

f1 from a topological space X to a topological space Y is 

defined as a continuous map H: X × [0, 1] → Y from the 

Cartesian product of the topological space X with the unit 

interval [0, 1] to Y such that H (x, 0) = f0, and H (x, 1) = f1, 

where x ∈ X. The two functions f0 and f1 are called, 

respectively, the initial and terminal maps. The second 

parameter of H, λ, also called the homotopy parameter, allows 

for a continuous deformation of f0 to f1 (Allgower and Georg, 

1990). Two continuous functions f0 and f1 are said to be 

homotopic, denoted by f0≃ f1, if and only if there is a 

homotopy H taking f0 to f1. Being homotopic is an equivalence 

relation on the set C (X, Y) of all continuous functions from X 

to Y. 

 

An equation of a linear homotopy is equal to (see Equation 1): 

 

H(x,λ)=(1−λ) f0 (x)+ λ f1(x) where λ∈[0,1]                          (1) 

 

For a better understanding of piecewise cubic homotopy, an 

example is discussed as follows:   

 

For a set of datasets with f0= [0, 0.13, 0.14, 0.50, 0.90, 1] and 

f1= [0, 0.15, 0.13, 0.60, 0.94, 1], the solutions of piecewise 
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cubic and linear homotopies are equal to (see Figure 4, 

Equations 2 and 3): 

 

 

 

 

(2.6434 x - 88.1416 x3) + (1690.9359 x3 - 693.8402 x2 + 92.8426 x - 3.9086) + (-19.8757 x3 + 24.7006 x2 - 7.7530 x + 0.7858) + 

(5.3401 x3 - 13.1232 x2 + 11.158 x - 2.3661) + (-4.3173 x3 + 12.9520 x2 - 12.3088 x + 4.6741)                                                         (2) 

 

(1.15384 x) + (0.41 - 1.999 x) + (1.3055 x - 0.0527) + (0.85 x + 0.175) + (0.6 x + 0.4)                                                                      (3) 

 

 
Figure 4. Piecewise cubic homotopy (orange color), Shape-preserving piecewise cubic homotopy (blue color) and linear homotopy 

(purple color) for a set of data. 

 

 

As shown in Equation 2, Equation 3 and Figure 4, the solutions 

of homotopies for the example dataset contain five piecewise 

cubic and linear functions in five intervals between 0 and 1 

from f0 to f1. For example, any interpolation value in the 

interval [0.14; 0.50] is calculated by the -19.8757 x3+ 24.7006 

x2 - 7.7530 x + 0.7858 cubic homotopy and the 1.3055 x - 

0.0527 linear homotopy. 

 

5. RESULTS 

 

In this research, 4208 points are used for elevation data 

interpolation and 468 points for the evaluation of the accuracy 

of the interpolations. Results of elevation data interpolation 

based on piecewise linear and cubic homotopy continuations 

are presented in Figures 5 and 6 respectively.  

 

As can be seen in Figure 5, all elevation data belong to the [0; 

1] interval.  

 

Each elevation is calculated as follows (see Equation 4): 

 

𝐸𝑖 =
𝐸𝑖−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
                                                                              (4) 

 

Where Ei is the elevation at point i and Emin is minimum 

elevation of the dataset and Emax is maximum elevation of the 

dataset. 
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Figure 5. 3D terrain modelling from elevation data using homotopy continuation based on piecewise linear spline interpolation. 

 
Figure 6. 3D terrain modelling from elevation data using homotopy continuation based on piecewise cubic spline interpolation. 

 

 

Accuracy of interpolations using polynomial and non-

polynomial methods are based on Root Mean Square Error 

(RMSE) and L-infinity distance as follows (see Equation 5): 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑜𝑏𝑠,𝑖−𝐸𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑,𝑖)

2𝑛
𝑖=1

𝑛
                                     (5), 

 

Where 𝐸𝑜𝑏𝑠 is the real elevation data and 𝐸𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 is the 

interpolated elevation from the IDW, TIN and continuous 

deformation. 

 

L-infinity distance between two vectors or points A and B can 

be calculated (see Equation 6 and 7): 

 

𝐿 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 (𝐴, 𝐵) = 𝑀𝐴𝑋𝑖(|𝐴𝑖 − 𝐵𝑖|)                             (6) 

 

lim
𝑘→∞

(∑|𝐴𝑖 − 𝐵𝑖|𝑘

𝑛

𝑖=1

)

1
𝑘

                                                               (7) 

 

The results show an RMSE of 0.1984 meters for the cubic 

homotopy continuation and an RMSE of 0.2114 meters for 

linear the homotopy continuation. Two well-known non-

polynomial data interpolations including IDW and TIN are 

deployed to evaluate the results of the presented topological 

mathematical method in terms of RMSE.  

 

The IDW method has an RMSE of 1.5439 meter for elevation 

data interpolation and the TIN method shows an RMSE of 

7.5641 meters. Homotopy have L-infinity distance values of 

1.32 m for cubic interpolation and 1.49 m for linear 

interpolation. IDW method has a value of 4.97 m and TIN 

shows an L-infinity distance value of 18.036 m (see Table 1). 
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Interpolation 

methods 

Linear 

homotopy 

Cubic 

Homotopy 

IDW TIN 

RMSE 

L-infinity 

0.2114 

1.49 

0.1984 

1.32 

1.5439 

4.97 

7.5641 

18.036 

 

Table 1. Accuracy of interpolation methods in term of RMSE 

and L-infinity 

 

6. CONCLUSIONS 

 

In this paper, 3D data reconstructions using continuous 

deformations for elevation data interpolation are presented and 

discussed. In previous GIS-based researches, topological 

interpolation algorithms were not researched properly, with 

IDW and TIN being the two popular interpolation algorithms.  

 

Linear and cubic homotopies as advanced polynomial 

interpolation methods were introduced and compared to IDW 

and TIN. In the experiment, advanced mathematics shows an 

advantage over the conventional methods in terms of RMSE 

and L-infinity. 

 

REFERENCES 

 

Allgower, E. L., & K. Georg, (1990). Numerical continuation 

methods: an introduction. Springer-Verlag New York, Inc. 

New York, NY, USA. 

 

Amenta, N., Bern, M. (1999). Surface reconstruction 

byVoronoi filtering. Discrete Comput. Geom. 22(4), 481–504 

(1999) 

 

Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, 

W.R., McCallum, B .C. Evans,T.R.(2001). Reconstruction and 

representation of 3D objects with radial basis functions. In: 

Proceedings of the 28th Annual Conference on Computer 

Graphics and Interactive Techniques, pages, p. 76. ACM, New 

York. 

 

Chen, X. T., Disney, M. I., Lewis, P., Armston, J., Han, J. T., 

& Li, J. C. (2014). Sensitivity of direct canopy gap fraction 

retrieval from airborne waveform lidar to topography and 

survey characteristics. Remote sensing of environment, 143, 

15-25. 

 

De Graff, J. V., Romesburg, H. C., Ahmad, R., & McCalpin, 

J. P. (2012). Producing landslide-susceptibility maps for 

regional planning in data-scarce regions. Natural 

hazards, 64(1), 729-749. 

 

Falorni, G., Teles, V., Vivoni, E. R., Bras, R. L., & 

Amaratunga, K. S. (2005). Analysis and characterization of 

the vertical accuracy of digital elevation models from the 

Shuttle Radar Topography Mission. Journal of Geophysical 

Research: Earth Surface, 110(F2). 

 

Fisher, P. F., & Tate, N. J. (2006). Causes and consequences 

of error in digital elevation models. Progress in physical 

Geography, 30(4), 467-489. 

 

Fuchs, H., Kedem, Z.M., Uselton, S.P. (1977). Optimal 

surface reconstruction from planar contours. Commun. ACM 

20(10), 693–702. 

 

Gamache, M. (2004, September). Free and low cost datasets 

for international mountain cartography. In 4th ICA Mountain 

Cartography Workshop (Vol. 26). 

 

Garnett, R., and Adams, M, D. (2018). LiDAR—A Technology 

to Assist with Smart Cities and Climate Change Resilience: A 

Case Study in an Urban Metropolis. ISPRS Int. J. Geo-

Inf. 2018, 7(5), 161. https://doi.org/10.3390/ijgi7050161. 

Gevrey, M., Dimopoulos, I., &Lek, S. (2003). Review and 

comparison of methods to study the contribution of variables 

in artificial neural network models.Ecological modelling, 

160(3), 249-264. 

 

Hengl, T. and Evans, I. S., (2007), Geomorphometry: A brief 

guide. In 9 Geomorphometry: Concepts, software, 

applications, T. Hengl and H. I. Reuter 10 (Eds.) (Ispra, Italy: 

European Commission, 2007), pp. 3-18. 

 

Hofer, M., Sapiro, G., & Wallner, J. (2006). Fair polyline 

networks for constrained smoothing of digital terrain elevation 

data. IEEE transactions on geoscience and remote 

sensing, 44(10), 2983-2990. 

 

Huising, E. J., & Pereira, L. G. (1998). Errors and accuracy 

estimates of laser data acquired by various laser scanning 

systems for topographic applications. ISPRS Journal of 

photogrammetry and remote sensing, 53(5), 245-261. 

Ali Jamali, Francesc Antón Castro & Darka Mioc (2018). A 

novel method of combined interval analysis and homotopy 

continuation in indoor building reconstruction, Engineering 

Optimization, DOI: 10.1080/0305215X.2018.1472253 

Jamali, A., Anton, F., Abdul Rahman, A., and Mioc, D (2017). 

A COMPARISON OF ARTIFICIAL NEURAL NETWORK 

AND HOMOTOPY CONTINUATION IN 3D INTERIOR 

BUILDING MODELLING, Int. Arch. Photogramm. Remote 

Sens. Spatial Inf. Sci., XLII-4/W7, 13-21, 

https://doi.org/10.5194/isprs-archives-XLII-4-W7-13-2017.  

Jamali, A. (2012). Semantic modelling for geo-database using 

CITYGML4J. Master thesis. Department of Geoinformation, 

Universiti Teknologi Malaysia, Malaysia. 

Keppel, E. (1975). Approximating complex surfaces by 

triangulation of contour lines. IBM J. Res. Dev. 19(1), 2–11. 

 

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-

distance weighting spatial interpolation technique. Computers 

& geosciences, 34(9), 1044-1055. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-71-2018 | © Authors 2018. CC BY 4.0 License.

 
76

http://www.mdpi.com/search?authors=Ryan%20Garnett&orcid=0000-0002-0448-6461
http://www.mdpi.com/search?authors=Matthew%20D.%20Adams&orcid=
https://doi.org/10.3390/ijgi7050161
https://doi.org/10.1080/0305215X.2018.1472253


 

Liu, C., Li, W., Lei, W., Liu, L., & Wu, H. (2011, October). 

Architecture planning and geo-disasters assessment mapping 

of landslide by using airborne lidar data and UAV images. 

In International Symposium on Lidar and Radar Mapping 

2011: Technologies and Applications (Vol. 8286, p. 82861Q). 

International Society for Optics and Photonics. 

 

Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. 

(2002). Lidar remote sensing for ecosystem studies: Lidar, an 

emerging remote sensing technology that directly measures 

the three-dimensional distribution of plant canopies, can 

accurately estimate vegetation structural attributes and should 

be of particular interest to forest, landscape, and global 

ecologists. AIBS Bulletin, 52(1), 19-30. 

Lefsky, M. A., & McHale, M. R. (2008). Volume estimates of 

trees with complex architecture from terrestrial laser 

scanning. Journal of Applied Remote Sensing, 2(1), 023521. 

Ramon Moore, R. K. E., & Cloud, M. J. (2009). Introduction 

to interval analysis. SIAM (Society for Industrial and Applied 

Mathematics), Philadelphia. 

 

Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation 

of void‐filling interpolation methods for SRTM 

data. International Journal of Geographical Information 

Science, 21(9), 983-1008. 

Rudin, Walter (1980), Real and Complex Analysis (2nd ed.), 

New Delhi: Tata McGraw-Hill, ISBN 9780070542341. 

Sampson, C. C., Fewtrell, T. J., Duncan, A., Shaad, K., Horritt, 

M. S., & Bates, P. D. (2012). Use of terrestrial laser scanning 

data to drive decimetric resolution urban inundation 

models. Advances in water resources, 41, 1-17. 

Sharf, A., Alexa, M., & Cohen-Or, D. (2004, August). 

Context-based surface completion. In ACM Transactions on 

Graphics (TOG) (Vol. 23, No. 3, pp. 878-887). ACM. 

 

Stein, M. L. (2012). Interpolation of spatial data: some theory 

for kriging. Springer Science & Business Media. 

Tse, R., Gold, C., & Kidner, D. (2008). 3D City Modelling 

from LIDAR Data. Advances in 3D Geoinformation Systems, 

161–175. 

Verdera, J., Caselles, V., Bertalmio, M., & Sapiro, G. (2003, 

September). Inpainting surface holes. In Image Processing, 

2003. ICIP 2003. Proceedings. 2003 International Conference 

on (Vol. 2, pp. II-903). IEEE. 

 

Xing, X., Mostafavi, M, A. & Chavoshi, s,H. (2018). A 

Knowledge Base for Automatic Feature Recognition from 

Point Clouds in an Urban Scene. ISPRS Int. J. Geo-

Inf. 2018, 7(1), 28. https://doi.org/10.3390/ijgi7010028. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W10-71-2018 | © Authors 2018. CC BY 4.0 License.

 
77

https://doi.org/10.3390/ijgi7010028



