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Quasi-Algebras versus Regular Algebras - Part I

Afrodita Iorgulescu1

Abstract

Starting from quasi-Wajsberg algebras (which are generalizations
of Wajsberg algebras), whose regular sets are Wajsberg algebras, we
introduce a theory of quasi-algebras versus, in parallel, a theory of
regular algebras. We introduce the quasi-RM, quasi-RML, quasi-BCI,
(commutative, positive implicative, quasi-implicative, with product)
quasi-BCK, quasi-Hilbert and quasi-Boolean algebras as generalizations
of RM, RML, BCI, (commutative, positive implicative, implicative,
with product) BCK, Hilbert and Boolean algebras respectively.

In Part I, the first part of the theory of quasi-algebras - versus the
first part of a theory of regular algebras - is presented. We introduce the
quasi-RM and the quasi-RML algebras and we present two equivalent
definitions of quasi-BCI and of quasi-BCK algebras.

Keywords: quasi-MV algebra, quasi-Wajsberg algebra, MV algebra,
Wajsberg algebra, BCI algebra, BCK algebra, RM algebra, RML
algebra

1 Introduction

The quasi-MV algebras were introduced in 2006 [17], as generalizations
of MV algebras introduced in 1958 [4], following an investigation into the
foundations of quantum computing (see [7]). Since then, many papers
investigated them [21], [1], [14], [13].

The quasi-Wajsberg algebras were introduced in 2010 [2], as generaliza-
tions of Wajsberg algebras introduced in 1984 [5]; they are term-equivalent
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to quasi-MV algebras, just as Wajsberg algebras are term equivalent to MV
algebras. The regular set R(A) of any quasi-Wajsberg algebra A is a
Wajsberg algebra. Remark that any Wajsberg algebra A has in the signature
an implication → and a constant 1 that verify the following two properties,
among many others: for all x ∈ A,

(Re) x→ x = 1, (M) 1→ x = x,
while any quasi-Wajsberg algebra A has in the signature an implication
→ and a constant 1 that verify the following two properties, among many
others: for all x, y ∈ A,

(Re) x→ x = 1, (qM) 1→ (x→ y) = x→ y.
Note that (M) implies (qM) and this is the most important reason why the
quasi-Wajsberg algebras are generalizations of Wajsberg algebras.

We have introduced in 2013 [9] many new generalizations of BCI, of
BCK and of Hilbert algebras, in a general investigation of algebras (A,→, 1)
of type (2, 0) that can verify properties in a given list of properties. Among
the new generalizations, the most general one is the RM algebra, i.e. the
algebra (A,→, 1) verifying the properties (Re), (M).

Based mainly on the results in [2] and in [9] and on the above remarks,
we have developed a theory of quasi-algebras (including the lists qA, qB,
qC of (basic, particular, quasi-negation, respectively) quasi-properties, with
many connections) versus, in parallel, a theory of regular algebras (including
the lists A, B, C of (basic, particular, negation, respectively) regular pro-
perties, with many connections). We have introduced new quasi-algebras:
the quasi-RM, quasi-RML, quasi-BCI, (commutative, positive implicative,
quasi-implicative, with product) quasi-BCK, quasi-Hilbert algebras and
the quasi-Boolean algebras, as generalizations of the corresponding regular
algebras: RM, RML, BCI, (commutative, positive implicative, implicative,
with product) BCK, Hilbert and Boolean algebras. We have made the
connection with the quasi-Wajsberg algebras.

In Part I, the first part of the theory of quasi-algebras is presented,
including the list qA of basic quasi-properties and many connections - versus
the first part of a theory of regular algebras, including the list A of basic
regular properties and many connections. We introduce the quasi-order and
the quasi-Hasse diagram - versus the regular order and the Hasse diagram -
and we study the quasi-ordered algebras (structures). We introduce the quasi-
RM algebras and the quasi-RML algebras and we present two equivalent
definitions of quasi-BCI algebras and of quasi-BCK algebras.

This paper, Part I, is organized as follows: In Section 2, we present
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the definitions of quasi-algebras versus regular algebras. In Section 3, we
present an introduction to the theory of regular algebras (part I), including
the list A of basic regular properties and many connections. In Section 4, we
present an introduction to the theory of quasi-algebras (part I), including
the list qA of basic quasi-properties and many connections. In Section 5,
we present the new quasi-algebras: the quasi-RM, quasi-RML, quasi-BCI
and quasi-BCK algebras. In Section 6, we present some examples of finite
quasi-algebras introduced in Section 5.

2 Quasi-Algebras (Quasi-Structures)
vs Regular Algebras (Structures)

Let A = (A,→, 1) be an algebra of type (2, 0). Let us introduce the following
properties:
(M) 1→ x = x, for all x ∈ A,
(qM) 1→ (x→ y) = x→ y, for all x, y ∈ A,
(qM(1→ x)) 1→ (1→ x) = 1→ x, for all x ∈ A,
(11-1) 1→ 1 = 1,
and let us note that (M) =⇒ (11-1).
Then we have: (M) =⇒ (qM) =⇒ (qM(1→ x)).

Indeed, for any x, y ∈ A, 1 → (x → y)
(M)
= x → y, i.e. (qM) holds; then

1→ (1→ x)
(qM)
= 1→ x, i.e. (qM(1→ x)) holds.

Besides the set A, let us define the following subsets of A:

U
df.
= {x→ y | x, y ∈ A}, V df.

= {1→ x | x ∈ A}, VM
df.
= {x ∈ A | x (M)

= 1→ x}.

Then we have: VM ⊆ V ⊆ U ⊆ A (see Example 2.1).

• If property (M) holds, then A ⊆ VM . Consequently, VM = V = U =
A. (see Example 2.2).

• If property (qM) holds, then U ⊆ VM . Consequently, VM = V = U ⊆
A (see Example 2.3).

• If property (qM(1→ x)) holds, then V ⊆ VM . Consequently, VM =
V ⊆ U ⊆ A (see Example 2.4).

Example 2.1. Consider the set A = {a, b, c, d, e, f, 1} and the algebra
A1 = (A,→1, 1) given by the following table:
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A1

→1 a b c d e f 1

a 1 a a a 1 1 1
b 1 1 a 1 1 1 1
c 1 a 1 a 1 1 1
d 1 1 a 1 1 1 1
e 1 a a a 1 1 1
f a b c b d 1 1
1 b a c b a 1 1

Then VM = {c, 1} ⊂ V = {a, b, c, 1} ⊂ U = {a, b, c, d, 1} ⊂ A =
{a, b, c, d, e, f, 1}.

Example 2.2. Consider the same set A = {a, b, c, d, e, f, 1} and the algebra
A2 = (A,→2, 1) given by the following table:

A2

→2 a b c d e f 1

a 1 1 1 1 1 1 1
b a 1 c 1 1 1 1
c a b 1 1 1 1 1
d a b c 1 e 1 1
e a b c d 1 1 1
f a b c d e 1 1
1 a b c d e f 1

Then VM = V = U = A = {a, b, c, d, e, f, 1}.

Example 2.3. Consider the same set A = {a, b, c, d, e, f, 1} and the algebra
A3 = (A,→3, 1) given by the following table:

A3

→3 a b c d e f 1

a 1 a a a 1 1 1
b 1 1 a 1 1 1 1
c 1 a 1 a 1 1 1
d 1 1 a 1 1 1 1
e 1 a a a 1 1 1
f a b c b a 1 1
1 a b c b a 1 1

Then VM = V = U = {a, b, c, 1} ⊂ A = {a, b, c, d, e, f, 1}.

Example 2.4. Consider the same set A = {a, b, c, d, e, f, 1} and the algebra
A4 = (A,→4, 1) given by the following table:
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A4

→4 a b c d e f 1

a 1 a a a 1 1 1
b 1 1 a 1 1 1 1
c 1 a 1 a 1 1 1
d 1 1 a 1 1 1 1
e 1 a a a 1 1 1
f a b c b d 1 1
1 a b c b a 1 1

Then VM = V = {a, b, c, 1} ⊂ U = {a, b, c, d, 1} ⊂ A = {a, b, c, d, e, f, 1}.

Remarks 2.5.

(i) In all the above examples, the property (11-1) is fulfilled.

(ii) All the algebras of classical logics and of non-classical logics verify
property (M). They will be called ”regular algebras” in the sequel.

(iii) The quasi-Wajsberg algebras introduced in [2] verify properties (qM)
and (11-1) and the quasi-MV algebras introduced in [17] are term equivalent
to quasi-Wajsberg algebras. Therefore, we shall develop in the sequel a theory
of quasi-algebras as those algebras having a subreduct (A,→, 1) verifying
(qM) and (11-1) or term equivalent to such algebras. But note that someone
can develop a theory of say ”generalized-quasi-algebras”, as those algebras
having a subreduct (A,→, 1) verifying properties (qM(1→ x)) and (11-1).

2.1 Regular Algebras (Structures) - Definition

Let A = (A,→, 1) be an algebra of type (2, 0) through this subsection, where
a binary relation ≤ can be defined by: for all x, y,

x ≤ y def.⇐⇒ x→ y = 1. (1)

Equivalently,
let A = (A,≤,→, 1) be a structure where ≤ is a binary relation on A, → is
a binary operation (an implication) on A and 1 ∈ A, all connected by:

x ≤ y ⇐⇒ x→ y = 1. (2)

Let us consider the following properties:
(M) 1→ x = x, for all x ∈ A,
(11-1) 1→ 1 = 1,
where (M) =⇒ (11-1).
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Definitions 2.6.

(1) The algebra (A,→, 1) (or, equivalently, the structure (A,≤,→, 1))
is called regular, if it satisfies the property (M).

(1’) Any algebra (structure) A′ = (A, σ) whose signature σ contains →,
1 (≤, →, 1, respectively) is also called regular, if it satisfies the property
(M).

(1”) Any algebra (structure) A′′ = (A, τ) which is term equivalent to a
regular algebra (structure) A′ = (A, σ) is also called regular.

(2) The implication → from a regular algebra (structure) is called
regular implication.

(3) The binary relation ≤ of a regular algebra (structure) is called
binary regular relation.

Remark 2.7. By (M), we have that: VM = V = U = A and this is the
basic, definable property of regular algebras (structures) - see Example 2.2.

Note that Boolean algebras, MV algebras, Wajsberg algebras, BL
algebras, MTL algebras, residuated lattices, etc., Hilbert algebras, BCK
algebras, BCI algebras, BCH, BCC, BZ, BE and pre-BCK algebras and all
their generalizations introduced in [9], up to RM and RML algebras (the
most general), are all regular algebras (because there exists a binary relation
≤ determined by an implication → and a constant 1 verifying (M)).

Note that, for example, lattices, in general, are not regular algebras
(because the lattice order ≤, in general, is not determined by an implication
and a constant 1); but there exist, in particular, the “regular lattices” (whose
lattice order is determined by an implication and a constant 1), as we shall
see in other paper.

2.2 Quasi-Algebras (Quasi-Structures) - Definition

Let A = (A,;, 1) be an algebra of type (2, 0) through this subsection, where
a binary relation � can be defined by: for all x, y,

x � y def.⇐⇒ x; y = 1. (3)

Equivalently,
let A = (A,�,;, 1) be a structure where � is a binary relation on A, ; is
a binary operation (an implication) on A and 1 ∈ A, all connected by:

x � y ⇐⇒ x; y = 1. (4)



Quasi-Algebras versus Regular Algebras - Part I 95

Let us consider the following properties:
(qM) 1 ; (x; y) = x; y, for all x, y ∈ A,
(11-1) 1 ; 1 = 1.

Definitions 2.8.
(q1) The algebra (A,;, 1) (or, equivalently, the structure (A,�,;, 1))

is called quasi-algebra (quasi-structure, respectively) if it satisfies the pro-
perties (qM) and (11-1).

(q1’) Any algebra (structure) A′ = (A, σ) whose signature σ contains
→, 1 (≤, →, 1, respectively) is also called quasi-algebra (quasi-structure), if
it satisfies the properties (qM) and (11-1).

(q1”) Any algebra (structure) A′′ = (A, τ) which is term equivalent to
a quasi-algebra (structure) A′ = (A, σ), is also called quasi-algebra (quasi-
structure).

(q2) The implication ; from a quasi-algebra (quasi-structure) is called
quasi-implication.

(q3) The binary relation � of a quasi-algebra (quasi-structure) is called
binary quasi-relation.

Note that the quasi-Wajsberg algebras [2] are quasi-algebras, by the
above Definition 2.8 (q1’), while the quasi-MV algebras [17] are quasi-
algebras, by the above Definition 2.8 (q1”).

We shall introduce in this paper new quasi-algebras (quasi-structures).

Besides the set A, let us define now the following subsets of A:

U
df.
= {x; y | x, y ∈ A}, V df.

= {1 ; x | x ∈ A}, VM
df.
= {x ∈ A | x (M)

= 1 ; x}.

Remarks 2.9.
(i) Note that:

- if (qM) holds, then VM = V = U 6= A;
- if (M) holds, then VM = V = U = A.
- (qM) implies (M) (i.e. (qM) coincides with (M)) if and only if U = A.
- (qM) is different of (M) if and only if U 6= A (i.e. ; (A× A) = U 6= A),
and this is the basic, definable property of quasi-algebras (quasi-structures)
(see Example 2.3).

(ii) Since (M) implies (qM), it follows that any quasi-algebra (quasi-
structure) will be a generalization of the corresponding regular algebra
(structure). For example, the quasi-MV algebra introduced in [17] is a
generalization of the MV algebra and the quasi-Wajsberg algebra introduced
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in [2] is a generalization of the Wajsberg algebra - the MV algebras and the
Wajsberg algebras being called in this context regular algebras.

(iii) The above remarks show the central role played by the property
(M): we obtain the general rule that, roughly speaking,

(M) + quasi− algebra (quasi− structure) = regular algebra (structure).

In the view of the above Remarks 2.9, we introduce the following
definitions:

Definitions 2.10.
(1) For every quasi-algebra (quasi-structure) A, the subset VM = V = U

of A will be called the regular set of A and will be denoted by R(A):

R(A)
def.
= VM = V = U ⊆ A.

The elements of R(A) are called the regular elements of A.
(2) The quasi-algebra (quasi-structure) A is called proper if R(A) 6= A

(i.e. (M) 6⇐⇒ (qM)); otherwise, A is a regular algebra (structure).

Definition 2.11. For every proper quasi-algebra A = (A,;, 1) (or, equi-
valently, proper quasi-structure A = (A,�,;, 1)), any subset S ⊆ A closed
under ; and containing 1 is called a quasi-subalgebra (quasi-substructure)
of A.

We then have the following important result:

Theorem 2.12. Let A = (A,;, 1) be a proper quasi-algebra (or, equi-
valently, let A = (A,�,;, 1) be a proper quasi-structure). Then, R(A) =
(R(A),→, 1) is a regular algebra (or, equivalently, R(A) = (R(A),≤,→, 1)
is a regular structure, respectively), where

→ = ;|R(A), ≤ = �|R(A) .

Proof: First, we prove that the regular set R(A) is closed under ; and

that 1 ∈ R(A). Indeed, if x, y ∈ R(A) ⊂ A, then x ; y
(qM)
= 1 ; (x ; y),

hence x; y ∈ R(A); since 1 ; 1 = 1 (by (11-1)), it follows that 1 ∈ R(A).
Consequently, R(A) is a quasi-subalgebra (quasi-substructure) of A. Hence,
R(A) = (R(A),;, 1) is a quasi-algebra (R(A) = (R(A),�,;, 1) is a quasi-
structure).

Moreover, (qM) coincides with (M) on R(A), i.e. (qM)|R(A)⇐⇒ (M),
by the definition of R(A). Consequently, R(A) = (R(A),→, 1) is a regular



Quasi-Algebras versus Regular Algebras - Part I 97

algebra (or, equivalently, R(A) = (R(A),≤,→, 1) is a regular structure,
respectively). 2

Conventions: In order to simplify the writing,
- the quasi-implication ; of a quasi-algebra (quasi-structure) A and the
corresponding (its restriction to R(A)) regular implication → of the regular
algebra (structure) R(A) will be denoted the same in the sequel, namely by
→.
- the binary quasi-relation � of a quasi-algebra (quasi-structure) A and the
corresponding (its restriction to R(A)) binary regular relation ≤ of R(A)
will be also denoted the same in the sequel, namely by ≤.

3 Introduction to the Theory of
Regular Algebras (Structures) - Part I

Let A = (A,→, 1) be an algebra (or, equivalently, let A = (A,≤,→, 1) be a
structure) as before throught this section.

3.1 The List A of Basic Properties. Connections

Consider the following list A of basic properties (those from [9] plus two new
properties: (#), (##)) that can be satisfied by A (in fact, the properties in
the list A are the most important properties satisfied by a BCK algebra (see
[9])), where each property is presented in two equivalent forms, determined
by the corresponding two equivalent definitions of A. We divide the list into
two parts: the properties in Part 1 are those that will be generalized, when
considering the quasi-algebras (quasi-structures).

List A, Part 1
————————————————————————————————-
(An) (Antisymmetry) x→ y = 1 = y → x =⇒ x = y,
(An’) (Antisymmetry) x ≤ y, y ≤ x =⇒ x = y;

(M) 1→ x = x;

(N) 1→ x = 1 =⇒ x = 1,
(N’) 1 ≤ x =⇒ x = 1;
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(Re) (Reflexivity) x → x = 1 (we prefer here notation (Re) instead of
notation (I) in the theory of BCI algebras),
(Re’) (Reflexivity) x ≤ x;

(L) (Last element) x→ 1 = 1,
(L’) (Last element) x ≤ 1.
————————————————————————————————-

List A, Part 2
————————————————————————————————-
(11-1) 1→ 1 = 1,
(11-1’) 1 ≤ 1;

(B) (y → z)→ [(x→ y)→ (x→ z)] = 1,
(B’) y → z ≤ (x→ y)→ (x→ z),

(BB) (y → z)→ [(z → x)→ (y → x)] = 1,
(BB’) y → z ≤ (z → x)→ (y → x);

(*) y → z = 1 =⇒ (x→ y)→ (x→ z) = 1,
(*’) y ≤ z =⇒ x→ y ≤ x→ z;

(**) y → z = 1 =⇒ (z → x)→ (y → x) = 1,
(**’) y ≤ z =⇒ z → x ≤ y → x;

(C) [x→ (y → z)]→ [y → (x→ z)] = 1,
(C’) x→ (y → z) ≤ y → (x→ z);

(D) y → [(y → x)→ x] = 1,
(D’) y ≤ (y → x)→ x;

(Ex) (Exchange) x→ (y → z) = y → (x→ z);

(K) x→ (y → x) = 1,
(K’) x ≤ y → x;

(S) x = y =⇒ x→ y = 1,
(S’) x = y =⇒ x ≤ y;
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(Tr) (Transitivity) x→ y = 1 = y → z =⇒ x→ z = 1,
(Tr’) (Transitivity) x ≤ y, y ≤ z =⇒ x ≤ z;

(#) x→ (y → z) = 1 =⇒ y → (x→ z) = 1,
(#′) x ≤ y → z =⇒ y ≤ x→ z;

(##) x→ (y → z) = 1⇐⇒ y → (x→ z) = 1,
(##′) x ≤ y → z ⇐⇒ y ≤ x→ z.
————————————————————————————————-

Remarks 3.1.
(i) (M) =⇒ (11-1); (Re) =⇒ (11-1); (L) =⇒ (11-1).
(ii) The central role of property (M) in the study of regular algebras

(structures) [9] is given by the fact that it determines that VM = V = U = A,
i.e. all the elements of A appear compulsory inside the table of →.

(iii) Closely related (see the next section) with the property (M) are
the properties (N), (An), (Re) and (L), therefore the all five form the Part 1
of the list A of properties.

(iv) Note that we have defined in [9] the most general algebra, called
RM , as an algebra (A,→, 1) verifying (Re) and (M), hence as a generalization
of BCI, BCK, BCC, BZ, BCH, BE and pre-BCK algebras. We have also
defined in [9] the RML algebra, as a RM algebra verifying the property (L);
thus, the RML algebra is a generalization of BCK, BCC, BE and pre-BCK
algebras.

3.1.1 Connections between the Properties in the List A

We recall the connections found in [9] between the properties in list A.

Proposition 3.2. [9] Let (A,→, 1) be an algebra of type (2, 0). Then the
following are true:

(A0) (Re) =⇒ (S);
(A00) (M) =⇒ (N);
(A1) (L) + (An) =⇒ (N);
(A2) (K) + (An) =⇒ (N);
(A3) (C) + (An) =⇒ (Ex); (A3’) (Ex) + (Re) =⇒ (C);
(A4) (Re) + (Ex) =⇒ (D); (A4’) (D) + (Re) + (An) =⇒ (N);
(A5) (Re) + (Ex) + (An) =⇒ (M);
(A6) (Re) + (K) =⇒ (L);
(A7) (N) + (K) =⇒ (L); (A7’) (M) + (K) =⇒ (L);
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(A8) (Re) + (L) + (Ex) =⇒ (K);
(A9) (M) + (L) + (B) =⇒ (K); (A9’) (M) + (L) + (**) =⇒ (K);
(A10) (Ex) =⇒ (B) ⇔ (BB);
(A10’) (Ex) + (B) =⇒ (BB); (A10”) (Ex) + (BB) =⇒ (B);
(A11) (Re) + (Ex) + (*) =⇒ (BB);
(A12) (N) + (B) =⇒ (*); (A12’) (M) + (B) =⇒ (*);
(A13) (N) + (*) =⇒ (Tr); (A13’) (M) + (*) =⇒ (Tr);
(A14) (N) + (B) =⇒ (Tr); (A14’) (M) + (B) =⇒ (Tr);
(A15) (N) + (BB) =⇒ (**); (A15’) (M) + (BB) =⇒ (**);
(A16) (N) + (**) =⇒ (Tr); (A16’) (M) + (**) =⇒ (Tr);
(A17) (N) + (BB) =⇒ (Tr); (A17’) (M) + (BB) =⇒ (Tr);
(A18) (M) + (BB) =⇒ (Re); (A18’) (M) + (BB) =⇒ (D);
(A19) (M) + (B) =⇒ (Re);
(A20) (BB) + (D) + (N) =⇒ (C); (A20’) (M) + (BB) =⇒ (C);
(A21) (BB) + (D) + (N) + (An) =⇒ (Ex);
(A21’) (BB) + (D) + (L) + (An) =⇒ (Ex);
(A21”) (M) + (BB) + (An) =⇒ (Ex);
(A22) (K) + (Ex) + (M) =⇒ (Re);
(A23) (C) + (K) + (An) =⇒ (Re);
(A24) (Re) + (Ex) + (Tr) =⇒ (**).

Let us add the following new connections.

Proposition 3.3. Let (A,→, 1) be an algebra of type (2, 0). Then the
following are true:

(A9”) (M) + (L) + (BB) =⇒ (K);
(A18”) (M) + (D) =⇒ (Re);

(A25) (D) + (K) + (N) + (An) =⇒ (M);
(A26) (#) ⇐⇒ (##) ;
(A27) (M) + (C) =⇒ (#);
(A28) (Ex) =⇒ (##);
(A29) (BB) + (#) =⇒ (B); (A29’) (B) + (#) =⇒ (BB);
(A30) (Re) + (B) + (Tr) + (#) =⇒ (C);
(A31) (Re) + (#) =⇒ (D) (see (A4));
(A32) (Re) + (#) + (An) =⇒ (M) (see (A5)).

Proof:

(A9”): x→ (y → x)
(M)
= (1→ x)→ (y → x)

(M)
= 1→ [(1→ x)→ (y →

x)]
(L)
= (y → 1)→ [(1→ x)→ (y → x)]

(BB)
= 1, i.e. (K) holds.
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(A18”): 1→ ((1→ x)→ x)
(D)
= 1, hence, by (M), x→ x = 1.

(A25): 1→ [(1→ x)→ x]
(D)
= 1, hence, by (N), (1→ x)→ x = 1. On

the other hand, x→ (1→ x)
(K)
= 1. Then, by (An), 1→ x = x.

(A26): Obviously.

(A27): Suppose that x → (y → z) = 1; then, (C) ([x → (y → z)] →
[y → (x → z)] = 1) gives 1 → [y → (x → z)] = 1; hence, by (M),
y → (x→ z) = 1; thus (#) holds.

(A28): 1 = x→ (y → z)
(Ex)
= y → (x→ z) = 1.

(A29): (see the proof of (qW32) from [2])
By (BB), (x → y) → [(y → z) → (x → z)] = 1; then, by (#), (y → z) →
[(x→ y)→ (x→ z)] = 1, i.e. (B) holds.

(A29’): Similarly, by (B), (y → z) → [(x → y) → (x → z)] = 1; then,
by (#), (x→ y)→ [(y → z)→ (x→ z)] = 1, i.e. (BB) holds.

(A30): (see the proof of (qW33) from [2])

Since (y → z)→ (y → z)
(Re)
= 1, it follows by (#) that y → [(y → z)→ z] =

1. On the other hand, [(y → z)→ z]→ [(x→ (y → z))→ (x→ z)]
(B)
= 1.

Then, by (Tr), we obtain that y → [(x→ (y → z))→ (x→ z)] = 1; hence,
by (#), [x→ (y → z)]→ [y → (x→ z)] = 1, i.e. (C) holds.

(A31): x→ y
(Re)

≤ x→ y implies, by (#′), x ≤ (x→ y)→ y.

(A32): First we prove: (a) x→ (1→ x) = 1. Indeed, 1→ (x→ x)
(Re)
=

1→ 1
(Re)
= 1, hence by (#), we obtain (a).

Then, we prove: (b) (1→ x)→ x = 1. Indeed, by (A31), (Re) + (#) =⇒
(D), and by (A4’), (D) + (Re) + (An) =⇒ (N); then 1→ ((1→ x)→ x)

(D)
= 1,

hence by (N), we obtain (b).
Now, (a) + (b) + (An) imply (M); thus, (M) holds. 2

Now recall the following four theorems from [9].

Theorem 3.4. [9] (Generalization of ([3], Lemma 1.2 and Proposition 1.3))

If properties (Re), (M), (Ex) hold, then: (BB) ⇔ (B) ⇔ (∗).

Theorem 3.5. [9]

If properties (Re), (M), (Ex) hold, then: (∗∗) ⇔ (Tr).

Theorem 3.6. [9]

If properties (M), (B), (An) hold, then: (Ex) ⇔ (BB).
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Theorem 3.7. [9] (Michael Kinyon) In any algebra (A,→, 1) we have:
(i) (M) + (BB) =⇒ (B),
(ii) (M) + (B) =⇒ (**).

By Kinyon’s Theorem 3.7(i) and (A12’), we obtained immediately that:

Corollary 3.8. [9] (M) + (BB) =⇒ (*).

Concluding, by the above Kinyon’s Theorem 3.7 and (A12’), (A13’),
(A16’), we have obtained:

Corollary 3.9. [9] In any algebra (A,→, 1) verifying (M), we have:

(BB) =⇒ (B) =⇒ (∗), (∗∗) =⇒ (Tr).

3.2 Regular Order. Ordered Regular Algebras (Structures)

Let A be a regular algebra (structure) through this subsection, i.e. property
(M) holds.

Definitions 3.10. Consider the following properties of → (≤): (Re), (An),
(Tr) ((Re’), (An’), (Tr’), respectively). Then, we shall say that A is [9]:
- reflexive, if property (Re) (or (Re’)) is satisfied;
- antisymmetric, if property (An) (or (An’)) is satisfied;
- transitive, if property (Tr) (or (Tr’)) is satisfied;
- pre-ordered, if it is reflexive and transitive;
- ordered, if it is reflexive, antisymmetric and transitive.

Among all the regular algebras (see[9]), for examples:
- the BE, RME, RM, RML algebras are only reflexive,
- the BCH, aBE, aRM, aRML algebras are reflexive and antisymmetric,
- the pre-BCK, pre-BCI, pre-BZ, pre-BCC algebras are pre-ordered,
- the BCI, BCK, BZ, BCC algebras - and also the Boolean algebras, MV
algebras, Wajsberg algebras, BL algebras, MTL algebras, residuated lattices,
Hilbert algebras - are ordered; some of them can be lattices, called regular
lattices in a subsequent paper.

Note that the notion of partially ordered set (poset) (A,≤) is more
general than the notion of (partially) ordered regular algebra (structure).
Hence, the duality principle for posets is valid for regular ordered algebras
(structures). Also the Hasse diagram for posets is valid for regular ordered al-
gebras (structures), where an element of a regular ordered algebra (structure)
will be represented by a bullet •.
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Remark 3.11. If the regular algebra (structure) is not ordered (i.e. it is
only reflexive, or reflexive and transitive, or reflexive and antisymmetric),
then a Hasse-type diagram is used, where an element is represented by a circ
◦, and if a ≤ b and b ≤ a and a 6= b (i.e. a and b have the same height, or
are parallel)), then a horizontal line will connect them. See for example the
Hasse-type diagrams for some examples of regular RM and regular RML
algebras from Figures 4 and 5, respectively.

The theory of regular algebras (structures) will be continued in the next
papers.

3.3 Some Regular Algebras: the RM, RML, BCI and BCK
Algebras

Recall now the following definitions:

Definition 3.12. An algebra (A,→, 1) is a:
- RM algebra, if it verifies the axioms (Re), (M) [9];
- RML algebra, if it verifies the axioms (Re), (M), (L) [9];
- BCI algebra, if it verifies the axioms (BB), (D), (Re), (An) [11], or, equi-
valently [9], (B), (C), (Re), (An);
- BCK algebra, if it verifies the axioms (BB), (D), (Re), (L), (An) [11], [8],
[12], or, equivalently [9], (B), (C), (K), (An).

Note that, obviously, there are equivalent definitions as structures
(A,≤,→, 1).

Note also that these algebras are regular, since property (M) holds.
Recall that a BCI algebra (A,→, 1) is p-semisimple if for each x ∈ A,

x ≤ 1 implies x = 1 (see Remark 6.5). The p-semisimple BCI algebras are
categorically equivalent with the commutative groups (see [19]).

Note that BCK algebras verify indeed all the properties in List A: (Ex),
by (A3); (M), by (A5); (N), by (A00); (*), by (A12); (**), by (A15); (Tr) by
(A14); (S), by (A0); (#), by (A27); (##), by (A28). See more about BCK
algebras in the books [20], [10].

Remarks 3.13.
(i) Most of the algebras of logic [22], [18] (Boolean algebra, MV algebra,

BL algebra, MTL algebra, divisible residuated lattice, residuated lattice,
Hilbert algebra etc.) can be seen as particular cases of BCK algebras [10].

(ii) In [9], starting from BCI, BCK (and Hilbert) algebras and from some
generalizations of BCI and of BCK algebras (BCC algebras, BZ algebras,
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BCH algebras, BE algebras, pre-BCK algebras), and based on the above
connections between the properties in the list A, new generalizations of
BCI, of BCK (and of Hilbert) algebras were introduced (the RM and RML
algebras and many others) and the connections between all of them was
shown.

Denote by RM, RML, BCI, BCK the classes of RM algebras, of
RML algebras, of BCI algebras and of BCK algebras, respectively. We have
then [9] the Hierarchy 1 from Figure 1.
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�
�
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BCK

BCI

©
©

RM

RML
(L)

(L)

(Ex)+(An)+(B)

(Ex)+(An)+(B)

Figure 1: Hierarchy 1

4 Introduction to the Theory of
Quasi-Algebras (Quasi-Structures) - Part I

Let A = (A,→, 1) be an algebra (or, equivalently, let A = (A,≤,→, 1) be a
structure) as before, throught this section too.

Definition 4.1. We call proper quasi-properties the following nine: (qAn),
(qM), (qM(1→ x)), (qN), (qN(1→ x)), (qRe), (qRe(1→ x)), (qL), (qL(1→
x)) which form the Part 1 of List qA (corresponding to the five properties
(An), (M), (N), (Re), (L) respectively, which form the Part 1 of List A).

4.1 The list qA of Basic Quasi-Properties. Connections

The list qA of “quasi-properties” that can be satisfied by A has also two
parts, and follows closely the list A of properties. The proper quasi-properties
in Part 1 of List qA are generalizations of the properties in Part 1 of List A,
while the “quasi-properties” in Part 2 of List qA are both the properties in
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Part 2 of List A and eight new specific properties ((qR) - (qI3)). We shall
understand now which was the criterion by which a property was written in
Part 1 or in Part 2 of the list.

List qA, Part 1
————————————————————————————————-
(qAn) (quasi-Antisymmetry) x→ y = 1 = y → x =⇒ 1→ x = 1→ y,
(qAn’) (quasi-Antisymmetry) x ≤ y, y ≤ x =⇒ 1→ x = 1→ y;

(qM) 1→ (x→ y) = x→ y;
(qM(1→ x)) 1→ (1→ x) = 1→ x;

(qN) 1→ (x→ y) = 1 =⇒ x→ y = 1,
(qN’) 1 ≤ x→ y =⇒ x→ y = 1;
(qN(1→ x)) 1→ (1→ x) = 1 =⇒ 1→ x = 1,
(qN(1→ x)’) 1 ≤ 1→ x =⇒ 1→ x = 1;

(qRe) (quasi-Reflexivity) (x→ y)→ (x→ y) = 1,
(qRe’) (quasi-Reflexivity) x→ y ≤ x→ y;
(qRe(1→ x)) (1→ x)→ (1→ x) = 1,
(qRe(1→ x)’) 1→ x ≤ 1→ x;

(qL) (x→ y)→ 1 = 1,
(qL’) x→ y ≤ 1;
(qL(1→ x)) (1→ x)→ 1 = 1,
(qL(1→ x)’) 1→ x ≤ 1.
————————————————————————————————-

List qA, Part 2
————————————————————————————————-
(11-1), (B), (BB), (*), (**), (C), (D), (Ex), (K), (S), (Tr); (#), (##);

(qR) (x→ y)→ ((1→ x)→ (1→ y)) = 1,
(qR1) (1→ x)→ x = 1,
(qR2) x→ (1→ x) = 1,
(qR3) (x→ (1→ y))→ (1→ (x→ y)) = 1;

(qI) x→ y = (1→ x)→ (1→ y),
(qI1) x→ y = (1→ x)→ y,
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(qI2) x→ y = x→ (1→ y),
(qI3) (1→ x)→ (1→ y) = (1→ x)→ y;

(qrelI) x ≤ y ⇔ 1→ x ≤ 1→ y,
(qrelI1) x ≤ y ⇔ 1→ x ≤ y,
(qrelI2) x ≤ y ⇔ x ≤ 1→ y.
————————————————————————————————-

4.1.1 Connections between the Properties in List A, Part 1 and
the Proper Quasi-Properties in List qA, Part 1

Theorem 4.2. Let (A,→, 1) be an algebra of type (2, 0). Then the following
are true:

(i) (An) =⇒ (qAn);
(ii) (M) =⇒ (qM) =⇒ (qM(1→ x));
(iii) (N) =⇒ (qN) =⇒ (qN(1→ x));
(iv) (Re) =⇒ (qRe) =⇒ (qRe(1→ x));
(v) (L) =⇒ (qL) =⇒ (qL(1→ x));
(vi) (M) + (qAn) =⇒ (An);
(vii) (M) + (qRe(1→ x)) =⇒ (Re);
(viii) (M) + (qL(1→ x)) =⇒ (L);
(ix) (qM) + (qRe(1→ x)) =⇒ (qRe);
(x) (qM) + (qL(1→ x)) =⇒ (qL).

Proof:
(i): Suppose that for any x, y ∈ A, x→ y = 1 = y → x; then, by (An),

x = y, hence 1→ x = 1→ y; thus, (qAn) holds.
(ii): Obviously.
(iii): For any x, y ∈ A, 1→ (x→ y) = 1 implies, by (N), that x→ y = 1,

i.e. (qN) holds; then 1→ (1→ x) = 1 implies, by (qN), that 1→ x = 1.

(iv): For any x, y ∈ A, (x→ y)→ (x→ y)
(Re)
= 1, i.e. (qRe) holds; then

(1→ x)→ (1→ x)
(qRe)

= 1, i.e. (qRe(1→ x)) holds.

(v): For any x, y ∈ A, (x→ y)→ 1
(L)
= 1, i.e. (qL) holds; then

(1→ x)→ 1
(qL)
= 1, i.e. (qL(1→ x)) holds.

(vi): For any x, y ∈ A, suppose that x → y = 1 = y → x; then, by
(qAn), 1→ x = 1→ y; finally, by (M), we obtain x = y. Thus, (An) holds.

(vii): For any y ∈ A, suppose that (1 → x) → (1 → x) = 1, i.e.

(qRe(1→ x)) holds; then, x→ x
(M)
= (1→ x)→ (1→ x) = 1.
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(viii): For any y ∈ A, suppose that (1→ x)→ 1 = 1, i.e. (qL(1→ x))

holds; then, y → 1
(M)
= (1→ y)→ 1 = 1, i.e. (L) holds.

(ix): (See the proof of (qW11) from [2])

For any x, y ∈ A, (x → y) → (x → y)
(qM)
= [1 → (x → y)] → [1 → (x →

y)]
(qRe(1→z))

= 1, i.e. (qRe) holds.
(x): (See the proof of (qW14) from [2])

For any x, y ∈ A, (x→ y)→ 1
(qM)
= [1→ (x→ y)]→ 1

(qL(1→z))
= 1. 2

Remarks 4.3.
(i) This theorem, (i) - (v), show that the proper quasi-properties:

(qAn), (qM), (qM(1→ x)), (qN), (qN(1→ x)), (qRe), (qRe(1→ x)), (qL),
(qL(1 → x)) are generalizations of the corresponding - call them regular
properties - (An), (M), (N), (Re), (L) respectively.

(ii) This theorem (vi) - (viii) show the importance of property (M).

Remark 4.4. Note that if (M) holds, then:
- (qR1) ≡ (qR2) ≡ (Re), while (qR)≡(qRe) and (qR3)≡(qRe), and this
motivates their names;
- (qI), (qI1), (qI2), (qI3) are identically satisfied, and this motivates their
names.

4.1.2 Connections between the Quasi-Properties in List qA

Looking at the connections between the properties in List A, we genera-
lize easily and obtain the following corresponding connections between the
quasi-properties in List qA:

Proposition 4.5. (See Proposition 3.2)
Let (A,→, 1) be an algebra of type (2, 0). Then the following are true

(following the numbering from Proposition 3.2):
(qA00) (qM) =⇒ (qN); (qA00’) (qM(1→ x)) =⇒ (qN (1→ x));
(qA3) (C) + (qM) + (qAn) =⇒ (Ex);
(qA4) (Ex) + (qRe) =⇒ (D);
(qA7) (qN) + (K) =⇒ (L); (qA7’) (qM) + (K) =⇒ (L);
(qA12) (qN) + (B) =⇒ (*); (qA12’) (qM) + (B) =⇒ (*);
(qA13) (qN) + (*) =⇒ (Tr); (qA13’) (qM) + (*) =⇒ (Tr);
(qA14) (qN) + (B) =⇒ (Tr); (qA14’) (qM) + (B) =⇒ (Tr);
(qA15) (qN) + (BB) =⇒ (**); (qA15’) (qM) + (BB) =⇒ (**);
(qA16) (qN) + (**) =⇒ (Tr); (qA16’) (qM) + (**) =⇒ (Tr);
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(qA17) (qN) + (BB) =⇒ (Tr); (qA17’) (qM) + (BB) =⇒ (Tr);

(qA18) (qM) + (BB) =⇒ (qRe(1→ x));

(qA19) (qM) + (B) =⇒ (qRe(1→ x));

(qA20) (BB) + (D) + (qN) =⇒ (C);

(qA20’) (BB) + (D) + (qM) =⇒ (C);

(qA21) (BB) + (D) + (qM) + (qAn) =⇒ (Ex);

(qA22) (K) + (Ex) + (qM) =⇒ (Re);

(qA23) (C) + (K) + (qM) + (qAn) =⇒ (Re).

Proof:

(qA00): Suppose 1→ (x→ y) = 1. Then, by (qM), we get x→ y = 1.

(qA00’): Suppose 1 → (1 → x) = 1. Then, by (qM(1 → x)), we get
1→ x = 1, i.e. (qN(1→ x)) holds.

(qA3): By (C), we have: [x → (y → z)] → [y → (x → z)] = 1 and
also [y → (x→ z)]→ [x→ (y → z)] = 1; hence, by (qAn), we obtain that:
1 → [x → (y → z)] = 1 → [y → (x → z)]; then, by (qM), we get that
x→ (y → z)] = y → (x→ z), i.e. (Ex) holds.

(qA4): y → [(y → x)→ x]
(Ex)
= (y → x)→ (y → x)

(qRe)
= 1.

(qA7): By (K), we have: 1→ (x→ 1) = 1; hence, by (qN), we obtain
that x→ 1 = 1, i.e. (L) holds.

(qA7’): x→ 1
(qM)
= 1→ (x→ 1)

(K)
= 1; hence, x→ 1 = 1, i.e. (L) holds.

(qA12): Suppose y → z = 1; then, by (B) ((y → z) → [(x → y) →
(x→ z)] = 1), it follows that 1→ [(x→ y)→ (x→ z)] = 1; hence, by (qN),
we obtain that (x→ y)→ (x→ z) = 1, i.e. (*) holds.

(qA12’): By (q00), (qM) implies (qN); then apply above (qA12).

(qA13): Suppose x ≤ y and y ≤ z; then, by (*’), we obtain: x→ y ≤
x→ z i.e (x→ y)→ (x→ z) = 1 = 1→ (x→ z); hence by (qN), we obtain:
x→ z = 1, i.e. (Tr) holds.

(qA13’): By (q00), (qM) implies (qN); then apply (qA13).

(qA14): Suppose x→ y = 1 and y → z = 1; then, by (B) ((y → z)→
[(x → y) → (x → z)] = 1), we obtain: 1 → [1 → (x → z)] = 1; then, by
(qN), we obtain: 1→ (x→ z) = 1; by (qN) again, we obtain: x→ z = 1.

(qA14’): By (q00), (qM) implies (qN); then, apply (qA14).

(qA15): Suppose y → z = 1; then, by (BB) ((y → z) → [(z → x) →
(y → x)] = 1), it follows that 1→ [(z → x)→ (y → x)] = 1; hence, by (qN),
we obtain (z → x)→ (y → x) = 1, i.e. (**) holds.

(qA15’): By (q00), (qM) implies (qN); then apply (qA15).
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(qA16): Suppose y ≤ z and z ≤ x; then, by (**’), we obtain: z → x ≤
y → x, i.e. (z → x) → (y → x) = 1 = 1 → (y → x); hence, by (qN), we
obtain: y → x = 1, i.e. (Tr) holds.

(qA16’): By (q00), (qM) implies (qN); then apply (qA16).

(qA17): Suppose y → z = 1 and z → x = 1; then, by (BB) ((y →
z) → [(z → x) → (y → x)] = 1), we obtain: 1 → [1 → (y → x)] = 1; then,
applying (qN) twice, we obtain y → x = 1. Thus, (Tr) holds.

(qA17’): By (q00), (qM) implies (qN); then apply (qA17).

(qA18): In (BB) ((y → z) → [(z → x) → (y → x)] = 1), take
y = z = 1; we obtain: (1 → 1) → [(1 → x) → (1 → x)] = 1, hence, by
the subsequent (qAA1), 1 → [(1 → x) → (1 → x)] = 1; then, by (qM),
(1→ x)→ (1→ x) = 1, i.e. (qRe(1→ x)) holds.

(qA19): In (B) ((y → z)→ [(x→ y)→ (x→ z)] = 1), take x = y = 1;
we obtain: (1→ z)→ [(1→ 1)→ (1→ z)] = 1, hence, by the subsequent
(qAA1’), (1 → z) → [1 → (1 → z)] = 1; now apply (qM) to obtain,
(1→ z)→ (1→ z) = 1; thus, (qRe(1→ x)) holds.

(qA20): First, by (qA15), (BB) + (qN) imply (**).
Then, by (BB’) (Y → Z ≤ (Z → X)→ (Y → X)), for X = u→ x, Y = y,
Z = z → x, we obtain:
y → (z → x) ≤ ((z → x)→ (u→ x))→ (y → (u→ x)).

Then, by (**’), we obtain: V
notation

=
[((z → x)→ (u→ x))→ (y → (u→ x))]→ [(u→ z)→ (y → (u→ x))] ≤
(y → (z → x))→ [(u→ z)→ (y → (u→ x))]

notation
= W.

But, the left side V = 1; indeed, by (BB’), we have:
u→ z ≤ (z → x)→ (u→ x); then, by (**’), we obtain:
((z → x)→ (u→ x))→ (y → (u→ x)) ≤ (u→ z)→ (y → (u→ x)),
i.e. V = 1. Then, by (qN’), W = 1, i.e.
y → (z → x) ≤ (u→ z)→ (y → (u→ x)),
which for z = y → x and u = z gives:
y → ((y → x)→ x) ≤ (z → (y → x))→ (y → (z → x));
but, by (D), the left side y → ((y → x)→ x) = 1; hence, by (qN’),
(z → (y → x))→ (y → (z → x)) = 1, i.e (C) holds.

(qA20’): By the above (q00), (qM) implies (qN); then apply (qA20).

(qA21): By (qA20’), (BB) + (D) + (qM) imply (C); and by above
(qA3), (C) + (qM) + (qAn) imply (Ex).

(qA22): x → x
(qM)
= 1 → (x → x)

(Ex)
= x → (1 → x)

(K)
= 1, hence

x→ x = 1, i.e. (Re) holds.

(qA23): By the above (qA3), (C) + (qM) + (qAn) imply (Ex). Then,
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by the above (qA22), (K) + (Ex) + (qM) imply (Re); thus, (Re) holds. 2

Proposition 4.6. (See Proposition 3.3)
Let (A,→, 1) be an algebra of type (2, 0). We have the additional

quasi-properties (following the numbering from Proposition 3.3):
(qA18”) (qM) + (D) =⇒ (qR1);
(qA25) (D) + (K) + (qN) + (qAn) =⇒ (qM(1→ x));
(qA27) (qM) + (C) =⇒ (#).

Proof:

(qA18”): 1→ ((1→ x)→ x)
(D)
= 1; then, by (qM), (1→ x)→ x = 1.

(qA25): 1→ [(1→ x)→ x]
(D)
= 1; now, by (qN), we obtain: (1→ x)→

x = 1. On the other hand, x→ (1→ x)
(K)
= 1. Consequently, by (qAn), we

obtain: 1→ (1→ x) = 1→ x, i.e. (qM(1→ x)) holds.
(qA27): By Theorem 4.2 (ii), (M) =⇒ (qM); then use (A27). 2

Now we prove the corresponding theorems of (above recalled from [9])
Theorems 3.4, 3.5, 3.6, 3.7.

Theorem 4.7. (See Theorem 3.4)
If properties (Re), (qM), (Ex) hold, then: (BB) ⇔ (B) ⇔ (∗).

Proof: By (A11), (Re) + (Ex) + (*) =⇒ (BB). By (A10), (Ex) implies
that (B) ⇔ (BB). By (qA12’), (qM) + (B) =⇒ (*). Hence, we have:
(∗) =⇒ (BB) ⇔ (B) =⇒ (∗), thus (BB) ⇔ (B) ⇔ (∗). 2

Theorem 4.8. (See Theorem 3.5)
If properties (Re), (qM), (Ex) hold, then: (∗∗) ⇔ (Tr).

Proof: By (qA16’), (qM) + (**) imply (Tr). By (A24), (Re) + (Ex) +
(Tr) imply (**). 2

Theorem 4.9. (See Theorem 3.6)
If properties (B), (D), (qM), (qAn) hold, then: (Ex) ⇔ (BB).

Proof: By (A10’), (B) + (Ex) imply (BB). By (qA21), (qM) + (qAn)
+ (BB) + (D) imply (Ex). 2

Theorem 4.10. (See Theorem 3.7) In any algebra (A,→, 1) we have:
(i) (qM) + (BB) + (D) imply (B),
(ii) (qM) + (B) imply (**).
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Proof: (i): In (BB) ((x→ y)→ [(y → z)→ (x→ z)] = 1), set x = u
and y = (u→ v)→ v, to get:

(u→ [(u→ v)→ v])→ [(((u→ v)→ v)→ z)→ (u→ z)]
(D)
=

1→ [(((u→ v)→ v)→ z)→ (u→ z)]
(qM)
=

(((u→ v)→ v)→ z)→ (u→ z) = 1.
After renaming variables, we get:
(a) (((x→ y)→ y)→ z)→ (x→ z) = 1.
Next, in (BB) set x = u→ v and y = (v → w)→ (u→ w), to get:
((u → v) → [(v → w) → (u → w)]) → [(((v → w) → (u → w)) → z) →
((u → v) → z)]

(BB)
= 1 → [(((v → w) → (u → w)) → z) → ((u → v) →

z)]
(qM)
= (((v → w)→ (u→ w))→ z)→ ((u→ v)→ z) = 1.

After renaming variables, we get:
(b) (((x→ y)→ (u→ y))→ z)→ ((u→ x)→ z) = 1.
Taking z = u→ y in (b), we get:
(c) (((x→ y)→ (u→ y))→ (u→ y))→ ((u→ x)→ (u→ y)) = 1.
Now, in (a) set x = v → w, y = t→ w, z = (t→ v)→ (t→ w) to get:
[(((v → w) → (t → w)) → (t → w)) → ((t → v) → (t → w))] → ((v →
w)→ ((t→ v)→ (t→ w)))

(c)
=

1→ ((v → w)→ ((t→ v)→ (t→ w)))
(qM)
=

(v → w)→ ((t→ v)→ (t→ w)) = 1, i.e. (B) holds.

(ii): Suppose (B) is (y → z)→ [(x→ y)→ (x→ z)] = 1. If x→ y = 1

in (B), then we get: (y → z)→ [1→ (x→ z)]
(qM)
= (y → z)→ (x→ z) = 1,

i.e. (**) holds. 2

Concluding, by the above Theorem 4.10 and (qA12’), (qA13’), (qA16’),
we immediately obtain:

Corollary 4.11. (See Corollary 3.9)

In any algebra (A,→, 1) verifying (qM), we have:

(BB) + (D) =⇒ (B) =⇒ (∗), (∗∗) =⇒ (Tr).

Proposition 4.12. Let (A,→, 1) be an algebra of type (2, 0). Then we have
the following additional quasi-properties (with an independent numbering):

(qAA1) (qM) + (BB) =⇒ (11-1); (qAA1’) (qM) + (B) =⇒ (11-1);

(qAA1”) (qM) + (K) =⇒ (11-1);

(qAA2) (Ex) + (qRe(1→ x)) + (qM) =⇒ (qR1);

(qAA3) (B) =⇒ (qR);
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(qAA4) (K) =⇒ (qR2);
(qAA5) (qR1) + (BB) =⇒ (qR3);
(qAA6) (qR1) + (K) + (**) + (qM) + (qAn) =⇒ (qI1);
(qAA7) (qRe(1→ x)) + (Ex) + (K) + (**) + (qM) + (qAn) =⇒ (qI1);
(qAA7’) (D) + (K) + (**) + (qM) + (qAn) =⇒ (qI1);
(qAA8) (Ex) + (qM) =⇒ (qI2) + (qI3);
(qAA9) (qI1) + (qI3) =⇒ (qI);
(qAA10) (qR1) + (qR2) + (BB) + (qM) + (qAn) =⇒ (qI1) + (qI2);
(qAA11) (qR3) + (K) + (*) + (qM) + (qAn) =⇒ (qI2);
(qAA12) (qI1) + (qI2) =⇒ (qI);
(qAA13) (qI) + (BB) + (qM) =⇒ (Re); (see (A18), (qA18))
(qAA14) (qI1) + (BB) + (L) + (qM) =⇒ (K); (see (A9”))
(qAA15) (B) + (Ex) + (K) + (**) + (qM) + (qAn) =⇒ (qI);
(qAA15’) (qRe(1→ x)) + (Ex) + (K) + (**) + (qM) + (qAn) =⇒

(qI);
(qAA15”) (Re) + (Tr) + (Ex) + (L) + (qM) + (qAn) ⇔

(qRe(1→ x)) + (Ex) + (K) + (**) + (qM) + (qAn);
(qAA15”’) (Re) + (Tr) + (Ex) + (L) + (qM) + (qAn) =⇒ (qI);
(qAA16) (qI) + (qRe(1→ x)) =⇒ (Re);
(qAA17) (qI) =⇒ ((qRe(1→ x)) ⇔ (Re));
(qAA18) (#) + (qM) + (qR1) =⇒ (qRe(1→ x));
(qAA18’) (#) + (qM) + (qRe(1→ x)) =⇒ (qR1);
(qAA18”) (#) + (qM) =⇒ ((qR1) ⇔ (qRe(1→ x)));
(qAA19) (qI) =⇒ (qrelI);
(qAA19’) (qI1) =⇒ (qrelI1);
(qAA19”) (qI2) =⇒ (qrelI2).

Proof:
(qAA1): (See the proof of (qW9) from [2])

1→ 1
(BB)
= 1→ [(x→ y)→ [(y → z)→ (x→ z)]]

(qM)
=

(x→ y)→ [(y → z)→ (x→ z)]
(BB)
= 1, i.e. (11-1) holds.

(qAA1’): 1→ 1
(B)
= 1→ [(y → z)→ [(x→ y)→ (x→ z)]]

(qM)
=

(y → z)→ [(x→ y)→ (x→ z)]
(B)
= 1, i.e. (11-1) holds.

(qAA1”): 1→ 1
(qM)
= 1→ (1→ 1)

(K)
= 1, i.e. (11-1) holds.

(qAA2): (1→ x)→ x
(qM)
= 1→ [(1→ x)→ x]

(Ex)
=

(1→ x)→ (1→ x)
(qRe(1→x))

= 1. Thus, (qR1) holds.
(qAA3): Obviously.
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(qAA4): Obviously.

(qAA5): (See the proof of (qW16) from [2])

[x→ (1→ y)]→ [1→ (x→ y)]
(qR1)

=

[x→ (1→ y)]→ [((1→ y)→ y)→ (x→ y)]
(BB)
= 1, i.e. (qR3) holds.

(qAA6): x
(K′)
≤ 1 → x, hence (1 → x) → y

(∗∗′)
≤ x → y. On the

other hand, 1 → x
(qR1)

≤ x, hence x → y
(∗∗′)
≤ (1 → x) → y. Consequently,

x→ y
(qM)
= 1→ (x→ y)

(qAn)
= 1→ [(1→ x)→ y]

(qM)
= (1→ x)→ y.

(qAA7): By (qAA2), (Ex) + (qRe(1→ x)) + (qM) imply (qR1); then
apply (qAA6).

(qAA7’): By (qA18”), (D) + (qM) imply (qR1); then apply (qAA6).

(qAA8): x→ y
(qM)
= 1→ (x→ y)

(Ex)
= x→ (1→ y); thus, (qI2) holds;

(1→ x)→ (1→ y)
(Ex)
= 1→ [(1→ x)→ y]

(qM)
= (1→ x)→ y.

(qAA9): Obviously.

(qAA10): We prove that (qI1) holds (see the proof of (qW26) from [2]):

On the one hand, ((1 → x) → y) → (x → y)
(qM)
= 1 → [((1 → x) → y) →

(x→ y)]
(qR2)

= [x→ (1→ x)]→ [((1→ x)→ y)→ (x→ y)]
(BB)
= 1.

On the other hand, (x→ y)→ ((1→ x)→ y)
(qM)
= 1→ [(x→ y)→ ((1→

x)→ y)]
(qR1)

= [(1→ x)→ x]→ [(x→ y)→ ((1→ x)→ y)]
(BB)
= 1.

Now, by (qAn), we obtain x → y
(qM)
= 1 → (x → y) = 1 → ((1 → x) →

y)
(qM)
= (1→ x)→ y, i.e. (qI1) holds.

We prove that (qI2) holds (see the proof of (qW27) from [2]):

On the one hand, (x → (1 → y)) → (x → y)
(qM)
= (x → (1 → y)) → (1 →

(x→ y))
(qR1)

= (x→ (1→ y))→ (((1→ y)→ y)→ (x→ y))
(BB)
= 1.

On the other hand, (x → y) → (x → (1 → y))
(qM)
= (x → y) → [1 → (x →

(1→ y))]
(qR2)

= (x→ y)→ [(y → (1→ y))→ (x→ (1→ y))]
(BB)
= 1.

Now, by (qAn) and (qM), we obtain that x→ (1→ y) = x→ y.

(qAA11): On the one hand, (qR3) + (qM) implies that (x → (1 →
y)) → (x → y) = 1. On the other hand, y → (1 → y)

(K)
= 1 implies by (*)

that (x→ y)→ (x→ (1→ y)) = 1. Now, by (qAn), (qM) we obtain that
x→ y = x→ (1→ y), i.e. (qI2) holds.

(qAA12): (See the proof of (qW28) from [2])

(1→ x)→ (1→ y)
(qI1)
= x→ (1→ y)

(qI2)
= x→ y, i.e. (qI) holds.
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(qAA13): (See the proof of (qW29) from [2])

By (qAA1), (qM) + (BB) =⇒ (11-1). Then, x→ x
(qI)
=

(1→ x)→ (1→ x)
(qM)
= 1→ [(1→ x)→ (1→ x)]

(11−1)
=

(1→ 1)→ [(1→ x)→ (1→ x)]
(BB)
= 1, i.e. (Re) holds.

(qAA14): (See the proof of (qW30) from [2])

x → (y → x)
(qI1)
= (1 → x) → (y → x)

(qM)
= 1 → [(1 → x) → (y → x)]

(L)
=

(y → 1)→ [(1→ x)→ (y → x)]
(BB)
= 1, i.e. (K) holds.

(qAA15): x→ y
(B′)
≤ (1→ x)→ (1→ y). On the other hand,

x
(K)

≤ 1→ x implies (1→ x)→ y
(∗∗′)
≤ x→ y, hence (1→ x)→ (1→ y)

(Ex)
=

1 → [(1 → x) → y]
(qM)
= (1 → x) → y ≤ x → y. Consequently, x → y

(qM)
=

1→ (x→ y)
(qAn)

= 1→ [(1→ x)→ (1→ y)]
(qM)
= (1→ x)→ (1→ y).

(qAA15’): By (qAA7), (qRe(1→ x)) + (Ex) + (K) + (**) + (qM) +
(qAn) =⇒ (qI1); by (qAA8), (Ex) + (qM) =⇒ (qI3); by (qAA9), (qI1) +
(qI3) =⇒ (qI); thus, (qI) holds.

(qAA15”): =⇒: by (A8), (Re) + (Ex) + (L) imply (K); by Theorem
4.8, (Re) + (Ex) + (qM) imply (Tr) ⇔ (**), hence (**) holds; by Theorem
4.2 (iv), (Re) implies (qRe(1→ x)).
⇐=: By (qA7’)), (K) + (qM) imply (L), by (qA22), (K) + (Ex) + (qM)
imply (Re) and by Theorem 4.8, (Re) + (Ex) + (qM) imply (Tr) ⇔ (**),
hence (Tr) holds too.

(qAA15”’): By (qAA15’) and (qAA15”).

(qAA16): x→ x
(qI)
= (1→ x)→ (1→ x)

(qRe(1→x))
= 1, i.e. (Re) holds.

(qAA17): By Theorem 4.2 (iv), (Re) =⇒ (qRe(1→ x)); by the above
(qAA16), (qI) + (qRe(1→ x)) =⇒ (Re).

(qAA18): 1
(qR1)

= (1 → x) → x
(qM)
= 1 → [(1 → x) → x]; then, by (#),

we obtain (1→ x)→ (1→ x) = 1, i.e. (qRe(1→ x)) holds.

(qAA18’): 1
(qRe(1→x))

= (1→ x)→ (1→ x) implies, by (#), that
1→ [(1→ x)→ x] = 1; hence, by (qM), we obtain (1→ x)→ x = 1.

(qAA18”): By (qAA18) and (qAA18’).

(qAA19): x ≤ y ⇔ x→ y = 1
(qI)⇔ (1→ x)→ (1→ y) = 1⇔ 1→ x ≤

1→ y, i.e. (qrelI) holds.
(qAA19’): similarly, by (qI1). (qAA19”): similarly, by (qI2). 2
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Remark 4.13. Since

(M)
(A00)
=⇒ (N)

(iii)
=⇒(qN)

(iii)
=⇒ (qN(1→ x)) and

(M)
(ii)
=⇒ (qM)

(qA00)
=⇒ (qN) and

(qM)
(ii)
=⇒ (qM(1→ x))

(qA00′)
=⇒ (qN(1→ x)),

then we can picture the situation as follows:

(qN(1→ x))

↗ ↖

(qN) (qM(1→ x))

↗ ↖ ↗

(N) (qM)

↖ ↗

(M)

4.2 Quasi-Order. Quasi-Ordered Algebras (Structures)

Let A be a proper quasi-algebra (quasi-structure) (i.e. (qM), which differs
from (M), and (11-1) hold) through this subsection; then its subalgebra
R(A) is a regular algebra (structure) (i.e. (M) holds), by Theorem 2.12.

Definitions 4.14. Consider the following properties of→ (≤): (Re), (qAn),
(Tr) ((Re’), (qAn’), (Tr’), respectively). Then, we shall say that A is:
- reflexive, if property (Re) (or (Re’)) is satisfied,
- quasi-antisymmetric, if property (qAn) (or (qAn’)) is satisfied,
- transitive, if property (Tr) (or (Tr’)) is satisfied;
- quasi-pre-ordered, and ≤ is a quasi-pre-order, if it is reflexive and transitive;
- quasi-ordered, and ≤ is a quasi-order (or a q-order for short), if it is
reflexive, quasi-antisymmetric and transitive.

A quasi-ordered quasi-algebra (quasi-structure) will be simply called
”a quasi-ordered algebra (structure)”.

Remarks 4.15.

(i) Recall that by Theorem 4.2 (vi), (M) + (qAn) =⇒ (An).
Consequently, in the presence of (M), any q-order becomes a regular order.
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(ii) The above remark (i) shows again the central role played by the
property (M): we obtain the general rule that, roughly speaking,

(M)+quasi−ordered algebra (struct.) = ordered regular algebra (struct.).

Note that both quasi-MV algebras and quasi-Wajsberg algebras are
in fact quasi-ordered algebras and that both MV algebras and Wajsberg
algebras are in fact ordered regular algebras.

We now present an important remark:

Remark 4.16. Let A = (A,→, 1) be a quasi-ordered algebra (or A =
(A,≤,→, 1) be a quasi-ordered structure). Since (qM) coincides with (M)
on R(A), by Theorem 2.12, it follows that (qAn) coincides with (An) on
R(A). Consequently,
- the q-order relation ≤ on A becomes an order relation on R(A);
-R(A) = (R(A),→, 1) is an ordered regular algebra (or, equivalently,R(A) =
(R(A),≤,→, 1) is an ordered regular structure, respectively).

4.2.1 The Duality Principle. Elements of the Same Height.
The Quasi-Hasse Diagram

Let A = (A,→, 1) be a quasi-ordered algebra (or, equivalently, let A =
(A,≤,→, 1) be a quasi-ordered structure) and ≤ be the quasi-order of A (i.e.
(qM), (Re) (hence (11-1)), (qAn), (Tr) hold) through this subsubsection.

The relation ≥, defined on A as follows: for every x, y ∈ A,

x ≥ y def.⇐⇒ y ≤ x,

is also a q-order, called the inverse q-order relation or the dual q-order
relation of the q-order relation ≤.

The duality principle for quasi-ordered algebras (structures)
is the following:
”every statement (definition of a notion, proposition, theorem, etc.) con-
cerning the quasi-ordered algebra A = (A,→, 1) (quasi-ordered structure
A = (A,≤,→, 1)) remains valid if we replace everywhere inside it the
q-order relation ≤ with the inverse q-order relation, ≥”.

The algebra (A,→, 1) (the structure (A,≥,→, 1)) obtained in this way
is also a quasi-ordered algebra (quasi-ordered structure), called the dual of
A. The statement obtained in this way (definition of a notion, proposition,
theorem, etc.) is the dual statement of the first statement (definition of a
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notion, proposition, theorem, etc.). We say also that the two quasi-ordered
algebras (structures) or statements are dual to each other or simple dual.

Definition 4.17. We say that a, b ∈ A have the same height, or are parallel,
and we denote this by a ‖ b, if a→ b = 1 and b→ a = 1 (or, equivalently,
a ≤ b and b ≤ a).

Note that if (M) holds, then a ‖ b⇔ a = b, by (An).
Note also that if a ‖ b, then 1→ a = 1→ b, by (qAn).

Corollary 4.18. If (Ex), (L) hold, then

a ‖ b ⇐⇒ 1→ a = 1→ b.

Proof: By (qAA15”’), (qM) + (Re) + (qAn) + (Tr) + (Ex) + (L)
imply (qI), hence

a→ b
(qI)
= (1→ a)→ (1→ b), b→ a

(qI)
= (1→ b)→ (1→ a).

If 1→ a = 1→ b, then (1→ a)→ (1→ b)
(Re)
= 1 and

(1→ b)→ (1→ a)
(Re)
= 1, hence a→ b = 1 and b→ a = 1, i.e. a ‖ b.

The other implication follows by (qAn). 2

Proposition 4.19. The relation ‖ is an equivalence relation of A.

Proof: For all a ∈ A, a ‖ a means a → a = 1, which is true by (Re);
thus ‖ is reflexive.
For all a, b ∈ A, if a ‖ b, i.e. a → b = 1 and b → a = 1, then obviously
b→ a = 1 and a→ b = 1, i.e. b ‖ a; thus ‖ is symmetric.
For all a, b, c ∈ A, if a ‖ b and b ‖ c, i.e. a→ b = 1, b→ a = 1 and b→ c = 1,
c → b = 1, then a → b = 1 and b → c = 1 imply a → c = 1, by (Tr), and
also c→ b = 1 and b→ a = 1 imply c→ a=1, by (Tr); so a ‖ c and thus ‖
is transitive. 2

Proposition 4.20. If properties (*), (**) also hold, then ‖ is a congruence
relation of A.

Proof: We must prove that ‖ is compatible with →.
Indeed, if a ‖ b and x ‖ y, i.e. a ≤ b, b ≤ a and x ≤ y, y ≤ x, then

a→ x
(∗′)
≤ a→ y

(∗∗′)
≤ b→ y and b→ y

(∗′)
≤ b→ x

(∗∗′)
≤ a→ x.

Then, by (Tr’), we obtain that a → x ≤ b → y and b → y ≤ a → x, i.e.
a→ x ‖ b→ y. 2
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Proposition 4.21. If (*), (**) also hold and if b ‖ a, then, in the table of
→, we have:
(i) the row of b coincides with the row of a;
(ii) the column of b coincides with the column of a.

Proof: Suppose b ‖ a, i.e. b ≤ a and a ≤ b. Then,
(i): By (**’), we obtain: for each z ∈ A, a→ z ≤ b→ z and b→ z ≤

a→ z. Then, by (qAn), 1→ (b→ z) = 1→ (a→ z), hence, by (qM), b→ z
=a→ z.

(ii): By (*’), we obtain: for each z ∈ A, z → b ≤ z → a and
z → a ≤ z → b. Then, by (qAn), 1 → (z → b) = 1 → (z → a), hence, by
(qM), z → b = z → a. 2

For each x ∈ A, we denote its equivalence class by

| x |notation= {y ∈ A | y ‖ x}

and we denote by A/ ‖ the quotient set (i.e. the set of all equivalence
classes):

A/ ‖notation= {| x | | x ∈ A}.

Note that in the particular case of quasi-MV algebras [17], the equiva-
lence relation ‖ is denoted by χ and the equivalence classes determined by χ
are called clouds; it is proved there (Lemma 19) that each cloud contains
exactly one regular element. We believe that our notation ‖ is more appro-
priate, but we shall also use the name “cloud” for an equivalence class; we
have, for each x ∈ A:

C(x) =| x | .

We have, more generally:

Lemma 4.22. If properties (Ex), (L) also hold, then every cloud in a
quasi-ordered algebra (structure) A contains exactly one regular element.

Proof: First, by (qAA15”’), (qM) + (Re) + (qAn) + (Tr) + (Ex) +
(L) imply (qI).

Let C be a cloud, i.e. there exists c ∈ A such that C =| c |.
• If c ∈ R(A), then c = 1 → c. Let a ∈ C (i.e. a ‖ c) such that a 6= c; we
prove that a 6∈ R(A). Indeed, if, by absurdum hypothesis, a ∈ R(A), then
a = 1→ a; then a→ c = 1 and c→ a = 1 imply 1→ a = 1→ c, by (qAn),
hence a = c: contradiction.
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• If c 6∈ R(A), we put b = 1→ c. Then b = 1→ c
(qM)
= 1→ (1→ c) = 1→ b,

hence b ∈ R(A).

We prove now that b ∈ C. Indeed, b → c
(qI)
= (1 → b) → (1 → c) = b →

b
(Re)
= 1 and c → b

(qI)
= (1 → c) → (1 → b) = b → b

(Re)
= 1, hence b ‖ c, i.e.

b ∈| c |= C.
We prove now that any other element a of C, such that a 6= b, is not a regular
element. Indeed, if, by absurdum hypothesis, a ∈ R(A), i.e. a = 1 → a,
then, since a ‖ c, it follows that:

1 = a→ c
(qI)
= (1→ a)→ (1→ c) = a→ b and

1 = c→ a
(qI)
= (1→ c)→ (1→ a) = b→ a;

hence, by (qAn), 1→ a = 1→ b, i.e. a = b: contradiction. 2

We define an implication of clouds as follows: for all x, y ∈ A,

| x |→| y |def.= | x→ y | .

Then, we have the following expected result:

Proposition 4.23. If (Ex), (L) also hold, then the quotient algebra
(A/ ‖,→, | 1 |) is a regular ordered algebra, isomorphic to (R(A),→, 1).

Proof: Routine, by Lemma 4.22. 2

Remarks 4.24.
(i) Given a finite regular ordered algebra (X,→, 1), we can obtain, in

general, an infinity of finite quasi-ordered algebras: (A1,→, 1), (A2,→, 1),
... such that R(A1) = R(A2) = ... = X, by adding one or more elements
parallel with some (all) elements of X (see the examples in Section 6).
We can quickly draw the table of → for such a finite quasi-ordered algebra
(A,→, 1) with R(A) = X by using either:
- property (qI), if (Ex), (L) hold or
- Proposition 4.21, if (*), (**) hold.

(ii) In particular, given a finite p-semisimple BCI algebra (G,→, 1),
with n ≥ 2 regular elements, then we cannot obtain any quasi-BCI algebra
(A,→, 1), such that R(A) = G, by adding elements parallel to m elements
of G, if 1 ≤ m < n (see Remark 6.5).

A quasi-order relation ≤ on A will be represented graphically by a
quasi-Hasse diagram, i.e.:
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- a regular element is represented by a bullet •,
- an element parallel with a regular element is represented by a big circ ©,
- the fact that x < y (i.e. x ≤ y and x 6= y) and there is no z with x < z < y
is represented by:
· a line connecting the two points, y being higher than x, if the elements x, y
are regular,
· a horizontal line connecting the two points, if the elements x, y have the
same height (are parallel).

Consequently, the regular order relation ≤ on R(A) will be represented
graphically by a Hasse diagram.

Examples. Let us consider the following two quasi-algebras A1 =
(A1 = {0, x, 1},→, 1) and A2 = (A2 = {0, x, y, 1},→, 1) given by the
following tables of →:

A1

→ 0 x 1

0 1 1 1
x 1 1 1
1 0 0 1

A2

→ 0 x y 1

0 1 1 1 1
x 1 1 1 1
y 0 0 1 1
1 0 0 1 1

Then the quasi-Hasse diagrams from Figure 2 present for each of the
quasi-algebras A1 and A2 two ways of drawing the diagrams.

•
1

•
0
©
x

•
1

•
0
©
x

A
A
A

•
1

•
0
©
x

©
y

•
1

•
0
©
x

©
y

or or

A1 A2

Figure 2: The quasi-Hasse diagrams of quasi-algebras A1 and A2

The quasi-Hasse diagram is useful for recognizing the properties of a
quasi-order relation - just as the Hasse diagram is useful for recognizing the
properties of an (regular) order relation.

Remark 4.25. If the quasi-algebra (quasi-structure) A is not ordered (i.e.
it is only reflexive, or reflexive and transitive, or reflexive and quasi-anti-
symmetric), then we shall use a quasi-Hasse-type diagram, with regular
elements (parallel or not parallel) represented by a circ ◦ and with the
parallel quasi-elements represented by a big circ ©. See for example the
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quasi-Hasse-type diagrams for the examples of quasi-RM algebra and quasi-
RML algebra from Figures 4 and 5, respectively.

The theory of quasi-algebras (quasi-structures) will be continued in the
next papers.

4.3 Quasi-Subtractive Varieties and
Quasi-Subtractive Quasi-Algebras

The quasi-subtractive varieties were introduced in [16] and studied more
deeply in [15].

Definition 4.26. [16] A variety V whose signature σ includes a nullary term
1 and a unary term 2 is called quasi-subtractive with respect to 1 and 2 if
there is a binary term → of signature σ such that V satisfies the equations:
(Q1) 2(x)→ x = 1,
(Q2) 1→ x = 2(x),
(Q3) 2(x→ y) = x→ y,
(Q4) 2(x→ y)→ (2(x)→ 2(y)) = 1.

According to [16], the variety of quasi-MV algebras is quasi-subtractive,
witness the terms x′ ⊕ y, x⊕ 0 and 1. According to F. Paoli (in a personal
e-mail discussion), the variety of quasi-Wajsberg algebras is quasi-subtractive

for 2(x)
def.
= 1→ x.

Remark indeed, that taking 2(x)
def.
= 1→ x, then the above equations

(Q1) - (Q4) become:
(Q1’) (1→ x)→ x = 1,
(Q2’) 1→ x = 1→ x,
(Q3’) 1→ (x→ y) = x→ y,
(Q4’) (1→ (x→ y))→ ((1→ x)→ (1→ y)) = 1,
and note that (Q1’) is (qR1), (Q2’) is always true, (Q3’) is (qM) and that

(Q4’)
(qM)
= (qR) (see (qA18”), (qAA2), (qAA3)). Hence, we have the

following result.

Theorem 4.27. Any variety of quasi-algebras satisfying (qR1) and (qR)
(besides (qM) and (11-1)) is a quasi-subtractive variety with respect to 1 and
2(x) = 1→ x.

We shall generalize now Definition 4.26 for any quasi-algebra (i.e. veri-
fying (qM) and (11-1)).
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Definition 4.28. A quasi-algebra is called quasi-subtractive, if it satisfies
the properties (qR1) and (qR).

It is an open problem to find which are the results from the theory of
quasi-subtractive varieties [16], [15] that remain true for the quasi-subtractive
quasi-algebras.

5 New Quasi-Algebras

Starting from the study of quasi-MV algebras [17] and of their term equi-
valent quasi-Wajsberg algebras [2] (which verify (qM), (11-1), (Re), (L) -
among others), we shall begin here the study of quasi-RM algebras and of
quasi-RML algebras, of quasi-BCI algebras and of quasi-BCK algebras.

Definition 5.1. Let A = (A,→, 1) be an algebra of type (2, 0) (or, equiva-
lently, let A = (A,≤,→, 1) be a structure) as before. Then,
(1) A is a quasi-RM algebra, if quasi-properties (qM) and (Re) hold.
(2) A is a quasi-RML algebra, if quasi-properties (qM), (Re) and (L) hold.

Note that:
- the quasi-RM algebras and the quasi-RML algebras are quasi-algebras,
since properties (qM) and (11-1) hold (by Remarks 3.1 (i));
- for any proper quasi-RM algebra (quasi-RML algebra) A (i.e. (qM) is
not (M)), the regular algebra R(A) is a regular RM algebra (RML algebra,
respectively), by Theorem 2.12.

Remarks 5.2.
(i) We shall call the quasi-algebras verifying (Re) and (L) as being of

order 1.
(ii) Note that we can define more general algebras if property (qRe)

or even more, (qRe(1 → x)), is satisfied, instead of property (Re), and if
property (qL) or even more, (qL(1 → x)), is satisfied, instead of property
(L).

We shall present now two equivalent definitions of the quasi-algebras:
quasi-BCI algebras, quasi-BCK algebras.

5.1 Quasi-BCI Algebras

Theorem 5.3. Let A = (A,→, 1) be an algebra of type (2, 0) (or, equiva-
lently, let A = (A,≤,→, 1) be a structure) as before. Then, the following
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two groups of quasi-properties are equivalent:
(qBCI-1) (BB), (D), (Re), (qM), (qAn) and
(qBCI-2) (B), (C), (Re), (qM), (qAn).

Proof:
(qBCI-1) =⇒ (qBCI-2): It is sufficient to prove that (B), (C) hold.

Indeed,
- by (qA00), (qM) =⇒ (qN); by (qA20), (BB) + (D) + (qN) =⇒ (C);
- by (qA3), (C) + (qM) + (qAn) =⇒ (Ex);
- by (A10”), (Ex) + (BB) =⇒ (B).

(qBCI-2) =⇒ (qBCI-1): It is sufficient to prove that (BB), (D) hold.
Indeed,
- by (qA3), (C) + (qM) + (qAn) =⇒ (Ex); by (A10’), (Ex) + (B) =⇒ (BB);
- by (A4), (Re) + (Ex) =⇒ (D). 2

Hence, we have the following definition:

Definition 5.4. Let A = (A,→, 1) be an algebra of type (2, 0) (or, equiva-
lently, let A = (A,≤,→, 1) be a structure). A is called a quasi-BCI algebra
(or a qBCI algebra, for short) if one of the two above equivalent groups of
properties is satisfied: (qBCI-1) or (qBCI-2).

Definition 5.5. A quasi-BCI algebra (A,→, 1) is p-semisimple if for each
x ∈ A, x ≤ 1 implies x ‖ 1.

Note that:
- a quasi-BCI algebra is a quasi-algebra, since (qM) and (11-1) hold;
- a quasi-BCI algebra is quasi-subtractive, by (qA18”), (qAA3);
- if condition (M) holds, then a (p-semisimple) quasi-BCI algebra is a
(p-semisimple) BCI algebra, by Theorem 4.2 (vi);
- for any proper (p-semisimple) quasi-BCI algebra A (i.e. (qM) is not (M)),
the regular algebra R(A) is a regular (p-semisimple) BCI algebra, by
Theorem 2.12.

It remains an open problem to check if the p-semisimple quasi-BCI
algebras are categorically equivalent with the commutative quasi-groups
(introduced in [6]), as happens in the regular case.

We do not develop further this subsection, we let this for future research.

5.2 Quasi-BCK Algebras

Theorem 5.6. Let A = (A,→, 1) be an algebra of type (2, 0) (or, equiva-
lently, let A = (A,≤,→, 1) be a structure), as before. Then, the following
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two groups of quasi-properties are equivalent:
(qBCK-1) (BB), (D), (Re), (L), (qM), (qAn) and
(qBCK-2) (B), (C), (K), (qM), (qAn).

Proof:

(qBCK-1) =⇒ (qBCK-2): It is sufficient to prove that (B), (C), (K)
hold. Indeed,
- by (qA20’), (BB) + (D) + (qM) =⇒ (C);
- by (qA3), (C) + (qM) + (qAn) =⇒ (Ex);
- by (A8), (Re) + (L) + (Ex) =⇒ (K);
- by (A10”), (BB) + (Ex) =⇒(B).

(qBCK-2) =⇒ (qBCK-1): It is sufficient to prove that (BB), (D), (Re),
(L) hold. Indeed,
- by (qA7’), (K) + (qM) =⇒ (L);
- by (qA3), (C) + (qM) + (qAn) =⇒ (Ex); by (A10’), (B) + (Ex) =⇒ (BB);
- by (qA22), (K) + (Ex) + (qM) =⇒ (Re);
- by (A4), (Re) + (Ex) =⇒ (D). 2

Hence, we have the following definition:

Definition 5.7. Let A = (A,→, 1) be an algebra of type (2, 0) (or, equiva-
lently, let A = (A,≤,→, 1) be a structure). A is called a quasi-BCK algebra
(or a qBCK algebra, for short) if one of the two above equivalent groups of
properties is satisfied: (qBCK-1) or (qBCK-2).

Note that quasi-BCK algebras verify all the quasi-properties in List
qA; indeed, we have (qM(1 → x)), by Theorem 4.2 (ii); (qN), by (qA00);
(qN(1 → x)), by Theorem 4.2 (iii); (qRe), (qRe(1 → x)), by Theorem 4.2
(iv); (qL), (qL(1→ x)), by Theorem 4.2 (v);

(11-1), by (qAA1); (*), by (qA12): (**), by (qA15); (Ex), by (qA3);
(S), by (A0); (Tr), by (qA14); (#), by (qA27); (##), by (A28); (qR), by
(qAA3); (qR1), by (qA18”); (qR2), by (qAA4); (qR3), by (qAA5); (qI1), by
(qAA7’); (qI2), by (qAA8); (qI3), by (qAA8); (qI), by (qAA9).

Note that:
- a quasi-BCK algebra is a quasi-algebra, since (qM) and (11-1) hold;
- a quasi-BCK algebra is quasi-subtractive, by (qA18”), (qAA3);
- if condition (M) holds, then a quasi-BCK algebra is a BCK algebra, by
Theorem 4.2 (vi);
- for any proper quasi-BCK algebra A (i.e. (qM) is not (M)), the regular
algebra R(A) is a regular BCK algebra, by Theorem 2.12.
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Denote by qRM, qRML, qBCI, qBCK the classes of quasi-RM
algebras, of quasi-RML algebras, of quasi-BCI algebras and of quasi-BCK
algebras, respectively. We have then the expected Hierarchy 2 from Figure 3.

H
HH�

�
�
�
�
�H
HH

�
�
�
�
�
�zz

qBCK

qBCI

©
©

qRM

qRML(L)

(L)

Figure 3: Hierarchy 2

6 Examples of Finite Quasi-Algebras

6.1 Examples of Quasi-RM and Quasi-RML Algebras

Example 6.1. Starting from the regular RM algebra A = (A = {a, b, 1},
→, 1) from [9], represented by the Hasse-type diagram from Figure 4 and
with the table of → given below, we obtain the proper quasi-RM algebra
A′ = (A′ = {a, b, x, 1},→, 1), represented by the quasi-Hasse-type diagram
given also in Figure 4 and with the table of → given below. Note that only
properties (qM) and (Re) hold; (L) does not hold for a; (Ex) does not hold
for a, b, a; (qAn) does not hold for a, b; (BB), (**), (B), (*), (Tr) do not hold
for a, b, 1; (D) does not hold for 1, a. Note that R(A′) = A.

◦
1

◦
b
◦
a

◦
1

◦
b
◦
a

A
A
A

◦
1

◦
b
◦
a

©
x

◦
1

◦
b
◦
a

©
x

or or

A A′

Figure 4: The Hasse-type diagram of the regular RM algebra A and the
quasi-Hasse-type diagram of the quasi-RM algebra A′
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A

→ a b 1

a 1 1 b
b 1 1 1
1 a b 1

A′

→ a b x 1

a 1 1 b b
b 1 1 1 1
x a b 1 1
1 a b 1 1

Example 6.2. Starting from the regular RML algebra A = (A = {a, b, c, 1},
→, 1) from [9], represented by the Hasse-type diagram from Figure 5 and with
the table of → given below, we obtain the proper quasi-RML algebra A” =
(A” = {a, b, c, x, 1},→, 1), represented by the quasi-Hasse-type diagram given
also in Figure 5 and with the table of → given below. Note that properties
(qM), (Re), (L), (D) hold; (Ex) does not hold for a, b, b; (qAn) does not hold
for b, c; (BB), (**) do not hold for a, b, c; (B), (*), (Tr) do not hold for b, c, a.
Note that R(A”) = A.

◦ ◦
1 1

◦ ◦
b b

�
��

�
��

◦ ◦
c c

@@ @@
�� ��
◦ ◦a a

©
x

A A”

Figure 5: The Hasse-type diagram of the regular RML algebra A and the
quasi-Hasse-type diagram of the quasi-RML algebra A”

A

→ a b c 1

a 1 a a 1
b a 1 1 1
c 1 1 1 1
1 a b c 1

A”

→ a b c x 1

a 1 a a 1 1
b a 1 1 1 1
c 1 1 1 1 1
x a b c 1 1
1 a b c 1 1

6.2 Examples of Quasi-BCI Algebras

Example 6.3. Starting from the regular BCI algebra A = (A = {a, b, 1},
→, 1), represented by the Hasse diagram given in Figure 6 and with the
table of → given below, we obtain the quasi-BCI algebras A1 = (A1 =
{a, b, x, 1},→, 1), A2 = (A2 = {a, b, y, 1},→, 1), A3 = (A3 = {a, b, x, y, z, 1},
→, 1), represented by the quasi-Hasse diagrams given also in Figure 6 and
with the corresponding tables of→ given below. Note that R(A1) = R(A2) =
R(A3) = A.
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•
1
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•
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©
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©
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• • • •
1 1 1 1
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• • • •
a a a a

© © ©
x y y

©
z

©
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A A1 A2 A3

BCI algebra qBCI algebra qBCI algebra qBCI algebra

Figure 6: The BCI algebra A and the quasi-BCI algebras A1, A2, A3

A

→ a b 1

a 1 a a
b a 1 1
1 a b 1

→ a b x 1

a 1 a 1 a
b a 1 a 1
x 1 a 1 a
1 a b a 1

→ a b y 1

a 1 a a a
b a 1 1 1
y a 1 1 1
1 a b b 1

→ a b x y z 1

a 1 a 1 a a a
b a 1 a 1 1 1
x 1 a 1 a a a
y a 1 a 1 1 1
z a b a b 1 1
1 a b a b 1 1

A1 A2 A3

Example 6.4. Starting from the regular p-semisimple BCI algebra G3 =
(G3 = {a, b, 1},→, 1), represented by the Hasse diagram given in
Figure 7 and with the table of → given below, we obtain the p-semisimple
quasi-BCI algebras G13 = (G1

3 = {a, b, x, y, z, 1},→, 1) and G23 = (G2
3 =

{a, b, x, u, y, z, 1},→, 1), represented by the quasi-Hasse diagrams given also
in Figure 7 and with the corresponding tables of → given below. Note that
R(G1

3) = R(G2
3) = G3.

•
1

•
b

•
a

G3
BCI algebra

• ©
1 z

• ©
b y

• ©
a x

G13
qBCI algebra

• ©
1 z

• ©
b y

• © ©
a x u

G23
qBCI algebra

Figure 7: The p-semisimple BCI algebra G3 and the associated p-semisimple
qBCI algebras G13 , G23
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→ a b 1

a 1 a b
b b 1 a
1 a b 1

→ a b x y z 1

a 1 a 1 a b b
b b 1 b 1 a a
x 1 a 1 a b b
y b 1 b 1 a a
z a b a b 1 1
1 a b a b 1 1

→ a b x u y z 1

a 1 a 1 1 a b b
b b 1 b b 1 a a
x 1 a 1 1 a b b
u 1 a 1 1 a b b
y b 1 b b 1 a a
z a b a a b 1 1
1 a b a a b 1 1

G3 G13 G23

Remark 6.5. If we start from the above p-semisimple regular BCI algebra
G3, having three regular elements, then note that we cannot obtain any
quasi-BCI algebra by adding elements parallel only to one or two
of the elements of G3, because the property (BB), for example, is no more
verified.

6.3 Example of Quasi-BCK Algebra

Example 6.6. Starting from the regular BCK algebraA = (A = {a, b, c, d, 1},
→, 1), represented by the Hasse diagram given in Figure 8 and with the
table of → given below, we obtain the associated quasi-BCK algebra A1 =
(A1 = {a, b, c, d,m, 1},→, 1), represented by the quasi-Hasse diagram given
also in Figure 8 and with the table of → given below. Note that R(A1) = A.

• •©• •�
�

�
�

S
S

S
S

• •

• •

• •

a am

A A1

BCK algebra quasi-BCK algebra

b b

c c

d d

1 1

Figure 8: The regular BCK algebra A and an associated quasi-BCK algebra,
A1
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A

→ a b c d 1

a 1 b 1 1 1
b a 1 1 1 1
c a b 1 1 1
d a b d 1 1
1 a b c d 1

A1

→ a b c d m 1

a 1 b 1 1 1 1
b a 1 1 1 a 1
c a b 1 1 a 1
d a b d 1 a 1
m 1 b 1 1 1 1
1 a b c d a 1

Other examples of quasi-BCK algebras will be presented in the next
papers.
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