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Abstract

Petri nets are a general and well-established model of concurrent and

distributed computation and behaviour, including that taking place in

biological systems. In this survey paper, we are concerned with intrin-

sic relationships between Petri nets and two formal models inspired by

aspects of the functioning of the living cell: membrane systems and

reaction systems. In particular, we are interested in the benefits that

can result from establishing strong semantical links between Petri nets

and membrane systems and reaction systems. We first discuss Petri

nets with localities reflecting the compartmentalisation modelled in

membrane systems. Then special attention is given to set-nets, a new

Petri net model for reaction systems and their qualitative approach to

the investigation of the processes carried out by biochemical reactions

taking place in the living cell.

Keywords: Petri net, biomodelling, membrane system, reaction sys-

tem, locality, GALS, qualitative modelling, set-net, set membrane sys-

tem.

1 Introduction

Petri nets (see e.g., [39]) are a general formal model for concurrent and dis-
tributed computation. Over the years, an impressive variety of Petri net
models suited for many different applications have been developed together
with supporting theories and tools. A relatively new and ever more impor-
tant field of application is biology. Thanks to its distributed character, the
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Petri net approach appears to be particularly well-suited to provide com-
putational and operational foundations for problems and issues arising in
biology; see for example, [28], for a recent comprehensive overview of appli-
cations of Petri nets in systems biology. On the other hand, to understand or
make use of specific aspects of biological processes, new formal models have
been proposed. Membrane systems and reaction systems are two examples
of such models which are both abstractions of the functioning of the living
cell.

In this paper, we are concerned with intrinsic similarities and differences
between Petri nets on the one hand, and membrane systems and reaction
systems on the other hand. In particular, we are interested in establishing
strong semantical links between these two models and Petri nets, and the
possible mutual benefits that may result. Different enhancements of the
Petri net model are considered for the faithful modelling of the dynamics
of the biological phenomena represented by membrane systems and reaction
systems. It is our aim to demonstrate the fruitful two-way interaction be-
tween Petri nets and the other two models. We will be interested in Petri
net semantics which open the way to importing Petri net methodologies and
tools to the two biologically motivated computational models. Such seman-
tics should be faithful, so rather than giving a Petri net interpretation, we
adapt and incorporate new concepts into the Petri net framework, while re-
taining the underlying Petri net philosophy. In particular, we will discuss
an extension of the standard pt-nets with a concept of locality, and much
emphasis will be given to the completely new class of Petri nets called set-
nets. The latter are suited for qualitative rather than quantitative modelling
which plays an important role in rendering of the biochemical processes that
take place in living cells.

Petri nets are a graphical modelling language with strong mathematical,
algorithmic and tool support for the specification and analysis of distributed
systems. Many different classes of Petri nets have been developed since their
first appearance in [37]. Their main common underlying philosophy is that
states are distributed and actions have a local cause and effect (on the ad-
jacent components of the net); for more discussions on this see [7]. The
most typical Petri nets are without doubt the Place/Transition nets (or pt-
nets) [8]. They are based on the production and consumption of resources
by actions taking place in the system. Hence the resulting computational
processes are essentially multiset based. Another well known, more funda-
mental, Petri net class are the Elementary Net systems (or en-systems) [8].
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Their dynamics is based on holding or not holding of local conditions rather
than being resource based.

Like pt-nets, membrane systems ([33, 34, 35, 36]) are essentially mul-
tiset rewriting systems. As a computational model they are inspired by the
way chemical reactions take place in cells which are divided by membranes
into compartments. The reactions are abstracted to rules that specify which
and how many molecules can be produced from given molecules of a certain
kind and quantity. The dynamic aspects of the membrane system model
including potential behaviour (computations), derive from such evolution
rules. To capture the compartmentalisation of membrane systems, pt-nets
are extended with transition localities. This makes it possible to have lo-
cally synchronised executions, but it requires an extension of the causality
semantics of pt-nets.

Reaction systems [3, 10, 11, 12] are also a model for the investigation of
processes carried out by biochemical reactions in living cells. The model is
meant to contribute to the understanding of the interactions between such
reactions. This time, however, biochemical reactions are based on qualitative
rather than quantitative presence of resources. Hence, in order to obtain
a faithful Petri net representation of reaction systems, it is necessary to re-
evaluate the existing Petri net modelling approaches. We therefore introduce
a new class of Petri nets, called set-nets, that supports set-based (boolean)
operations on tokens rather than the standard Petri net multiset-based token
manipulation.

Finally, we bring together the qualitative approach of reaction sys-
tems and the compartmentalisation of membrane systems as the multiset
approach of membrane systems is not always realistic from the point of view
of explicitly counting huge number of molecules and reactions. Moreover,
the resulting infinite state space makes it impractical or impossible to apply
formal verification techniques. Therefore, we propose to consider set mem-
brane systems, that is membrane systems with qualitative evolution rules.
This is especially attractive as localities and set-nets can be combined to
yield a satisfactory Petri net semantics for set membrane systems.

In this survey paper, we mainly describe approaches and give the essence
of key results. More details on Petri nets and membrane systems can be
found in [23]. Set membrane systems were introduced in [24], and set-nets
were first presented at the BioPPN Workshop held in Newcastle upon Tyne
in June 2011 (see [27] for the informal workshop version).
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2 Preliminaries

Multisets A multiset over a set X is a function µ : X → N = {0, 1, 2, . . .}.
(In this paper we only consider the case that X is finite.) Multiset µ is said
to be empty if there are no x such that x ∈ µ by which we mean that x ∈ X
and µ(x) ≥ 1. The empty multiset is denoted by ∅.

A multiset may be represented by listing its elements with repetitions,
e.g., µ = {y, y, z} is such that µ(y) = 2, µ(z) = 1, and µ(x) = 0 otherwise.
We treat sets as multisets without repetitions.

For two multisets µ and µ′ over X, the sum µ+µ′ is the multiset given
by (µ + µ′)(x) = µ(x) + µ′(x) for all x ∈ X, and if k ∈ N then k · µ is the
multiset given by (k · µ)(x) = k · µ(x) for all x ∈ X. The difference µ − µ′

is given by (µ − µ′)(x) = max{µ(x) − µ′(x), 0} for all x ∈ X. We denote
µ ≤ µ′ whenever µ(x) ≤ µ′(x) for all x ∈ X, and µ < µ′ whenever µ ≤ µ′

and µ 6= µ′.

Petri Nets A Place/Transition net (or pt-net) is defined as a tuple

PT = (Pl ,Tr ,W,M0) ,

where: Pl and Tr are finite disjoint sets of respectively places and transitions;
W : (Tr ×Pl)∪ (Pl ×Tr) → N is the arc weight function; and M0 : Pl → N

is the initial marking (in general, any multiset of places is a marking).

πa
1 πb

1 πc
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τ r131

τ r111

τ r121

πa
2 πb

2

πc
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τ r212

τ r222
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2

Figure 1: pt-net.

In diagrams, like that in Figure 1, places are drawn as circles, and
transitions as boxes. If W (x, y) ≥ 1, then (x, y) is an arc leading from x to
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y. An arc is annotated with its weight if the latter is greater than one. A
marking M is represented by drawing in each place p exactly M(p) tokens
(small black dots).

A step U of PT is a multiset of transitions. Its pre-multiset and post-
multiset of places, •U and U•, are respectively given by

•U(p) =
∑

t∈U

U(t) ·W (p, t) and U•(p) =
∑

t∈U

U(t) ·W (t, p) ,

for each place p. For the pt-net in Figure 1 we have:

•{τ r111 , τ r111 , τ r313 } = {πb
1, π

b
1, π

a
3} and {τ r111 , τ r111 , τ r313 }• = {πa

1 , π
a
1 , π

c
1, π

a
3 , π

a
3}.

We can distinguish three modes of execution for pt-nets (from sequen-
tial to fully synchronous). To start with, U is free-enabled at a marking M
if •U ≤ M . A free-enabled U is then: min-enabled if |U | = 1; and max-
enabled if U cannot be extended by a transition to yield a step which is
free-enabled at M . For the pt-net in Figure 1 we have that, at the initial
marking M0, the step {τ r121 , τ r212 } is free-enabled, {τ r111 } is min-enabled, and
{τ r111 , τ r121 , τ r212 , τ r222 } is max-enabled.
That is, U is free-enabled at M if in each place there are enough tokens for
the specified multiple occurrence of each of its transitions (note that each
transition t needs to consume from each place p exactly W (p, t) tokens which
cannot be shared with any other transition). Interleaving (min-enabledness)
allows only one transition to be executed at a time. Maximal concurrency
(max-enabledness) means that extending U would demand more tokens than
M supplies.

For each mode of execution m ∈ {free,min,max}, a step U which is
m-enabled at a marking M can be m-executed leading to the marking M ′

given by
M ′ = M − •U + U• .

We denote this by M [U〉mM
′. Moreover, an m-step sequence is a finite or

infinite sequence of m-executions starting from the initial marking. For the
pt-net in Figure 1 we have

M0[{τ
r12
1 , τ r212 }〉free{π

b
1, π

b
1, π

b
2, π

b
2, π

c
2, π

c
2, π

a
3} .

Petri Nets with Inhibitor and Activator Arcs A pt-net can be
equipped with two other kinds of arcs which test for the presence or ab-
sence of tokens in places. More precisely,

Inh ⊆ Pl × Tr and Act ⊆ Pl × Tr
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are respectively the sets of inhibitor and activator arcs. In diagrams, an
inhibitor arc ends with a small open circle, while an activator arc ends with
a small black circle. The role of both kinds of test arcs is to constrain the
enabling of a step U by stipulating that it is free-enabled at a marking M if
•U ≤ M as well as

• p /∈ M whenever there is t ∈ U such that (p, t) ∈ Inh

• p ∈ M whenever there is t ∈ U such that (p, t) ∈ Act .

All the remaining notions are the same as for pt-nets.

Petri Nets with Localities A Place/Transition net with localities (or
ptl-net) is defined as a tuple PTL = (Pl ,Tr ,W, ℓ,M0) such that
(Pl ,Tr ,W,M0) is a pt-net and ℓ : Tr → N is a locality mapping. In diagrams,
such as that in Figure 4, boxes representing transitions belonging to the same
localities are displayed on a grey background of the same shade.

Localities can be used to define one more kind of enabling for steps of
transitions. A step U of PTL is lmax-enabled if U cannot be extended by
any transition t satisfying ℓ(t) ∈ ℓ(U) to yield a step which is free-enabled
at M . That is, locally maximal concurrency (lmax-enabledness) is similar to
maximal concurrency, but now only active localities cannot execute further
transitions. For the ptl-net in Figure 4 we have that {τ r111 , τ r131 } is lmax-
enabled at the initial marking, but {τ r111 } is not. All the remaining notions
are the same as for pt-nets.

3 Membrane Systems and Petri Nets

A membrane structure µ (of degree m ≥ 1) is given by a rooted tree with
m nodes identified with the integers 1, . . . ,m. We will write (i, j) ∈ µ or
i = parent(j) to mean that there is an edge from i (parent) to j (child)
in the tree of µ, and i ∈ µ to mean that i is a node of µ. The nodes
of a membrane structure represent nested membranes which in turn deter-
mine compartments (compartment j is enclosed by membrane j and lies
in-between j and its children, if any), as shown in Figure 2.

Let V be a finite alphabet of names of objects (molecules). A basic
membrane system over µ is a tuple

Π = (V, µ, w0
1, . . . , w

0
m, R1, . . . , Rm)
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1

2 3

1

2 3

Figure 2: A membrane structure (m = 3) and its compartments with 1
being the root node, (1, 2) ∈ µ and 1 = parent(3).

such that, for every membrane i, w0
i is a multiset of objects, and Ri is a

finite set of evolution rules r of the form lhsr → rhsr, where lhsr (the left
hand side of r) is a non-empty multiset over V , and rhsr (the right hand
side of r) is a non-empty multiset over

V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .

Note that a symbol ainj
represents an object a that is sent to a child node

(compartment) j and aout means that a is sent to the parent node. If i is
the root of µ then no indexed object of the form aout belongs to rhsr. A
configuration of Π is a tuple

C = (w1, . . . , wm)

of multisets of objects, and C0 = (w0
1, . . . , w

0
m) is the initial configuration.

Figure 3 shows a basic membrane system over the membrane structure from
Figure 2.

A membrane system evolves from configuration to configuration as a
consequence of the application (or execution) of evolution rules. There is
more than one strategy in which this can be done. Maximal concurrency used
to be the standard execution mode for membrane systems. Later, however,
also in view of the intrinsic connections with Petri nets, other execution
modes attracted interest. In particular, with the concept of localities added
to pt-nets to represent compartments, locally maximal concurrency came to
light as a new realistic execution semantics for membrane systems. Hence,
similarly as in the case of ptl-nets, we can distinguish four such execution
modes, all based on the notion of a vector multi-rule.

A vector multi-rule of Π is a tuple

r = 〈r1, . . . , rm〉
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1

2 3

{a, b}
r11 : {b} → {a}

r12 : {a} → {b, cin2
, ain3

}

r13 : {b} → {c}

{a, b, c, c}

r21 : {a, c} → {b}

r22 : {b} → {a}

∅
r31 : {a} → {a, a, cout}

Figure 3: A basic membrane system Π0.

where, for each membrane i of µ, ri is a multiset of rules from Ri. For such
a vector multi-rule, we denote by lhsri the multiset

∑

r∈Ri

ri(r) · lhs
r

in which all objects in the left hand sides of the rules in ri are accumulated,
and by rhsri the multiset

∑

r∈Ri

ri(r) · rhs
r

of all (indexed) objects in the right hand sides. The first multiset specifies
how many objects are needed in each compartment for the simultaneous
execution of all the instances evolution rules in r.

A vector multi-rule r of Π is free-enabled at a configuration C if lhsri ≤
wi, for each i. A free-enabled r is: min-enabled if |r1| + · · · + |rm| = 1;
max-enabled if no ri can be extended to yield a vector multi-rule which is
free-enabled at C; and lmax-enabled if no non-empty ri can be extended
to yield a vector multi-rule which is free-enabled at C. For example, in
Figure 3,

• 〈∅,∅, {r31}〉 is not free-enabled;

• 〈{r11},∅,∅〉 is min-enabled but not lmax-enabled;

• 〈{r11, r12},∅,∅〉 is lmax-enabled but not max-enabled; and
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• 〈{r11, r12}, {r21, r22},∅〉 is max-enabled.

If r is free-enabled (free) at a configuration C, then C has in each
membrane i enough copies of objects for the application of the multiset of
evolution rules ri. Maximal concurrency (max ) requires that adding any
extra rule makes r demand more objects than C can provide. Locally maxi-
mal concurrency (lmax ) is similar but in this case only those compartments
which have rules in r cannot enable even more rules; in other words, each
compartment either uses no rule, or uses a maximal multiset of rules. Mini-
mal enabling (min) allows only a single copy of just one rule to be applied
any time.

The effect of the application of the rules is independent of the mode
of execution m ∈ {free,min,max , lmax}. A vector multi-rule r which is m-
enabled at C can m-evolve to a configuration C ′ = (w′

1, . . . w
′
m) such that,

for each i and object a:

w′
i(a) = wi(a)− lhsri (a) + rhsri (a) + rhsrparent(i)(aini

) +
∑

i=parent(j)

rhsrj(aout)

where rhsrparent(i) = ∅ if i is the root of µ. We denote this by C
r

−→m C ′.
Moreover, an m-computation is a sequence of m-evolutions starting from the
initial configuration. For the example in Figure 3 we have:

C0
r

−→m ({a, b}, {a, b, c, c, c}, {a}) ,

where r = 〈{r11, r12},∅,∅〉.

3.1 Petri Net Modelling of Membrane Systems

There is a natural way of translating a basic membrane system Π into a be-
haviourally equivalent ptl-net PTL(Π) = (P, T,W, ℓ,M0), where multisets
of places are used to represent the availability of molecules within the com-
partments, and transitions correspond to evolution rules. Each transition is
associated with a compartment and this information is represented by the
localities of net transitions. The constructed ptl-net PTL(Π) has a separate
place πa

j for each molecule a and membrane j, and a separate transition τ ri
with locality i for each rule r in compartment i. The initial marking inserts
wj(a) tokens into each place πa

j . The connectivity between transition t = τ ri
and place p = πa

j is given by:

W (p, t) =

{

lhsr(a) if i = j
0 otherwise .
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as well as:

W (t, p) =















rhsr(a) if i = j
rhsr(aout) if j = parent(i)
rhsr(ainj

) if i = parent(j)
0 otherwise .

Figure 4 shows the result of the above translation for the basic membrane
system in Figure 3.

πa
1 πb

1 πc
1

τ r131

τ r111

τ r121

πa
2 πb

2

πc
2

τ r212

τ r222

πa
3

πb
3

πc
3

τ r313
2

Figure 4: ptl-net PTL(Π0) modelling the basic membrane system Π0.

The ptl-net PTL(Π) provides a faithful representation of the behaviour
of the basic membrane system Π. To capture this very close relationship, we
define two bijective mappings, ν and ρ, which allow us to move between Π
and PTL(Π):

• For every marking M of PTL(Π), ν(M) = (w1, . . . , wm) is the config-
uration of Π, given by wi(a) = M(πa

i ), for every molecule a.

• For every step U of PTL(Π), ρ(U) = 〈r1, . . . , rm〉 is the vector multi-
rule of Π, given by ri(r) = U(τ ri ), for every compartment i and every
rule r ∈ Ri.

It is then possible to establish a direct relationship between (the operation
of) the original membrane system and the ptl-net resulting from the above
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translation at the system level:

C
r

−→m C ′ =⇒ ν−1(C) [ρ−1(r)〉m ν−1(C ′)

M [U〉mM
′ =⇒ ν(M)

ρ(U)
−→m ν(M ′)

(1)

for all modes of execution m ∈ {free,min,max , lmax}, configurations C of Π
and markings M of PTL(Π). Together with ν(M0) = C0, such a result means
that the (finite and infinite) m-step sequences of PTL(Π) faithfully represent
m-computations of Π, and the same applies to markings and configurations.

3.2 Petri Net Analysis of Membrane Systems

Thanks to the very tight behavioural correspondence between Π and PTL(Π)
captured by (1) above, analytical techniques developed for Petri nets can be
applied to membrane systems. For example, one can use the invariant analy-
sis based on linear algebra [42] to verify properties of configurations reachable
from the initial one. If we take the membrane system in Figure 3 and apply
the invariant analysis to the corresponding Petri net in Figure 4, then one
can deduce that the total number of molecules a and b in compartment 2 is
constant, irrespective of the initial configuration.

Another direction is to use the causality semantics approach of Petri
nets based on occurrence nets, allowing one to analyse entire computations
rather than individual reachable configurations. In particular, occurrence
nets allow one to investigate causality, concurrency and executability in
system behaviour. In case of lmax-step sequences, however, one needs to
modify the standard process construction, as first outlined in [26].

To analyse the state space of Π one can also employ the reachability
graph of PTL(Π). Investigating reachability graphs has a long tradition in
the field of Petri nets, and has produced several fundamental results. For
example, reachability for pt-nets is decidable [31, 29] which means that the
problem of deciding whether a basic membrane system has a free- or min-
execution leading to a given configuration can be decided, even when there
are infinitely many reachable configurations. Another relevant property of
Π is whether the concentration of specific molecule(s) in specific compart-
ment(s) can grow unboundedly. This problem, known in the are of Petri nets
as boundedness, can be tackled using the coverability tree construction [18].
Coverability trees can also be used to decide whether two specific molecules
can ever be simultaneously present in the same compartment.
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4 Reaction Systems and Petri Nets

Reaction systems [10, 11, 12] are a formal framework for the investigation
of processes carried out by biochemical reactions. Thus the framework is
inspired by biochemistry and its underlying ideas are motivated by the facil-
itation/acceleration and inhibition/retardation, properties shared by a great
number of biochemical reactions. Reaction systems constitute a computa-
tional approach inspired by nature and are targeted at the investigation of
ongoing dynamic changes occurring in biochemical systems through infor-
mation processing. However, the model is based on principles remarkably
different from those underlying other existing models of computation.

A reaction system is a pair

A = (S,A) ,

where S is a finite background set comprising the entities of A, and A is the
set of reactions of A. Each reaction is a triple of the form a = (R, I, P ),
where the three components are finite sets:4

• R ⊆ S is the set of reactants ;

• I ⊆ S is the set of inhibitors ; and

• P ⊆ S is the set of products.

The components of a reaction a = (R, I, P ) may be denoted, respectively,
by Ra, Ia and Pa.

A state of a reaction system is any set C of its entities. Then an
initialised reaction system is a triple

A = (S,A,C0) ,

where (S,A) is a reaction system and C0 ⊆ S is the initial state. A reaction
system with background set S has exactly 2|S| potential states. To describe
possible moves between these states, we need to say what is meant by an
occurrence of a reaction or a set of reactions.

A reaction a is enabled at a state C ⊆ S if Ra ⊆ C and Ia ∩ C = ∅;
moreover, for the purpose of establishing the relationship with Petri nets,
in this paper we will say that a set R of reactions is enabled at C if each

4 In the original definition these sets are assumed to be non-empty and R ∩ I = ∅.



Petri Nets for Biologically Motivated Computing 211

reaction of R is enabled. In such a case, R can occur with its effect on C
being given by

resR(C) =
⋃

a∈R

Pa .

We denote the resulting state change by C
R
−→ resR(C). If R is the set

of all reactions enabled at C, then we may simply write C −→ C ′, where
C ′ = resR(C).

In the state change as described above, all the entities in C \
⋃

a∈R Pa

disappear when R occurs. As a result, and unlike in other formal models of
dynamic systems, there is no persistency in a reaction system in the sense
that an entity present in a state disappears unless it is sustained by at least
one reaction in R. Consider, for instance, an initialised reaction system

A0 = ({q, r, s}, {a, b, c}, {q}) ,

with background set {q, r, s}, the initial state {q}, and three reactions:

a = ({r, q},∅, {r}) b = ({q}, {s}, {r, q}) c = ({q},∅, {s}) .

Then we have the following examples of state change:

{r, q, s}
{a,c}
−→ {r, s} {r, q}

{b}
−→ {r, q} {q, r, s}

{a}
−→ {r} .

One may observe that there is no conflict between reactions in the sense
that the occurrence of one reaction might imply that another reaction which
is also enabled at the current state, cannot occur. This, again, is a feature
not found in most other formal models of dynamic systems.

It is crucial to point explicitly to the ‘non-counting’ features of reac-
tion systems: entities are either present or not, and produced or not, and
reactions can or cannot occur given the presence or absence of certain enti-
ties. There is no representation of multiple instances of entities or multiple
occurrences of reactions.

In general, reaction systems may have an environment and then operate
within a changing context (with entities coming from the environment at
each stage of evolution). Here, however, we will consider context-independent
processes defined by a reaction system with an initial state provided by the
environment, and every next state obtained as the result of reactions taking
place in the previous state.
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4.1 Set-Nets

In [27] we investigate how to construct Petri net representations of reaction
systems. While doing so, we made some general observations and assump-
tions about the relationship between reaction systems and nets.

• Entities can be represented by places, and reactions by net transitions.

• Since there are no conflicts between reactions, activator arcs can be
used to test for the presence of reactants (rather than claiming re-
sources for the exclusive use as with ordinary arcs and input places).

• Inhibitor arcs can be used to test for the absence of reactants.

• All reactions that can occur in a reaction system do occur, and the
only entities left after a state change are the newly generated products.
In the Petri net framework, these features correspond to maximal con-
currency and place resetting implemented by reset arcs [9].

We tried four different modelling methods, including high-level Petri nets [17].
In each case, we established a close correspondence between the evolutions of
two corresponding models. All these net models, however, exhibited deficien-
cies w.r.t. simplicity and/or elegance and/or tractability of the translation.

In particular, in all four cases, one state of a reaction system would
correspond to many markings of a corresponding Petri net, which is dramat-
ically different from the one-to-one relationship between the configurations
of a membrane systems and markings of a the corresponding ptl-net de-
scribed in Section 3. We therefore proposed a new class of Petri nets, called
set-nets, which provide a stronger match with reaction systems and their
semantics.

The main idea is that in a set-net there is no concept of counting.
Places are marked or not marked and arcs have no weights. Set-nets resem-
ble elementary net systems (en-systems) [38] which is a fundamental model
to study basic features of concurrent systems, including conflict, causality
and independence. However, their execution semantics is different. In set-
nets, a marked place indicates the presence of a resource without any quan-
tification. Hence any number of transitions that take input from this place
can be fired at the same time. Moreover, firing a transition empties all its
input places. Thus there are no conflicts over tokens in set-nets, unlike in
en-systems or pt-nets. Similarly, places do not count the tokens, and the
firing of a transition simply marks each of its output places (whether or not
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they were already marked). We will build up the new model in two stages,
introducing first set-nets with only flow arcs.

A set-net is a tuple

SN = (Pl ,Tr ,W,M0)

such that the four components are as in the definition of pt-nets, under the
proviso that W always returns 0 or 1, and the initial marking M0 is a set (in
general, markings are now sets of places). The firing rule for SN assumes
that each step U is a set, and we denote by •U and U• the sets of all places
p such that there is a transition t ∈ U with W (p, t) = 1 and W (t, p) = 1,
respectively. We then say that U is enabled at a marking M if •U ⊆ M .
In such a case, U can be executed with its effect on M being given by the
resulting marking

M ′ = (M \ •U) ∪ U• .

We denote this by M [U〉M ′. Moreover, if U is the set of all transitions
enabled at M (i.e., all transitions t such that {t} is enabled), then we ob-
tain a maximally concurrent execution denoted by M [U〉maxM

′ or simply
M [〉maxM

′ as the maximally concurrent step enabled at M is unique. Hence
a step U enabled at a marking M may contain two distinct transitions t and
u for which •t∩ •u 6= ∅ or t•∩u• 6= ∅ and yet the common places will never
contain more than one token.

To model reaction systems, we need additionally inhibitor arcs to cap-
ture the effect of inhibitors in reaction rules. We therefore consider set-nets
with inhibitor arcs Inh ⊆ Pl × Tr . In such a case, the enabling relation
changes similarly as for pt-nets with inhibitor arcs, and we say that a step
U is enabled at a marking M if

•U ⊆ M and (M × U) ∩ Inh = ∅ .

The result of executing an enabled step remains the same as before.

4.2 Set-Nets Modelling of Reaction Systems

Reaction systems and set-nets fit together well in the sense that both do not
count tokens and both change states on the basis of the presence/absence
of resources, represented by sets. Moreover, under the set-net semantics,
ordinary arcs (transitions) can be used to empty places. Finally, following
the assumption that all reactions that can take place do take place, the
maximal set-semantics can be employed.
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πr

πq

πs

↓r

↓q

↓s

τa

τ b

τ c

Figure 5: set-net SN (A0) modelling reaction system A0.

Modelling inhibition aspects of reactions is rather straightforward, as
illustrated by the set-net in Figure 5, representing the context-independent
initialised reaction system A0 considered earlier. As we already mentioned,
places represent entities. Transitions τa, τ b and τ c represent reactions, and
r↓, q↓ and s↓ ensure that once the set-net is active only tokens produced in
the last maximal step are present in the current marking. Using inhibitor
arcs gives a compact translation of reaction systems which is in a sense
minimal w.r.t. the number of places, arcs and transitions. Moreover, relating
the behaviour of the resulting set-nets and the original reaction systems can
be done as before.

Formally, the places, transitions and initial marking of the translation
SN (A) are given by:

Pl = {πs | s ∈ S}
Tr = {τa | a ∈ A} ∪ {↓s| s ∈ S}
M0 = {πs | s ∈ C0} .

The flow and inhibitor arcs are as follows:

W = {(πs, ↓s) | s ∈ S} ∪
{(πs, τa) | a ∈ A ∧ s ∈ Ra} ∪
{(τa, πs) | a ∈ A ∧ s ∈ Pa}

Inh = {(πs, τa) | a ∈ A ∧ s ∈ Ia} .

Relating the behaviour of the set-net model SN (A) and the original
reaction system A is straightforward using the mappings ν(M) = {s | πs ∈
M}, for every marking M ⊆ Pl , and ρ(U) = {a | τa ∈ U}, for every step
U ⊆ Tr .

It is then possible to establish a direct relationship between (the oper-
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ation of) reaction systems and set-nets at the system level:

C
R
−→ C ′ =⇒ ∃U : ρ(U) = R∧ ν−1(C) [U〉 ν−1(C ′)

M [U〉M ′ =⇒ ν(M)
ρ(U)
−→ ν(M ′)

(2)

for each state C of A, and each marking M of SN (A). Together with
ν(C0) = M0, such a result means that the (finite and infinite) step sequences
of SN (A) faithfully represent computations of A, and that there is a one-to-
one correspondence between states and markings.

Moreover, the maximally concurrent semantics of the set-net corre-
sponds to the execution of the reaction system, i.e., the execution of all
enabled reactions in each evolution step:

C −→ C ′ =⇒ ν−1(C) [〉max ν−1(C ′)

M [〉maxM
′ =⇒ ν(M) −→ ν(M ′)

for each state C of A, and each marking M of SN (A).

Note that the fundamental class of en-systems [38] extended with in-
hibitor as well as activator arcs [16, 30, 32] basically has the same static
structure as set-nets. However, their treatment of conflicts between transi-
tions accessing the same token, as well blocking a transition which could add
a token to a marked place, are totally different. The latter issue has been
noted in the past, and the constraint relaxed. For example, there are varia-
tions of Petri nets, such as Boolean Petri nets, where adding a token to an
already marked place does not add another token [5, 6, 14]. Also, behaviour
of this kind was mentioned in [2] in the context of net synthesis. Having said
that, the semantics considered in prior works was based on single transition
firings, rather than (maximal) steps as is the case for set-nets, and so the
issue of ‘token sharing’ was never explicitly considered.

The main initial motivation of our investigation was to see how Petri
net based concepts could be deployed to analyse reaction systems. In doing
so, we introduced the model of set-nets which is an original contribution to
the field of Petri nets. In the next section we will see how the introduction
of set-nets has motivated the introduction of a new model of membrane
systems.
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1

2 3

{a, b}
r11 : {b} → {a}

r12 : {a} → {b, cin2
, ain3

}

r13 : {b} → {c}

{a, b, c}

r21 : {a, c} → {b}

r22 : {b} → {a}

∅
r31 : {a} → {a, cout}

Figure 6: A basic set membrane system Σ0.

5 Petri Nets and Set Membrane Systems

We now discuss membrane systems which use ‘qualitative’ rather than ‘quan-
titative’ application of evolution rules to change the current state. The for-
mal definitions and representation for this class of membrane are as those
in Section 3, except that we are now working with sets rather than multi-
sets of objects and evolution rules (similar to the operation of membrane
systems in [1] where a qualitative approach was used in the application of
rules within membranes, but a quantitative on for sending objects to the
environment).

A basic set membrane system over the membrane structure µ is a tuple

Σ = (V, µ, w0
1, . . . , w

0
m, R1, . . . , Rm)

as in Section 3, where each w0
i is a set of objects, and the left and right hand

sides of every evolution rule are non-empty sets. Similarly, each configura-
tion is composed of sets of objects.

A vector set-rule of Σ is a tuple

r = 〈r1, . . . , rm〉

where, for each membrane i of µ, ri is a set of rules from Ri. For two vector
set-rules, r and r

′, we denote r ≤ r
′ if ri ⊆ r

′
i, for each i ≤ m; and r < r

′ if
r ⊆ r

′ and r 6= r
′. For a vector set-rule r and i ≤ m, we respectively denote
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by:

lhsri =
⋃

r∈ri

lhsr and rhsri =
⋃

r∈ri

rhsr

the set of all the objects in the left hand sides of the rules in ri, and the set
of all the (indexed) objects in their right hand sides. We then say that a
vector set-rule r is free-enabled / min-enabled / max-enabled / lmax-enabled
exactly as in Section 3. Following this, a configuration C = (w1, . . . wm) can
m-evolve by a vector set-rule r which is m-enabled at C, to a configuration
C ′ = (w′

1, . . . w
′
m) such that, for each compartment i of µ:

w′
i = wi \ lhs

r

i ∪ {a ∈ V | a ∈ rhsri ∨ aini
∈ rhsrparent(i) ∨

∃(i, j) ∈ µ : aout ∈ rhsrj} .

We denote this by C
r

−→m C ′. An m-computation is then defined as a (finite
or infinite) sequence of consecutive m-evolutions starting from C0.

The difference between the ‘qualitative’ and the ‘quantitative’ interpre-
tation of the evolution rules is twofold. First, there may be two enabled
evolution rules in a compartment with a common object in their left hand
sides while there is only a single representant of that object in the current
state in the compartment. In the current qualitative set-up, the two rules can
be executed together. Second, if two simultaneously executed rules produce
the same object in the same compartment, instead of adding two instances
of this object, only one is added (so that we never have more than a single
representant of an object in any given compartment). As a consequence,
there is no need to use multisets of objects present in any single compart-
ment to represent the current state, and there is no need to use vectors of
multisets of rules in set membrane systems. In either case, using sets is fully
sufficient. One may observe that with this view of state representation and
system execution, max -evolution is deterministic in set membrane systems.

5.1 Set-Nets Modelling of Set Membrane Systems

To faithfully capture the behaviour of basic set membrane systems, we need
to extend set-nets with localities. A set-net with localities (or setl-net)
SNL is a set-net together with a locality mapping ℓ : Tr → N as in ptl-nets.
Based on the semantics of the underlying set-net and the semantics of nets
with localities, one can then introduce four modes of execution, free-enabled
/ min-enabled / max-enabled / lmax-enabled, in a straightforward way.
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The modelling of a basic set membrane system Σ as a setl-net SNL(Σ)
follows exactly the same lines as in Section 3 (note that all arcs have weight
1 in this case, and there are no inhibitor nor activator arcs). Figure 7 shows
the translation for the basic set membrane system Σ0 in Figure 6.

πa
1 πb

1 πc
1

τ r131

τ r111

τ r121

πa
2 πb

2

πc
2

τ r212

τ r222

πa
3

πb
3

πc
3

τ r313

Figure 7: setl-net SNL(Σ0) modelling the basic set membrane system Σ0.

The tight correspondence between the membrane system Σ and the
setl-net SNL(Σ) is captured by the same two bijective mappings ν and ρ,
now restricted to sets, as in Section 3. Moreover, the key result (1) establish-
ing the faithfulness of the translation obtained there can be re-stated for the
current translation. This, in particular, means that the (finite and infinite)
m-step sequences of SNL(Σ) faithfully represent m-computations of Σ.

5.2 Petri Net Analysis of Set Membrane Systems

Moving from quantitative to qualitative membrane systems is an abstraction
which may lead to a more tractable approach when it comes to answering
vital questions concerning the evolution of systems. However, to take ad-
vantage of this fact, the existing concrete analysis tools developed for the
classical, quantitative, Petri net models need to be adapted for set-nets.

In [25], we have already made preliminary investigation into the synthe-
sis problem which aims at an automatic construction of set-nets exhibiting
behaviour given in terms of a transition system. For set membrane systems
this should contribute to insight in which evolution rules lead to certain
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observed behaviour.

By bringing qualitative (set rather than multiset) aspects to membrane
systems, also interesting questions relating to expressive (generative) power
emerge. For every mode, one can consider the possible evolutions of a system
of a set membrane system (i.e., the computations of setl-nets) as a language.
These languages are regular subset languages. The study of subset languages
of Petri nets was initiated in [40, 41] but still for the standard (quantitative)
interpretation. There are a number of interesting theoretical questions and
topics for the regular subset languages generated by setl-nets under the
four execution modes as well all regular subset languages. For example, one
can consider: inclusion hierarchies; closure properties; and the complexity
of equivalence/inclusion checking. Another group of problems here would
be motivated by the target application area, i.e., biochemistry. For example,
one can investigate: oscillatory behaviour (is it possible to have cycles from
some point with at least/at most/specific evolution rules only); or vitality of
the system (possible deadlock or partial death, i.e., some rules that can no
longer be executed); or other state-related properties, like whether it would
be possible for two different objects (types of molecules) to appear in a given
compartment at some point together.

6 Petri Nets and Extended Membrane Systems

Basic (quantitative) membrane systems have over the past decade been ex-
tended in several different directions, motivated either by their potential
applications, or by their computational properties. For some of these ex-
tensions, like catalysts and symport/antiport rules, there exist straightfor-
ward translations to Petri nets (see, for example, [15]). For others, like i/o
communication and rule creation/consumption, the correspondence between
evolution rules and Petri net transitions is more involved, and the resulting
nets are additionally equipped with inhibitor and/or activator arcs (see, e.g.,
[20]).

First we consider an extended version of membrane systems for mod-
elling how reactions may be triggered or blocked in the presence of certain
molecules. The role of such molecules differs from that of catalysts which
actively take part in reactions and are returned afterwards. An example is
object a which acts as a catalyst in evolution rule

r : {a, b} → {a, bout} .
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To model the subtle effect that the presence of molecules may have, mem-
brane systems have evolution rules r of the form

lhsr → rhsr|pror , inhr

where pror and inhr are multisets over V specifying respectively the pro-
moters and inhibitors. The intuition behind pror and inhr is that they test
respectively for a minimal or maximal number of certain objects inside a
compartment, but without consuming them. As a consequence, any number
of rules can test for the presence of a single object at the same time. In
order for r to occur there must be at least pror(a) copies of each symbol
a in its associated compartment, and less than inhr(a) copies of each sym-
bol a which occurs in inhr. Thus we retain all definitions introduced for
basic membrane systems with only one change regarding the notion of a
free-enabled vector multi-rule r. This is strengthened by additionally requir-
ing that, for each i and r ∈ ri, we have prori ≤ wi and, moreover, if a ∈ inhr

then wi(a) < inhr(a).

ptl-nets are not expressive enough to model inhibitors and promoters
because arcs between transitions and places indicate consumption and pro-
duction of tokens (objects) rather than testing for their presence or absence.
A possible way out is to use ptl-nets extended with range arcs [19]. Each
such arc links a place to a transition and is specified by a closed interval (pos-
sibly infinite) of non-negative integers. This interval indicates the range (a
closed interval of natural numbers) for the number of tokens that should be
present in the place to enable the occurrence of the transition. Clearly, like
pror and inhr, range arcs can be used to model certain forbidden/required
concentrations of molecules in a compartment.

In [20], it has been shown that key properties of the modified transla-
tion are very similar to those obtained in the basic case; in particular, the
correspondence result (1) can simply be restated. Moreover, the treatment
of causality developed for ptl-nets can also be extended (see [20]).

What may come as a surprise, is that ptl-nets with inhibitor and ac-
tivator arcs are also robust enough to model in a faithful way, membrane
systems which have a dynamic structure due to rules which may thicken or
dissolve membranes [21].

When it comes to the properties which might be expressed or investi-
gated using reachability or coverability graphs, the situation changes dramat-
ically when we move from ptl-nets to ptl-nets with range arcs. The reason
is that the latter allow one to test for the absence of resources (zero-testing).
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Nets with this kind of relationship between places and transitions (i.e., in-
hibitor arcs) have been considered in [13]. The extension with inhibitor arcs
gives the resulting model of Petri nets the expressive power of Turing ma-
chines; net languages become recursively enumerable rather than recursive,
and decidability for certain important behavioural properties, such as reach-
ability and boundedness, is lost [13], partial solutions have been proposed by
restricting the class of nets under consideration as, for example, in [4, 22].

7 Conclusion

In this paper we described a number of results obtained while working at
the interface between Petri nets (by now a classical formal model for deal-
ing with distributed systems), and two recently proposed formal approaches
aimed at dealing with computations inspired by biochemical reactions (i.e.,
membrane systems and reaction systems). Our overall experience was both
illuminating and highly encouraging. We have found that the different mod-
els share a number of important features which allowed us to compare them
in a meaningful way (see, e.g., the faithfulness results (1) and (2)), but at the
same time the original models did differ in some crucial aspects. The latter
realisation has provided a direct motivation for importing concepts, such as
the structuring of the molecules in a membrane system into compartments
and the qualitative treatment of entities in reaction systems, into the realm
of Petri nets. This has resulted in the introduction of new net classes, such
as ptl-nets and set-nets, which should be of a general interest to various
application oriented research communities. For instance, nets with locali-
ties together with the lmax-semantics are relevant for dealing with globally
asynchronous locally synchronous (or GALS) systems. Moreover, we trans-
ferred newly defined modelling concepts back into the domain of membrane
systems, by developing set membrane systems. We therefore experience a
harmonious synergy of the three, originally separate, models of computation.

Results outlined in this paper open up a way to the adoption of Petri
net analytical techniques in the areas of membrane computing and reaction
systems. For example, one of the key advantages of Petri nets is that they
support in a clear and unambiguous way concepts relating to causality and
concurrency, and it turns out that the Petri net treatment of these concepts
can be extended to membrane systems thanks to the so-called barb events
which capture the intricacies of the lmax-semantics. We therefore feel that
Petri nets are a robust model which can be suitably extended to provide
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valuable insights into other, seemingly distant approaches.
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