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Alzheimer’s disease (AD) is characterized clinically by progressive cognitive decline
and pathologically by the accumulation of amyloid-β (Aβ) in the brain. Royal jelly
(RJ), a secretion of honeybee hypopharyngeal and mandibular glands, has previously
been shown to have anti-aging and neuromodulatory activities. In this study, we
discovered that 3 months of RJ treatment substantially ameliorated behavioral deficits
of APP/PS1 mice in the Morris Water Maze (MWM) test and step-down passive
avoidance test. Our data also showed that RJ significantly diminished amyloid plaque
pathology in APP/PS1 mice. Furthermore, RJ alleviated c-Jun N-terminal kinase
(JNK) phosphorylation-induced neuronal apoptosis by suppressing oxidative stress.
Importantly, hippocampal cyclic adenosine monophosphate (cAMP), p-PKA, p-CREB
and BDNF levels were significantly increased in the APP/PS1 mice after RJ treatment,
indicating that the cAMP/PKA/CREB/BDNF pathway might be related to the ameliorative
effect of RJ on cognitive decline. Collectively, these results provide a scientific basis for
using RJ as a functional food for targeting AD pathology.

Keywords: royal jelly, Alzheimer’s disease, cognitive deficits, amyloid-β, cAMP-response element binding protein,
apoptosis

INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by progressive
loss of cognitive and memory function (Citron, 2010). AD afflicts more than 45 million
individuals worldwide and has an increasing incidence, which has serious adverse impact on the
growing elderly population as well as their families (Prince et al., 2015). Currently, mounting

Abbreviations: AD, Alzheimer’s disease; Aβ, Amyloid-β; SPs, Senile plaques; NFTs, Neurofibrillary tangles; APP, Amyloid
precursor protein; BACE1, β-secretase; sAPPβ, Soluble APP peptide-β; CTFβ, C-terminal fragment-β; IDE, Insulin-degrading
enzyme; NEP, Neprilysin; RJ, Royal jelly; 10-HDA, Trans-10-hydroxy-2-decenoic acid; MWM, Morris Water Maze;
MDA, Malondialdehyde; LRP-1, Lipoprotein receptor-related protein 1; AP, Activator protein; cAMP, Cyclic adenosine
monophosphate; PKA, Protein kinase A; CREB, cAMP-response element binding protein; BDNF, Brain-derived nerve
factor; TMT, Trimethyltin; STZ, Streptozotocin; GPCRs, G protein-coupled receptors.
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evidence has shown that the extracellular deposition of
amyloid-β (Aβ) in the brain, which will lead to insoluble
senile plaques (SPs), is a critical hallmark of AD (Campion
et al., 2016). It has been reported that Aβ induced the
progression of other pathological abnormalities, including
intraneuronal neurofibrillary tangles (NFTs), which are caused
by hyperphosphorylated tau, neuroinflammation, and neuronal
loss. Conversely, these pathological events also aggravated the
deposition of Aβ and further promoted AD progression (Tanzi
and Bertram, 2005; Bettens et al., 2013). Aβ is produced by
amyloid precursor protein (APP) through the amyloidogenic
pathway. In the first stage of Aβ generation, the proteolytic
cleavage of APP by β-secretase (BACE1) produces part-soluble
APP peptide-β (sAPPβ) and C-terminal fragment-β (CTFβ),
which are further cleaved by γ-secretase to generate hydrophobic
Aβ polypeptides (Aβ40 and Aβ42; Dong et al., 2006). In addition,
Aβ-degrading enzymes, including insulin-degrading enzyme
(IDE) and neprilysin (NEP), are responsible for the clearance of
Aβ in the brain. They are capable of cleaving and converting Aβ

polypeptide to benign forms (Mukherjee et al., 2000; Shirotani
et al., 2001). Hence, it is widely accepted that excessive deposition
of Aβ can be explained by the imbalance between formation and
degradation (Hardy and Selkoe, 2002).

Currently, treatment strategies targeting the enhancement
of brain Aβ clearing activities, such as Aβ immunotherapy,
are being extensively studied (Mangialasche et al., 2010).
However, the use of therapeutic antibodies may cause a
series of side effects, including vasogenic edema (Salloway
et al., 2009), microhemorrhage (Nicoll et al., 2003) and
neuronal hyperactivity (Busche et al., 2015). In addition,
recent documents showed that Aβ immunotherapy could not
improve cognitive deficits in AD patients (Doody et al.,
2014). Likewise, tau aggregation inhibitors failed to improve
the memory and cognitive function during AD progression
(Gauthier et al., 2016). In view of the above failures,
there is a need for new drugs to inhibit the cognitive
deficits of AD and alleviate the associated neuropathology.
Several recent studies have shown the positive effects of
natural functional foods in cell culture experiments as well
as in animal models of AD (Reddy et al., 2018; Youn
et al., 2018). Royal jelly (RJ), a bee product produced
by the hypopharyngeal and mandibular glands of worker
bees, is a traditional functional food (Sabatini et al., 2009).
RJ comprises water, protein, carbohydrates, vitamin, lipids,
acetylcholine and other bioactive substances that endow
RJ with a variety of pharmacological activities, including
anti-inflammatory activity (You et al., 2018), anti-oxidative
activity (Guo et al., 2009) and anti-aging activity (Honda et al.,
2015). Importantly, there are several reports suggesting that
RJ has neuromodulatory activity in different animal models.
Hattori et al. (2010b) showed that orally administered RJ
improved the cognitive impairment of trimethyltin (TMT)-
treated mice. Zamani et al. (2012) found a neuroprotective
role for RJ in streptozotocin (STZ) induced sporadic AD rat
models. Wang et al. (2015) have verified that supplementation
with RJ significantly promoted lifespan and stress resistance
in C. elegans. Their subsequent studies further showed that

RJ alleviated Aβ toxicity in C. elegans, and revealed the
potential function of RJ in AD treatment (Wang et al., 2016).
However, it is not clear whether RJ treatment contributes to
the alleviation of familial AD. Thus, in this study, we assessed
the effects of RJ on AD pathology and cognitive function in
APP/PS1 double transgenic mice and further investigated the
underlying mechanisms.

MATERIALS AND METHODS

Gas Chromatography (GC) Detection
The content of trans-10-hydroxy-2-decenoic acid (10-HDA),
10-hydroxydecanoic acid (10-HDAA) and sebacic acid (SEA)
in RJ samples were measured using GC. 0.25 g lyophilized
RJ powder was extracted with 20 mL ethanol for 15 min
and 5 mL methyl 4-hydroxybenzoate was added as internal
standard. Next the ethanol solvent was removed, 1 mL ether
was added and filtered through 0.22 µm filter membrane.
After evaporation of the ether, 400 µL pyridine and 80 µL
N, O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA; Sigma,
Kawasaki, Japan) were added, sealed and heated at 60◦C
for 60 min to derivatize samples. All derivatized extracts
were analyzed on Gas Chromatography-Flame Ionization
Detector (GC-FID; GC-2010, Shimadzu, Kyoto, Japan) using
InertCap-5 column (30 m × 0.25 mm I.D. × 0.25 µm
film). One microliter sample was injected with the help of
AOC-20i auto injector (Shimadzu, Kyoto, Japan). Nitrogen
was used as a carrier gas and flow was kept constant at
1 mL/min. The injector was held at 280◦C and worked on
split mode (split ratio 10:1). The initial column temperature
was 60◦C and held for 5 min, then raised to 300◦C at
5◦C/min and held for 5 min. The detector was performed
at 325◦C.

Animals and Treatments
Ten-month-old APP/PS1 transgenic mice with a
C57BL/6 background (B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/J)
and age-matched C57BL/6 mice were purchased from the
Model Animal Research Center of Nanjing University (Nanjing,
China). All experiments were approved by the Institutional
Animal Care and Use Committee of Zhejiang Chinese Medical
University (IACUC Approval No: ZSLL-2017-079) and were
performed according to the guidelines from the Laboratory
Animal Research Center of Zhejiang Chinese Medical University
(Certificate No. SYXK, Zhejiang, 2013-0184, China). The
experimental design of behavioral and biochemical analysis is
shown in Supplementary Figure S1. We used equal numbers
of female and male APP/PS1 mice at the age of 10 months to
explore the effects of RJ on AD after 3 months administration.
After 1 week of acclimatization, the mice were divided into
the following groups: (1) Wt group, wild-type mice were
given intragastric administration of saline; (2) Tg group,
APP/PS1 transgenic mice were given intragastric administration
of saline; (3) TgRJ group, APP/PS1 transgenic mice were given
intragastric administration of RJ; and (4) WtRJ group, wild-type
mice were given intragastric administration of RJ. Each group
had 10 mice. All groups received oral administration of saline or
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RJ at a dose of 300 mg/kg/d for 3 months. Behavioral analysis
was carried out at 54th and 82th day using Morris Water
Maze (MWM) test, and at 89th day using step-down passive
avoidance test.

MWM Test
The spatial learning-memory abilities of mice were assessed by
MWM test as described previously (Seung et al., 2018). Briefly,
a circular water tank (height 40 cm, diameter 100 cm) was
filled with water maintained at 22–25◦C. The escape platform
(height 35 cm, diameter 6 cm) was placed submerged 1–1.5 cm
below the surface of water. Soybean milk powder was added
to make water opaque before the test. The navigation test was
conducted once a day for six consecutive days with one constant
hidden platform point in quadrant 2 and three rotational starting
points. The limit time was 120 s/trail and the trail will end as
soon as mice stayed on the hidden escape platform for 5 s.
Escape latency and swim path tracking of each mouse were
recorded by a camera mounted above the center of tank. The
probe test was carried out 24 h after the last navigation test to
evaluate the memory consolidation of mice. During the probe
test, the escape platform was removed and mice could swim
freely for 120 s. The time spent in the target quadrant and
swim path tracking of each mouse were recorded. All data
were analyzed using video-tracking software (SMART, version
2.5.15).

Step-Down Passive Avoidance Test
The step-down passive avoidance test was performed 1 day
after the MWM test as described in previous reports with
minor modifications (Ballesta et al., 2012). The equipment
comprised five plastic black chambers with parallel, stainless-
steel grids and a plastic platform was positioned in a corner
of each chamber. Before the training session, mice were gently
placed on the grid floor and each mouse was given 5 min
for adaptation. After that, the electric currents (36 V) were
delivered and maintained for 300 s. The mice would jump
onto the platform to avoid the electric shock and the number
of errors of each mouse (number of times that the mouse
stepped down from platform) was recorded. After a 24 h
interval, the retention test was carried out and the electric
shock was removed, mice were placed on the platform and the
step-down latency of each mouse was recorded. The cut-off
time in the training session and the retention session was set
to 300 s.

Brain Tissue Preparation
After the behavior tests, the mice were weighed and
deeply anesthetized with pentobarbital sodium (45 mg/kg,
intraperitoneally). The whole brain tissues were rapidly removed
from the skull on ice. They were then cut sagittally into left
and right hemispheres. The cortex and hippocampus in the
right hemispheres were dissected on ice, snap frozen in liquid
nitrogen and stored at −80◦C for biochemical analysis. The left
hemispheres were fixed in 4% paraformaldehyde for at least 24 h
and then embedded with paraffin and cut into 6 µm sections for
further staining analysis.

Histological Examinations
Immunohistochemical (IHC) Staining
Themethods of IHC staining have been reported previously (Pan
et al., 2018). Briefly, sections were blocked with 3% BSA for
30min, then incubated with primary antibodies overnight at 4◦C,
including BACE1 (1:100, Santa Cruz Biotechnology, USA), IDE
(1:100, Santa Cruz Biotechnology, USA), β-amyloid (B-4, 1:100,
Santa Cruz Biotechnology, USA). PBS was used as a negative
control instead of the primary antibody. Subsequently, the
sections were washed with PBS three times and were incubated
with secondary antibody for 1 h at room temperature. Sections
were counterstained with hematoxylin and visualized with DAB
(ZSJQ, Beijing, China). The captured images were analyzed using
Image Pro Plus 6.0 software (Media Cybernetics, Rockville, MD,
USA). For quantification, we calculated BACE1, IDE- and β-
amyloid-positive areas under 40× magnification (hippocampus)
or under 20×magnification (cortex) in three random fields in the
brain of each mouse, and the staining was quantified as fraction
of immune-positive staining to the total area measured.

Fluorescence Microscopy
The fixed brain sections were blocked with 3% BSA for 30 min,
exposed to the anti-cleaved caspase-3 antibody (1:100, Abcam,
ab13847) overnight at 4◦C and then placed in a wet box
containing a little water. After incubation, the sections were
washed twice with ice-cold PBS and incubated with Alexa Fluor
594-conjugated goat anti-rabbit IgG (1:250) for 50 min at 37◦C
in dark. They were then incubated with DAPI solution (Sangon
Biotechnology, Co. Ltd., Shanghai, China) at room temperature
for 10 min. Immunofluorescence images were acquired using a
confocal laser microscope (Leica, TCS SP5, Germany).

Thioflavin-T Staining
Thioflavin-T is a kind of fluorochrome that specifically binds
to amyloid deposits, and they can be excited to produce green
fluorescence, which is used to evaluate the amount of Aβ

protein (Zhang et al., 2013). Briefly, slides were deparaffinized
and rehydrated in descending grades of ethanol, placed in
Mayer’s hematoxylin for 5 min, rinsed twice in double distilled
water, incubated with 1% thioflavin-T (Dalian Meilun Biological
Technology Co. Ltd., China) for 10 min and changed distilled
water three times, cover-slipped in a neutral glycerol, and
examined with a Hg-lamp for fluorescence excitation using a
Zeiss inverted microscope (Axiovert 200, Carl Zeiss, USA).

Brain Aβ Enzyme-Linked Immunosorbent
Assay (ELISA)
Brain tissues were homogenized in PBS containing 1% SDS and
a protease inhibitor cocktail (Roche), and were centrifuged at
10,000 g for 1 h at 4◦C. Then, the supernatant was collected
as SDS-soluble fraction. In the meantime, the pellets were
resuspended and homogenized in 70% formic acid. After
centrifugation, the supernatant was collected as the formic-
soluble (insoluble) fraction and neutralized with 1 M Tris
buffer (pH = 11). Aβ1–40 and Aβ1–42 levels in the brain were
determined using Aβ1–40 and Aβ1–42 ELISA kits purchased
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from the Jiancheng Bioengineering Institute (Nanjing, China)
according to the manufacturer’s instructions. The protein
concentrations of supernatant were tested using a commercial
bicinchoninic acid (BCA) kit (Beyotime Biotechnology,
Hangzhou, China) and the normalized amounts of Aβ were
expressed as pg/mg of protein.

Malonaldehyde (MDA) Contents in the
Plasma and Brain
The MDA content level in the plasma and brain were measured
using a commercial kit (Jiancheng Bioengineering Institute,
Nanjing, China) according to the manufacturer’s instructions.
Brain tissues were homogenized in PBS and centrifuged at
3,000 rpm for 20 min at 4◦C. The supernatant was collected and
stored at −80◦C until use.

The Cyclic Adenosine Monophosphate
(cAMP) Assay
Cyclic adenosine monophosphate (cAMP) levels in the
hippocampus were measured using commercial ELISA kits
(Elabscience Biotechnology Co., Ltd, China). Mice hippocampus
tissues were homogenized in PBS, and then the homogenates
were centrifuged at 5,000 g for 15 min at 4◦C to remove the
particles. The protein concentrations of supernatant were
tested using BCA Protein Assay Kit and the cAMP levels were
expressed as pmol/mg protein.

Western Blot
Western blot analysis was conducted as described previously
(Guo et al., 2015). Protein extraction kit was purchased from
KeyGEN BioTECH, Co., Ltd. (Jiangsu, China). The protease
inhibitor, phosphatase inhibitor and PMSF were added into
RIPA buffer before homogenizing the brain tissues. Protein
concentrations were measured using a BCA Protein Assay Kit,
and equal amounts of protein (40 µg) were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and then transferred onto polyvinylidene difluoride (PVDF)
membranes (Millipore, Billerica, MA). PVDF membranes
were blocked with 5% skim milk at room temperature for
1 h to avoid nonspecific binding and immunoblots were

incubated overnight at 4◦C with primary antibodies. The
primary antibodies we used in this study are listed in
Table 1. After primary antibody binding, horseradish peroxidase-
conjugated secondary antibodies were incubated for 1 h
at room temperature. Blots were developed by the ECL
method, and band intensities were quantified using ImageJ
Software.

Statistical Analysis
All data are expressed as the mean ± SEM. Student’s t-test
or analyses of variance (ANOVA) with a post hoc Tukey’s
test were used to determine statistical differences, and P
values < 0.05 were considered statistically significant. Statistical
analyses were performed using GraphPad Prism 6.0 (GraphPad
Software, Inc., La Jolla, CA, USA).

RESULTS

Identification of Fatty Acids in RJ Samples
10-HDA, 10-HDAA and SEA are the main RJ acids, and they
were quantified by GC analysis in this study (Figure 1). The
percentage of 10-HDA in the RJ was 4.87%, which showed that
the RJ used in the present study was of qualified quality.

RJ Ameliorates Cognitive Deficits in
APP/PS1 Mice
In the acquisition trial, mice in the Wt group and WtRJ group
could find the submerged platform by a well-organized trajectory
after 5 days of training. However, the path tracking of Tg mice
was relatively random and disorganized compared withWtmice.
After oral administration of RJ for 3months, themice in the TgRJ
group had shorter path lengths and selective search tracking,
which demonstrated that the memory and learning functions
of Tg mice were greatly improved (Figure 2A). The average
search times to find the hidden platform (escape latency) of each
group during six consecutive days were recorded. As shown in
Figure 2B, RJ treatment could shorten the search time of Tgmice
and there were significant differences on day 5 and day 6 between
the Tg group and TgRJ group (P < 0.01). On day 6, the escape
latency of the TgRJ group was significantly decreased by 50%

TABLE 1 | Antibodies and conditions used for Western blot analyses.

Antibody Species Source Catalog. No. Dilution

BACE1 Rabbit polyclonal antibody Abcam ab10716 1:5,000
LRP1 Rabbit monoclonal antibody Abcam ab92544 1:5,000
NEP Rabbit monoclonal antibody Abcam ab79423 1:5,000
IDE Rabbit polyclonal antibody Abcam ab32216 1:1,000
β-amyloid Rabbit polyclonal antibody Abcam ab62658 1:1,000
p-PKA Rabbit monoclonal antibody Abcam ab75991 1:2,500
PKA Rabbit polyclonal antibody Abcam ab71764 1:500
CREB Rabbit monoclonal antibody Abcam ab32515 1:1,000
p-CREB Rabbit monoclonal antibody Abcam ab32096 1:5,000
BDNF Rabbit monoclonal antibody Abcam ab108319 1:2,000
BAX Rabbit monoclonal antibody Abcam ab32503 1:5,000
Bcl-2 Rabbit monoclonal antibody Abcam ab182858 1:2,000
Cleaved caspase-3 Rabbit polyclonal antibody Abcam ab13847 1:500
Cleaved caspase-9 Rabbit monoclonal antibody Abcam ab184786 1:1,000
β-tubulin Rabbit monoclonal antibody Beyotime AF1216 1:1,000
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FIGURE 1 | Gas chromatography (GC) chromatography of the lyophilized royal jelly (RJ) powder. Peaks: (1) methyl 4-hydroxybenzoate; (2) 10-hydroxydecanoic acid
(10-HDAA); (3) trans-10-hydroxy-2-decenoic acid (10-HDA); and (4) Sebacic acid (SEA).

compared with the Tg group. In addition, the area under each
curve was calculated for quantification of the memory function.
The AuC-latency in the Tg group showed a remarkable increase
compared to the control values. Compared with the Tg group,
a significant decrease in the AuC-latency was observed in the
TgRJ group (P< 0.01), suggesting that RJ treatment for 3months
could improve memory and learning functions in APP/PS1 mice
(Figure 2C). In the probe trial, the percent of time spent in
the target quadrant represents the memory retention of the
hidden platform location. RJ treatment for 3months significantly
improved memory retention in APP/PS1 mice (Figures 2D,E).

The step-down passive avoidance test was carried out the day
after the MWM test. The average number of errors in the Tg
group was higher than in the Wt group (P < 0.05). Moreover,
3 months of oral administration of RJ in APP/PS1 mice
significantly reduced the number of errors by more than 3 times
(P < 0.05; Figure 3A). RJ treatment could reverse the memory
function of APP/PS1 mice as reflected by an increased step-down
latency (P < 0.01; Figure 3B). In addition, there was no
difference in the number of errors and step-down latencies
between the Wt group and WtRJ group (P > 0.05).

RJ Reduces the Aβ Burden in the
Hippocampus and Cortex of APP/PS1 Mice
In the SDS-soluble fraction, RJ-treated APP/PS1 mice had
significantly less Aβ than the Tg group (P < 0.01). The level of
Aβ in the brain homogenates of the TgRJ group was reduced by

25% for soluble Aβ40 and 40% for soluble Aβ42 compared with
the Tg group levels (Figure 4A). The reduction of RJ on insoluble
Aβ levels was more pronounced than the effect on soluble Aβ

levels, and the insoluble Aβ40 and Aβ42 levels were reduced by
approximately 60% in the TgRJ group (P < 0.01; Figure 4B).
The amount of insoluble Aβ was much more than the amount
of soluble Aβ in the brain of APP/PS1 mice, illustrating that
insoluble Aβ is the main form of aggregated Aβ. IHC staining
of Aβ also showed that RJ could inhibit the progression of AD by
reducing the total area and number of SPs both in the cortex and
hippocampus (Figures 4C–G). Western blot and thioflavin-T
staining were carried out to further corroborate these findings
(Supplementary Figure S2).

To investigate the potential mechanisms responsible for
the effect of RJ on Aβ, we examined the expression of
BACE1, IDE, NEP and lipoprotein receptor-related protein-1
(LRP-1) using Western blot. The expression of BACE1 was
remarkably elevated in the brains of the Tg group compared
with the Wt group levels (P < 0.01). RJ decreased the
expression of BACE1 in the brain homogenates of APP/PS1 mice
(P < 0.05; Figures 4H,I). Additionally, IHC staining of
BACE1 also showed that RJ reduced BACE1 expression
by 44% in the cortex (P < 0.01) and by 24% in the
hippocampus (P < 0.05; Supplementary Figures S3A–C).
Regarding Aβ-degrading enzyme IDE, RJ treatment upregulated
IDE expression at a significant level when compared with
the Tg group (Figures 4H,J), and this result was confirmed
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FIGURE 2 | RJ treatment rescued impaired learning and memory function in APP/PS1 mice in the Morris Water Maze (MWM) test. (A) Representative path tracking in
the acquisition trial with a hidden platform. (B) Escape latency in the MWM test plotted against the training days. Data are presented as the mean ± SEM. ∗P < 0.05,
∗∗P < 0.01 compared to the Tg group. (C) The area under the curve (AuC) of the escape latency was calculated for statistical comparison. (D) Representative path
tracking in the probe trial without a hidden platform. (E) The percentage of searching time that mice of each group spent in the target quadrant where the platform
was located on days 1–6. n = 6–10 mice per group. Data are presented as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, n.s. non-significant.

FIGURE 3 | Effect of RJ on the step-down passive avoidance test in APP/PS1 mice. (A) The error frequency to step down from a platform after electric shock.
(B) The latency of the step-down response onto the grid floor 24 h after the training. n = 6–10 mice per group. Data are presented as the mean ± SEM. ∗P < 0.05,
∗∗P < 0.01, n.s. non-significant.

by IHC staining of IDE (Supplementary Figures S3D–F).
However, the expression of another Aβ-degrading enzyme,
NEP, was not increased after RJ treatment (Figures 4H,K).
The levels of Aβ transport receptors across the blood-brain
barrier (BBB), low-density LRP-1 was also measured. LRP-1
expression in the Tg group was significantly decreased compared
with the Wt group (P < 0.01), and RJ upregulated the

protein expression of LRP-1 in the brain homogenates of
APP/PS1 mice at a significant level (P < 0.05; Figures 4H,L).
These results suggested that RJ may reduce the deposition of Aβ

in APP/PS1 mice by regulating the production, degradation and
clearance process. There was no difference in BACE1, IDE, NEP
and LRP1 expression between the Wt group and the WtRJ group
(P > 0.05).
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FIGURE 4 | RJ treatment reduced the brain Aβ burden of APP/PS1 mice. (A,B) The levels of SDS-soluble and -insoluble (formic acid soluble) Aβ were measured
using enzyme-linked immunosorbent assays (ELISAs). (C) The Aβ plaques in the cortex and hippocampus were estimated after immunohistochemical (IHC) staining
with the Aβ antibody (B-4), the number of plaques per view (D,E; cortex, 20× magnification; hippocampus, 40× magnification) and proportions of the positive area
(F,G) were calculated, three sections per animal. Scale bar = 200 µm. The arrows point out the representative senile plaques (SPs). Data are presented as the
mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, n.s. non-significant. (H–L) Immunoblot analysis of β-secretase (BACE1), insulin-degrading enzyme (IDE), neprilysin (NEP) and
lipoprotein receptor-related protein-1 (LRP-1) in the brain homogenates. n = 6–10 mice per group. Data are presented as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01,
n.s. non-significant.

FIGURE 5 | RJ treatment decreased malonaldehyde (MDA) levels in the plasma (A) and brains (B) of APP/PS1 mice. n = 6–10 mice per group. Data are presented
as the mean ± SEM. ∗∗P < 0.01, n.s. non-significant.

RJ Ameliorates Oxidative Stress in
APP/PS1 Mice
Oxidative stress makes a significant contribution to neurological
deterioration, and oxidative damage to lipids, proteins and

DNA in the central nervous system occurs in patients suffering
from AD (Mancuso et al., 2010). Several lines of investigation
have revealed that RJ is a potent anti-oxidative agent (Guo
et al., 2009). MDA serves as a sensitive index for evaluating
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FIGURE 6 | RJ treatment inhibited neuronal apoptosis in APP/PS1 mice. (A) Immunostaining of cleaved caspase-3 protein in the hippocampus was performed with
a specific primary antibody, and fluorescence was developed using Alexa 594-conjugated anti-rabbit secondary antibody. Scale bar = 40 µm. (B–F) The expression
of p-Jun N-terminal kinase (JNK), bax, bcl-2, cleaved caspase-9 and cleaved caspase-3 in the hippocampus of mice was detected by Western blot. n = 6–10 mice
per group. Data are presented as the mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, n.s. non-significant.

FIGURE 7 | RJ treatment stimulated the cAMP/PKA/CREB/BDNF pathway in the hippocampus of APP/PS1 mice. The protein expression levels of cAMP, p-PKA,
PKA, p-CREB, CREB and brain-derived nerve factor (BDNF) were examined using Western blot (A–E). n = 6–10 mice per group. Data are presented as the
mean ± SEM. ∗P < 0.05, ∗∗P < 0.01, n.s. non-significant.

the oxidative stress response and was used as a marker for
lipid peroxidation in the brain (Kowalczuk and Stryjeckazimmer,
2002). To determine the effect of RJ on oxidative stress, we tested
the MDA levels both in both the plasma and brains of mice. The

results showed that the MDA levels in the plasma and brains
of the Tg group were significantly increased compared with
the Wt group levels, and RJ substantially blunted this increase
(Figure 5).
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RJ Inhibits Neuronal Apoptosis in the
Hippocampus of APP/PS1 Mice
Previous studies reported that oxidative stress plays a critical role
in neuronal apoptosis (Jiang et al., 2016). Immunofluorescence
staining was used to explore whether RJ could alleviate neuronal
apoptosis in the hippocampus of APP/PS1 mice. Our results
showed that the protein expression of cleaved caspase-3 in
the hippocampus of APP/PS1 mice was significantly increased
compared with the Wt group but was decreased by RJ treatment
(Figure 6A). Neuronal apoptosis was also determined by
Western blots, we assessed the expression levels of pro-apoptotic
markers including p-Jun N-terminal kinase (JNK), cleaved
caspase-3, cleaved caspase-9, bax and the anti-apoptotic marker
bcl-2 in the hippocampus of mice. According to our results, RJ
treatment could suppress the activation of caspase-3 by inhibiting
the phosphorylation of JNK and downregulating the bax/bcl-
2 ratio (Figures 6B–F). However, RJ has no effect on the protein
expression of cleaved caspase-9 (P > 0.05; Figures 6B,D).

Effect of RJ on the
cAMP/PKA/CREB/BDNF Pathway in the
Hippocampus of APP/PS1 Mice
To investigate the effect of RJ on the cAMP/PKA/CREB/BDNF
pathway in the hippocampus of APP/PS1 mice, we examined
the changes in cAMP, p-PKA, t-PKA, p-CREB, t-CREB and
BDNF protein expressions via ELISA and Western blot assays.
Our results showed that, compared with the Wt group, cAMP,
p-PKA, p-CREB and BDNF levels were significantly decreased in
the Tg group. However, 3 months treatment with RJ remarkedly
stimulated this pathway by increasing cAMP, p-PKA, p-CREB
and BDNF levels without changing t-PKA and t-CREB levels
(Figure 7).

DISCUSSION

APP/PS1 mice were structured based on Aβ pathology, learning-
memory deficits accompanied by detectable cerebral Aβ at
4 months, significant amyloidosis at 6–7 months, and further
aggravates pathology at 10 months (Blanchard et al., 2003;
Jankowsky et al., 2004). Hence, in the present study, 10-
month-old APP/PS1 mice were used as AD models. We
conducted MWM test after 2 months of administration RJ
and the results showed that spatial learning and memory
functions were impaired in APP/PS1 mice, which was in
accordance with previous studies (Liu et al., 2014). However,
the learning and memory functions of RJ-treated APP/PS1 mice
showed no significant improvement compared with saline-
treated APP/PS1 mice (Supplementary Figure S4). Thus, we
prolonged the RJ-treated time to 3 months. The hippocampus,
entorhinal cortex and cingulate cortex are three important areas
for spatial memory function and transformation of short-term
memory to long-term memory, and damage in these regions is
associated with memory loss in AD (Khan et al., 2014; López
et al., 2014; Chang et al., 2016). Thus, it is possible that RJ exerts a
protective effect on learning and memory functions by inhibiting
or repairing hippocampal and cortical lesions in AD brains.

The hippocampus and cortex are vulnerable to damage in the
brains of AD patients, and this damage can lead to pathologic
changes (Fjell et al., 2014). In view of this, we conducted
IHC staining to explore whether RJ could work against the
deposition of Aβ in the hippocampus and cortex of AD brains.
In line with the behavioral studies, we observed that RJ-treated
APP/PS1 mice had significantly less Aβ deposition than vehicle-
treated APP/PS1 mice both in the hippocampus and cortex. The
imbalance of Aβ production and degradation is an important
causative factor in AD progression (Zhu et al., 2013). In this
light, we examined the APP proteolytic pathway, the Aβ catalytic
pathway and the Aβ transportation pathway in this study.
Interestingly, our results showed that the protective effect of RJ
could be partly attributed to the increased levels of LRP-1. This
result is particularly significant as the efflux transport of Aβ

across the BBB is the most crucial prerequisite to Aβ clearance
(Erickson and Banks, 2013). In future studies, we will use LRP-1
knockout APP/PS1 mice to completely clarify the role of LRP-1
in the RJ-induced clearance of Aβ. BACE1 and γ-secretase are
needed for the amyloidogenic pathological processing of APP
to generate Aβ fragments (Willem et al., 2015). Our results
showed that the expression of BACE1 was greatly increased in
APP/PS1 mice compared with Wt mice. However, it has been
reported that there are no differences in the production rate of
Aβ in the brains of AD patients and cognitively normal controls
(Mawuenyega et al., 2010). Our results led to the hypothesis that
γ-secretase may be the rate-limiting enzyme and its expression
may remain unchanged in APP/PS1 mice when compared with
wild-type mice. The underlying mechanisms of this divergence
need further exploration.

Aβ strongly correlates with oxidative stress-related pathology,
including cellular dysfunction and death, and subsequent
cognitive impairment. Oxidative stress increases the amount
of APP and then further aggravates AD pathology (Jiang
et al., 2016). This study verified that oxidative stress is a
therapeutic target of RJ in AD. AMP N1-oxide, a unique
compound not found in natural products other than RJ, has
important neurothropic activity in brain function. It could
induce the generation of neurites and inhibit cell growth
through adenosine A2A receptor-mediated protein kinase A
(PKA) signaling and potentiate the development of astrocytes
(Hattori et al., 2010a). Additionally, 10-HDA could easily cross
the BBB and exert unique neuromodulatory activity due to
its smaller size. Importantly, 10-HDA initiates neurogenesis
by neural stem/progenitor cells (Hattori et al., 2007a). Thus,
one hypothesis is that AMP N1-oxide and 10-HDA are active
components in RJ that alleviate cognitive deficits and Aβ

accumulation in the APP/PS1 mouse model. In AD brains,
activation of c-JNK has been demonstrated in neurons and
dystrophic neurites (Shoji et al., 2000). It has been described
that JNK signaling induces activator protein (AP)-1-dependent
Bax and caspase activation, which results in neuronal apoptosis
(Putcha et al., 2003). Inhibition of the JNK pathway significantly
reduced the toxicity attributable to Aβ. Our results showed that
RJ inhibited JNK-induced neuronal apoptosis, which may be a
mechanism underlying the ameliorative effect of RJ on cognitive
deficits.
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Previous studies reported that cAMP signal transduction
is disrupted in AD brains, and cAMP signal transduction
disruption is responsible for memory impairment and
neuronal loss (Yamamoto et al., 2000). Decreased cAMP
levels inhibit the activation of PKA, followed by reduced
levels of phosphorylated cAMP response element binding
protein (CREB). BDNF, a downstream gene mediated by
CREB, is a neurotrophin with well-established properties
of promoting neuronal survival (Chen et al., 2017). Aβ at a
sublethal concentration downregulates the BDNF signaling
in cultured cortical neurons (Tong et al., 2004). Additionally,
preclinical reports have described that AD transgenic mouse
models show decreased cortical BDNF expression (Peng et al.,
2009). Changes in BDNF levels may lead to cognitive deficits
(Nieto et al., 2013). Thus, it is possible that RJ alleviated
cognitive dysfunction and neuronal apoptosis by elevating
BDNF levels. cAMP plays an important part in the immune
process, and the imbalance of cAMP in inflammatory cells
leads to inflammatory disorders (Aronoff et al., 2004). Certain
inflammatory mediators are potent drivers of AD (Wyss-Coray,
2006). Therefore, increased cAMP levels not only promote
BDNF expression but also alleviate neuroinflammation, which
may underlie RJ’s protective effect on cognitive function. G
protein-coupled receptors (GPCRs) are a superfamily of cell
surface receptors. The rhodopsin family of GPCRs represent
approximately 85% of the GPCR superfamily. The adenosine
receptor consists of four subtypes (A1, A2A, A2B, and A3)
whose role is primarily to regulate cAMP accumulation in a
wide variety of tissues (Prosser et al., 2017). AMP N1-oxide,
a unique compound of RJ, elicited neuronal differentiation
of PC12 cells through adenosine A2A receptor-mediated

PKA signaling (Hattori et al., 2007b). Thus, we made a
preliminary speculation that the unregulation of cAMP pathway
may be supported by A2A signal-mediated activation of
CREB.

In summary, our data demonstrate that RJ substantially
improved cognitive deficits and reduced SPs of APP/PS1 mice
via stimulation of the cAMP/PKA/CREB/BDNF pathway and
inhibition of neuronal apoptosis. Our findings show that RJ may
be a promising medicine for AD and lay the foundation for
therapeutic development of AD focusing on natural products.
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