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On the Structure of Subsets of the Discrete
Cube with Small Edge Boundary
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Abstract: The edge isoperimetric inequality in the discrete cube specifies, for each pair of
integers m and n, the minimum size gn(m) of the edge boundary of an m-element subset of
{0,1}n; the extremal families (up to automorphisms of the discrete cube) are initial segments
of the lexicographic ordering on {0,1}n. We show that for any m-element subset F⊂ {0,1}n

and any integer l, if the edge boundary of F has size at most gn(m)+ l, then there exists an
extremal family G ⊂ {0,1}n such that |F∆G| ≤Cl, where C is an absolute constant. This
is best possible, up to the value of C. Our result can be seen as a ‘stability’ version of the
edge isoperimetric inequality in the discrete cube, and as a discrete analogue of the seminal
stability result of Fusco, Maggi and Pratelli [15] for the isoperimetric inequality in Euclidean
space.
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1 Introduction

Isoperimetric inequalities are of ancient interest in mathematics. In general, an isoperimetric inequality
gives a lower bound on the ‘boundary size’ of a set of a given ‘size’, where the exact meaning of these
words varies according to the problem. One of the best-known examples is the isoperimetric inequality
for Euclidean space, which states (informally) that among all subsets of Rn of given volume (whose
surface area is defined), a Euclidean ball has the smallest surface area. An exact formulation (actually,
one of the versions) of this inequality is as follows.
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Theorem 1.1. If A⊂ Rn is a Borel set with Lebesgue measure µ(A)< ∞, then

Per(A)≥ Per(B),

where B is a Euclidean ball in Rn with µ(B) = µ(A).

Here, Per(S) denotes the distributional perimeter of a set S ⊂ Rn, which is equal to the (n− 1)-
dimensional Lebesgue measure of the topological boundary of S, for sufficiently ‘nice’ sets S. (E.g., it
suffices for S to be a Borel set with finite Lebesgue measure and piecewise smooth topological boundary.)

When an isoperimetric inequality is sharp, and the extremal sets are known, it is natural to ask whether
the inequality is also ‘stable’ — i.e., if a set has boundary of size ‘close’ to the minimum, must that set be
‘close in structure’ to an extremal set?

In their seminal work [15], Fusco, Maggi and Pratelli obtained a stability result for Theorem 1.1,
confirming a conjecture of Hall [16].

Theorem 1.2 (Fusco, Maggi, Pratelli, 2008). Let ε > 0. Suppose A⊂ Rn is a Borel set with Lebesgue
measure µ(A)< ∞, and with

Per(A)≤ (1+ ε)Per(B),

where B is a Euclidean ball with µ(B) = µ(A). Then there exists x ∈ Rn such that

µ(A∆(B+ x))≤Cn
√

ε µ(A),

where Cn > 0 is a constant depending upon n alone.

As observed in [15], Theorem 1.2 is sharp up to the value of the constant Cn, as can be seen by taking
S to be an ellipsoid with n−1 semi-axes of length 1 and one semi-axis of length slightly larger than 1.

Discrete isoperimetric inequalities

In the last fifty years, there has been a great deal of interest in discrete isoperimetric inequalities. These
deal with the boundaries of sets of vertices in graphs. There are two natural measures of the boundary of a
set of vertices in a graph: the edge boundary and the vertex boundary. If G = (V,E) is a graph, and A⊂V
is a set of vertices of G, the edge boundary of A consists of the set of edges of G which join a vertex in A to a
vertex in V \A; it is denoted by ∂G(A), or by ∂A when the graph G is understood. The vertex boundary of A
consists of the set of vertices of V \A which are adjacent to a vertex in A; it is sometimes denoted by bG(A),
or by b(A) when the graph G is understood. If G = (V,E) is a graph, the edge isoperimetric problem for
G asks for a determination of ΦG(m) := min{|∂A| : A⊂V, |A|= m}, for each integer m; similarly, the
vertex isoperimetric problem for G asks for a determination of ΨG(m) := min{|b(A)| : A⊂V, |A|= m},
for each integer m.

An important example of a discrete isoperimetric problem, and the focus of this paper, is the edge-
isoperimetric problem for the n-dimensional discrete cube, Qn. (We define Qn to be the graph with
vertex-set {0,1}n, where two 0-1 vectors are adjacent if they differ in exactly one coordinate.) This
isoperimetric problem has numerous applications, both to other problems in mathematics, and in other
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areas such as communication complexity (see e.g. [17]), network science (see [3]) and game theory (see
[18]). Hereafter, if A⊂ {0,1}n, we write ∂A for the edge boundary of A with respect to Qn.

The edge isoperimetric problem for Qn was solved by Harper [17], Lindsey [27], Bernstein [2],
and Hart [18]. Let us describe the solution. We may identify {0,1}n with the power-set P([n]) of
[n] := {1,2, . . . ,n}, by identifying a 0-1 vector (x1, . . . ,xn) with the set {i ∈ [n] : xi = 1}. We can then
view Qn as the graph with vertex set P([n]), where two sets S,T ⊂ [n] are adjacent if |S∆T | = 1. The
lexicographic ordering on P([n]) is defined by S > T iff min(S∆T ) ∈ S. If m ∈ [2n], the initial segment of
the lexicographic ordering on P([n]) of size m is simply the subset of P([n]) consisting of the m largest
elements of P([n]) with respect to the lexicographic ordering. If L ⊂ P([n]) is an initial segment of
the lexicographic ordering, we say L is lexicographically ordered. Note that if m = 2d for some d ∈ N,
then the initial segment of the lexicographic ordering on P([n]) of size m is the d-dimensional subcube
{S⊂ [n] : [n−d]⊂ S}.

Harper, Bernstein, Lindsey and Hart proved the following.

Theorem 1.3 (The edge isoperimetric inequality for Qn). If F ⊂ P([n]), then |∂F| ≥ |∂L|, where L⊂
P([n]) is the initial segment of the lexicographic ordering of size |F|.

Let us describe the extremal families for Theorem 1.3. If F,G ⊂ P([n]), we say that F and G are
weakly isomorphic if there exists an automorphism φ of Qn such that G= φ(F); in this case, we write
F ∼= G. Equivalently, F,G⊂ {0,1}n are weakly isomorphic iff G can be obtained from F by permuting
the coordinates 1,2, . . . ,n and interchanging 0’s with 1’s on some subset of the coordinates. Clearly, weak
isomorphism preserves the size of the edge boundary. It is well-known (and easy to check by analyzing
known proofs of Theorem 1.3) that equality holds in Theorem 1.3 if and only if F is weakly isomorphic
to L. In particular, if |F| is a power of 2, then equality holds in Theorem 1.3 if and only if F is a subcube.

To date, several stability versions of Theorem 1.3 have been obtained. Using a Fourier-analytic
argument, Friedgut, Kalai and Naor [14] obtained a stability result for sets of size 2n−1, showing that
if F ⊂ P([n]) with |F|= 2n−1 and |∂F| ≤ (1+ ε)2n−1, then |F∆C|/2n = O(ε) for some codimension-1
subcube C. (The dependence upon ε here is almost sharp, viz., sharp up to a factor of Θ(log(1/ε)).
Bollobás, Leader and Riordan (unpublished) proved an analogous result for |F| ∈ {2n−2,2n−3}, also
using a Fourier-analytic argument. Samorodnitsky [28] used a result of Keevash [23] on the structure of
r-uniform hypergraphs with small shadows, to prove a stability result for all F⊂ P([n]) with log2 |F| ∈N,
under the rather strong condition |∂F| ≤ (1+O(1/n4))|∂L|. In [6], the first author proved the following
stability result (which implies the above results), using a recursive approach and an inequality of Talagrand
[29] (which is proved via Fourier analysis).

Theorem 1.4 ([6]). There exists an absolute constant c > 0 such that the following holds. Let 0≤ δ < c.
If F⊂ P([n]) with |F|= 2d for some d ∈N, and |F∆C| ≥ δ2d for all d-dimensional subcubes C⊂ P([n]),
then

|∂F| ≥ |∂C|+2d
δ log2(1/δ ).

As observed in [6], this result is best possible (except for the condition 0 ≤ δ < c, which was
conjectured to be unnecessary in [6]). However, the problem of obtaining a sharp stability result for sets
not of size a power of 2, remained open.
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Our result

In this paper, we obtain the following stability result for the edge isoperimetric inequality in the
discrete cube, which applies to families of arbitrary size and which is sharp up to an absolute constant
factor.

Theorem 1.5. There exists an absolute constant C > 0 such that the following holds. If F ⊂ P([n]) and
L⊂ P([n]) is the initial segment of the lexicographic ordering with |L|= |F|, then there exists a family
G⊂ P([n]) weakly isomorphic to L, such that

|F∆G| ≤C(|∂F|− |∂L|).

This is sharp up to the value of the absolute constant C. In fact, we conjecture that Theorem 1.5 holds
with C = 2, due to the following example.

Example 1.6. Let s, t,n be integers with t ≥ 2 and t +2≤ s≤ n, and let

F = Fn,s,t = {S⊂ [n] : [t]⊂ S}∪{S⊂ [n] : [t−2]∪{t +1, t +2, . . . ,s} ⊂ S}.

It is easy to see that

min{|F∆G| : G∼= L, L is an initial segment of lex, |L|= |F|}= 2(|∂F|− |∂L|), (1.1)

for each of the above families F. We proceed to verify this when s = n and t = 2, i.e. for the family

Fn,n,2 = {S⊂ [n] : {1,2} ⊂ S}∪{{1,3,4, . . . ,n},{2,3,4, . . . ,n},{3,4, . . . ,n}};

the proof in the general case is similar. Let L⊂ P([n]) be the initial segment of lex with |L|= |Fn,n,2|;
then

L= {S⊂ [n] : {1,2} ⊂ S}∪{{1,3,4, . . . ,n},{1,3,4, . . . ,n−1},{1,3,4, . . . ,n−2,n}}.

It is easy to check that |∂ (Fn,n,2)|− |∂L| = 2. Now let G ⊂ P([n]) be any family weakly isomorphic
to L. Since L is contained in a codimension-1 subcube of P([n]), so is G. However, it is clear that
|Fn,n,2 \C| ≥ 2 for any codimension-1 subcube C of P([n]). Hence, using the fact that |Fn,n,2|= |G|, we
have

|Fn,n,2∆G| ≥ 2|Fn,n,2 \G| ≥ 2min
C
|Fn,n,2 \C| ≥ 4 = 2(|∂ (Fn,n,2)|− |∂L|),

where the minimum is over all codimension-1 subcubes C of P([n]). Clearly, we have |Fn,n,2∆L| = 4.
The last two facts imply (1.1).

We note that the relation between |∂F|−|∂L| and |F∆G| in Theorem 1.4 (which applies in the special
case where |F| is a power of 2) is sharper than in Theorem 1.5, but the above example demonstrates that
Theorem 1.5 is sharp (up to an absolute constant factor) in its more general setting.

Instead of the Fourier-analytic techniques used in most previous works on isoperimetric stability,
our techniques are purely combinatorial. As is often the case with theorems concerning Qn, we prove
Theorem 1.5 by induction on n, but the techniques we use in the inductive step are somewhat novel. The
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inductive step relies on an ‘intermediate’ structure theorem (Proposition 4.1) concerning the intersections
of F with codimension-1 and codimension-2 subcubes, where F ⊂ P([n]) is a family with small edge
boundary. This proposition is proved using some intricate combinatorial arguments, including shifting
operators (a.k.a. ‘compressions’), and a detailed analysis of the influences of the family (see below).

Related work

The edge boundary ∂F of a subset F ⊂ P([n]) is closely connected with the influences of F. For
F ⊂ P([n]), the ith influence of F is defined by

Infi[F] := |{A⊂ [n] : |F∩{A,A∆{i}}|= 1}|/2n,

and the total influence of F is I[F] := ∑
n
i=1 Infi[F]. Note that I[F] = |∂F|/2n−1 — the total influence of a

set is none other than the size of its edge boundary, appropriately normalised.
It is natural to rephrase this definition in the language of Boolean functions. If f : {0,1}n→{0,1},

we define the ith influence of f to be the probability that, if x ∈ {0,1}n is chosen uniformly at random and
the ith entry of x is flipped, the value of the function f changes. There is of course a natural one-to-one
correspondence between subsets of P([n]) and Boolean functions on {0,1}n: for each F ⊂ P([n]), we
associate to F the Boolean function χF : {0,1}n→{0,1} defined by χF(x) = 1 iff {i ∈ [n] : xi = 1} ∈ F;
the ith influence of F is then precisely the ith influence of χF.

Over the last thirty years, many results have been obtained on the influences of Boolean functions
(and functions on more general product spaces), and have proved extremely useful in such diverse fields
as theoretical computer science, social choice theory and statistical physics, as well as in combinatorics
(see, e.g., the survey [22]). One of the most useful such results (and one of the first major results on
influences) is the seminal ‘KKL theorem’ (Kahn, Kalai and Linial [21]), which states that for any Boolean
function f : {0,1}n→{0,1} with E[ f ] = µ , there exists i ∈ [n] such that

Infi[ f ]≥ c0µ(1−µ)
logn

n
,

where c0 is an absolute constant — so a Boolean function of expectation 1/2 has some coordinate of
‘fairly large’ influence, viz., Ω((logn)/n). (Note that if E[ f ] = 1/2, then Theorem 1.3 implies that
I[ f ]≥ 1, so a naive averaging argument only supplies a coordinate of influence at least 1/n.) The proof
of Kahn, Kalai and Linial made crucial use of Fourier analysis on the discrete cube, together with the
hypercontractive inequality due (independently) to Gross, Bonami and Beckner. Another very useful
example is Friedgut’s ‘Junta’ theorem [11]:

Theorem 1.7 (Friedgut’s Junta theorem). There exists an absolute constant C such that the following
holds. Let ε > 0, and let F ⊂ P([n]). Then there exists G ⊂ P([n]) depending upon at most 2CI[F]/ε

coordinates, such that |F∆G| ≤ ε2n.

Here, to be completely formal, if G⊂ P([n]) we say that G depends upon k coordinates if there exists
S⊂ [n] with |S|= k, such that (T ∈ G)⇔ (T ∩S ∈ G) holds for all T ⊂ [n]. Friedgut’s theorem implies
that any F ⊂ P([n]) with bounded total influence (at most K, say), and with measure |F|/2n bounded
away from 0 and 1, can be closely approximated by a ‘junta’ — that is, by a family which depends upon
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a bounded number of coordinates (depending on K). Friedgut’s proof in [11] uses Fourier analysis and
hypercontractivity, in a similar way to the proof of the KKL theorem. (We remark that in [8], Falik and
Samorodnitsky gave different, more combinatorial proofs of the KKL theorem and of Friedgut’s theorem,
utilising martingales rather than Fourier analysis and hypercontractivity.)

For families F⊂P([n]) with measure |F|/2n ∈ [α,1−α], Theorem 1.3 implies that I[F]≥ 2α log2(1/α).
Hence, Friedgut’s theorem can be viewed as a structure theorem for families of measure bounded away
from 0 and 1, whose total influence lies within a constant multiplicative factor of the minimum possible
total influence. Similarly, Friedgut [12], Bourgain [4] and Hatami [19] obtained structure theorems
for ‘large’ subsets of P([n]) whose ‘biased’ measure lies within a constant multiplicative factor of the
minimum possible, and Kahn and Kalai [20] stated several conjectures on ‘small’ subsets of P([n])
satisfying the same condition. The results of [4, 12, 19] are deep, with many important applications.

In contrast to the results of [4, 12, 19], which describe the structure of families with total influence
within a constant factor of the minimum, our Theorem 1.5 describes the structure of Boolean functions
with total influence ‘very’ close to the minimum. On the other hand, the structure we obtain is very strong
— namely, closeness to a genuinely extremal family.

2 Outline of the Proof and Organization of the Paper

The main step of our proof is showing an ‘intermediate’ structural result (Proposition 4.1 below) for
families of small edge boundary (i.e., small total influence). Informally, this says that if F ⊂ P([n]) such
that |F| ≤ 2n−1 and I [F]≤ I [L]+ ε , where L the initial segment of the lexicographic ordering on P([n])
of size |F| and ε is sufficiently small, then one of the following must hold.

Case (1): F is essentially contained in a subcube of codimension 1 (i.e., in a family depending upon just one
coordinate), and the total influence of the part of F inside the subcube is ‘small’.

Case (2): F is essentially contained in a subcube of codimension 2 (i.e., in a family depending upon just two
coordinates), and the total influence of the part of F inside that subcube is ‘small’.

Once Proposition 4.1 is established, the main theorem follows by a short induction on n (Proposition 4.1
is needed for the inductive step). It is perhaps fortunate that, for the inductive step, it suffices to pass to
subcubes of codimension at most 2. Interestingly, it does not suffice to pass to subcubes of codimension 1,
as we explain in Section 4; this might, at first glance, deceive one into abandoning an inductive approach.

The proof of Proposition 4.1 is divided into two parts. In the first part, we prove that if |F| is
‘sufficiently large’ (specifically, if |F| ≥ 2n−2(1 + c) for an absolute constant c > 0), then F must
satisfy (1); this is the content of Proposition 7.1. In the second part, we prove that if |F|< 2n−2(1+ c),
then F must satisfy (2); this is the content of Proposition 8.1. The harder part is the first one; the proof
is (again) by induction on n, but with six ingredients that are outlined at the beginning of Section 7.
Roughly speaking, we define a collection of ‘small alterations’ which preserve the property of being
a counterexample to Proposition 7.1; applying a sequence of these small alterations, we reduce to the
case where the family is sufficiently ‘well-behaved’ for us to successfully apply the inductive hypothesis.
(Note that a very similar technique was used in [24].) The second part uses the classical shifting technique
[5, 7]: we first reduce to the case where F is monotone increasing; we then choose the coordinate of
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largest influence (i say), and apply appropriate shifting operators to F to produce a family contained
entirely within the codimension-1 subcube {S⊂ [n] : i ∈ S}; passing to this subcube, we obtain a family
of twice the measure of the original family; we then repeat this process until the family is large enough
that we can apply Proposition 7.1 (from the first part).

An important component of the proof of Proposition 4.1 is a pair of ‘bootstrapping’ lemmas showing
that if F is ‘somewhat’ close to being contained in a subcube of codimension 1 or 2, then it must be
‘very’ close to that subcube. In order to prove these bootstrapping lemmas, we introduce the notion
of fractional lexicographic families, as a convenient technical tool. These allow us to analyse how
the measure (or ‘mass’) of a family of small total influence can be distributed between two disjoint
codimension-1 subcubes (or between four disjoint codimension-2 subcubes); informally, this distribution
cannot differ too much from in the extremal, lexicographically ordered family L.

Organization of the paper

In Section 3, we introduce some definitions and notation, and present some basic facts on influences
and shifting. In Section 4, we reduce the main theorem to the intermediate structural result, Proposition
4.1, discussed above. Fractional lexicographic families and their properties are studied in Section 5, and
the bootstrapping lemmas are presented in Section 6.

The proof of Proposition 4.1 spans Sections 7-9. The case of ‘large’ families is covered in Section 7,
‘small’ families are dealt with in Section 8, and finally we combine these two cases to prove Proposition
4.1 in Section 9. We conclude with some open problems in Section 10.

3 Preliminaries

3.1 Notation

We equip P([n]) with the uniform measure, denoted by µ:

µ(F) =
|F|
2n ∀F ⊂ P([n]) .

We write S∼ P([n]) to mean that S is chosen uniformly at randomly from P([n]).
If C ⊂ B⊂ [n], and F ⊂ P([n]), we define the ‘sliced’ family

FC
B := {S\C : S ∈ F, S∩B =C} ⊂ P([n]\B).

Note that we view FC
B as a subfamily of P([n]\B), and so µ

(
FB

C

)
=
∣∣FB

C

∣∣/2n−|B|.
If F,G⊂ P([n]), we say that F and G are weakly isomorphic if there exists an automorphism φ of Qn

such that G= φ(F); in this case, we write F ∼= G. To be completely formal and explicit, if π ∈ Sym([n])
and S ⊂ [n], we write π (S) := {π (i) : i ∈ S}, and if F ⊂ P([n]), we write π (F) := {π (S) : S ∈ F}.
Families F,G ⊂ P([n]) are said to be isomorphic if there exists π ∈ Sym([n]) such that G = π (F).
If D ⊂ [n] and F ⊂ P([n]), we define XD(F) = {S∆D : S ∈ F}. Families F,G ⊂ P([n]) are weakly
isomorphic iff there exist π ∈ Sym([n]) and D⊂ [n] such that G= XD(π (F)).

For n ∈ N and 2nµ ∈ {0,1, . . . ,2n}, we let Lµ,n denote the initial segment of the lexicographic
ordering on P([n]) with measure µ . We write Lµ,n for the class of all families weakly isomorphic to Lµ,n.
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When n is understood, we will write these as Lµ and Lµ , suppressing the subscript n. If F ⊂ P([n]), we
write

µ
(
F∆Lµ

)
:= min{µ(F∆G) : G∼= Lµ}.

We write µ
−
i = µ

−
i (F) for the measure µ(F∅

{i}), and we write µ
+
i = µ

+
i (F) for the measure µ(F

{i}
{i}).

By the isoperimetric inequality (Theorem 1.3), we may write I[F{i}{i}] = I[Lµ
+
i
]+ε

+
i , where ε

+
i = ε

+
i (F)≥

0, and we use the notations

µ
++
i, j , µ

+−
i, j , µ

−+
i, j , µ

−−
i, j , ε

−
i , ε

++
i, j , ε

+−
i, j , ε

−+
i, j , ε

−−
i, j ,

defined similarly. For B⊂ [n] , we write SB := {S⊂ [n] : B⊂ S} for the subcube of all subsets of [n] that
contain B, and if C ⊂ B, we write SC

B := {S⊂ [n] : S∩B =C} for the subcube of all subsets of [n] that
intersect B on the set C. If j ∈ [n], we write D j := {S⊂ [n] : j ∈ S} for the ‘dictatorship’ consisting of
all sets containing j.

We say that a family L ⊂ P([n]) is lexicographically ordered if it is an initial segment of the
lexicographic ordering on P([n]). We say that a family F ⊂ P([n]) is monotone increasing (or just
increasing) if it is closed under taking supersets, i.e. whenever A⊂ B⊂ [n] and A ∈ F, we have B ∈ F.

3.2 Influences

Using the notation above, we may define the ith influence of a family F ⊂ P([n]) by

Infi [F] = Pr
A∼P([n])

[|F∩{A,A∆{i}}|= 1].

As mentioned in the introduction, we have

I [F] =
n

∑
i=1

Infi [F] =
|∂F|
2n−1 ,

i.e. the total influence of F is the normalized edge boundary of F. We may therefore restate our main
theorem (Theorem 1.5) as follows.

Theorem. There exists an absolute constant C > 0 such that the following holds. Let ε > 0, let F⊂P([n])
be a family of measure µ , and suppose that I [F] ≤ I

[
Lµ

]
+ ε . Then there exists a family G ⊂ P([n])

weakly isomorphic to Lµ , such that µ (F∆G)≤Cε .

(Note that the constant C above is half the constant in the original statement.) It will be more convenient
for us to work with the above reformulation.

If F ⊂ P([n]) and i ∈ [n], we define the family of i-pivotal sets in F by

Ii (F) := {A ∈ F : A∆{i} /∈ F} .

Note that we have

Infi [F] =
|Ii (F)|
2n−1

for all i ∈ [n].
The following lemma will be useful for relating the influence of a family F to the influences of its

slices.
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Lemma 3.1. If S⊂ [n] and F ⊂ P([n]), then

I [F] =
1

2|S| ∑
B⊂S

I
[
FB

S
]
+

1
2|S|−1 ∑

B⊂S
∑
i∈B

µ

(
FB

S ∆F
B\{i}
S

)
= EB∼P(S)I

[
FB

S
]
+∑

i∈S
Infi [F] .

The proof is straightforward, and we omit it.

3.3 Shifting

The following shifting operator SS,T was introduced by Erdős, Ko and Rado [7] in the case |S|= |T |= 1;
for larger values of |S| or |T |, it was introduced by Daykin [5].

Definition 3.2. Let n ∈ N, let F ⊂ P([n]) , and let S,T ⊂ [n] with S∩T = /0. For a set A ∈ F, we define

SST (A) :=

{
(A\S)∪T if S⊂ A, A∩T = /0 and (A\S)∪T /∈ F,

A otherwise.

We define SST (F) := {SST (A) : A ∈ F}.

Observe that SST (F) is the family G ⊂ P([n]) such that GB
S∪T = FB

S∪T for any B 6= S,T , such that
GS

S∪T = FS
S∪T ∩FT

S∪T , and such that GT
S∪T = FS

S∪T ∪FT
S∪T .

These shifting operators are known to be a very useful tool in extremal combinatorics. They were
used by Frankl [10] to obtain stability results for the Erdős-Ko-Rado theorem [7], and were recently
applied by the authors in [24] to obtain a stability result for the Ahlswede-Khachatrian theorem [1], thus
proving a conjecture of Friedgut [13]. A major part of our argument is based on the method of [24].

The following lemma says that if a family F is stable under ‘lower-order’ shifts, then a shifting
operator cannot increase the total influence of F.

Lemma 3.3. Let F ⊂ P([n]), and let S,T ⊂ [n] with S∩T = /0 and |S| ≥ |T |. Suppose that SS′T (F) = F

for each S′ ⊂ S with |S′|= |S|−1. Then I [SST (F)]≤ I [F].

Proof. Write G= SST (F). By Lemma 3.1, we have

I [F] = ∑
i∈[n]\(S∪T )

Infi [F]+EB∼P([n]\(S∪T ))I
[
FB
[n]\(S∪T )

]
and

I [G] = ∑
i∈[n]\(S∪T )

Infi [G]+EB∼P([n]\(S∪T ))I
[
GB
[n]\(S∪T )

]
.

To prove the claim, it suffices to show that for any family F ⊂ P([n]) and any i /∈ S∪ T , we have
Infi [F]≥ Infi [SST (F)], and that for any family F ⊂ P(S∪T ) such that SS′T (F) = F for each S′ ⊂ S with
|S′|= |S|−1, we have I [SST (F)]≤ I [F]. The verification of the former assertion is straightforward, and
we leave it to the reader.

To prove the latter assertion, we may assume that SST (F) 6= F; then S ∈ F, T /∈ F and SST (F) = (F \
{S})∪{T}. Note that S′ /∈ F for all S′ ⊂ S with |S′|= |S|−1, and that T ′ ∈ F for any T ′ ⊃ T with |T ′|=
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|T |+1. (Indeed, if S′ ⊂ S with |S′|= |S|−1 and S′ ∈F, then we have T = SS′T (S′)∈F, contradicting our
assumption. Similarly, for each T ′ ⊃ T with |T ′|= |T |+1, we have T ′ = S([S∪T ]\T ′)T (S) ∈ F.) Therefore,
|∂ (SST (F)) | ≤ |∂F|−2(|S|− |T |)≤ |∂F|, as required.

We also need the following well-known lemma on the so-called ‘monotonization operators’ S∅{i}
(see e.g. [21]).

Lemma 3.4. Let i ∈ [n] and let F ⊂ P([n]). Then

Inf j
[
S∅{i} (F)

]
≤ Inf j [F]

for each j ∈ [n], and I
[
S∅{i} (F)

]
≤ I [F].

4 Reduction of Theorem 1.5

In this section we reduce Theorem 1.5 to the following proposition.

Proposition 4.1. There exist absolute constants c1,c2 > 0 such that the following holds. Let 0 < µ ≤ 1
2 ,

let 0≤ ε ≤ c1µ , and let F ⊂ P([n]) be a family with µ (F) = µ and I [F]≤ I
[
Lµ

]
+ ε . Then there exists

a family G weakly isomorphic to F such that one of the following holds.

• Case (1): c2µ
−
1 (G)+ 1

2 ε
+
1 (G)≤ ε , or else

• Case (2): c2µ
(
G\S{1,2}

)
+ 1

4 ε
++
1,2 (G)≤ ε .

Intuitively, Proposition 4.1 says that there is a family G weakly isomorphic to F, such that one of the
following holds: either (1) G is essentially contained in the dictatorship D1, and the ‘essential part’ G{1}{1}
has small total influence, or (2) G is essentially contained in the subcube S{1,2}, and the ‘essential part’

G
{1,2}
{1,2} has small total influence.

Remark 4.2. Case (1) is in a sense the ‘simpler’ case, and it is natural to ask whether Case (2) can be
removed, but it cannot. Indeed, for any c1,c2 > 0, if t is sufficiently large depending on c1 and c2, then
the family

F = {S⊂ [n] : {1,2} ⊂ S, S∩{3,4, . . . , t} 6= /0}∪{S⊂ [n] : {3,4, . . . , t} ⊂ S}

satisfies the hypotheses of Proposition 4.1, but Case (1) does not occur for F. To see this, let t ≥ 4 and
suppose that Case (1) occurs for F. Let µ := µ(F) = 1

4 +2−(t−1) and let ε = I[F]− I[Lµ ]. Let G be a
family weakly isomorphic to F such that

c2µ
−
1 (G)+ 1

2 ε
+
1 (G)≤ ε.

Then there exists π ∈ Sym([n]) and D⊂ [n] such that G= XD(π(F)). We have

Lµ = {S⊂ [n] : {1,2} ⊂ S}∪{S⊂ [n] : 1 ∈ S, 2 /∈ S, {3,4, . . . , t−1} ⊂ S}.
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It is easy to check that I[F] = 1+8t ·2−t −24 ·2−t and I[Lµ ] = 1+4t ·2−t −12 ·2−t , and therefore

ε = I[F]− I[Lµ ] = 4t ·2−t −12 ·2−t ≤ c1µ

if t is sufficiently large depending on c1. Observe that

µ
+
1 (F) = µ

+
2 (F) = 1

2 , min{µ+
j (F),µ

−
j (F)}= 1

4 −2 ·2−t ≥ 1
8 ∀ j ≥ 3,

and that F is invariant under permuting the coordinates 1 and 2. Hence, if t is large enough that
c2 · 1

8 > ε = 4t ·2−t −12 ·2−t , then we may assume that D = /0 and π = Id, i.e. G can be obtained from F

without flipping or permuting any coordinates, so G= F. Hence,

c2µ
−
1 (F)+ 1

2 ε
+
1 (F)≤ ε = 4t ·2−t −12 ·2−t . (4.1)

We have

F
{1}
{1} = {S⊂ [n]\{1} : 2 ∈ S, S∩{3,4, . . . , t} 6= /0}∪{S⊂ [n]\{1} : 2 /∈ S, {3,4, . . . , t} ⊂ S}

and therefore I[F{1}{1}] = 1+8t ·2−t −24 ·2−t . Since µ(F
{1}
{1}) = µ

+
1 (F) = 1

2 and I[L1/2] = 1, we have

ε
+
1 (F) = I[F{1}{1}]− I[L1/2] = 1+8t ·2−t −24 ·2−t −1 = 8t ·2−t −24 ·2−t .

Finally, we have µ
−
1 (F) = 4 ·2−t . Substituting the latter two facts into (4.1) yields

c2 ·4 ·2−t + 1
2(8t ·2−t −24 ·2−t)≤ ε = 4t ·2−t −12 ·2−t ,

a contradiction.

We now show how to deduce Theorem 1.5 from Proposition 4.1. We state Theorem 1.5 again below
(in the influence form), for the convenience of the reader.

Theorem. There exists an absolute constant C > 0 such that the following holds. Let F ⊂ P([n]) be a
family of measure µ (F) = µ , and suppose that I [F]≤ I

[
Lµ

]
+ ε . Then there exists a family G⊂ P([n])

weakly isomorphic to Lµ , such that µ (F∆G)≤Cε .

Proof. We prove the theorem by induction on n. If n = 1, then F itself is weakly isomorphic to Lµ . Let
n≥ 2, and assume the statement of the theorem holds for smaller values of n.

We now make several reductions. Firstly, we note that the theorem holds for F if and only if it holds
for its complement Fc, since the complement of a lexicographically ordered family is weakly isomorphic
to a lexicographically ordered family. Thus, we may assume w.l.o.g. that µ (F)≤ 1

2 . Secondly, note that
the conclusion of the theorem holds trivially if Cε ≥ 2µ . So we may assume throughout that ε < 2µ

C .
Provided C ≥ 2/c1, we have ε ≤ c1µ , so either Case (1) or Case (2) of Proposition 4.1 occurs. First

suppose that Case (1) occurs. By replacing F by a family G weakly isomorphic to F if necessary, we may
assume that

c2µ
−
1 (F)+ 1

2 ε
+
1 (F)≤ ε. (4.2)
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Assume w.l.o.g. that the minimum of µ(F
{1}
{1}∆H) over all families H weakly isomorphic to L

µ(F
{1}
{1})

is

attained where H = L
µ(F

{1}
{1})

, i.e. where H is a lexicographically ordered family with respect to the usual

ordering 2≤ 3≤ ·· · ≤ n.
Note that

µ
(
F∆Lµ

)
= 2µ

(
F\Lµ

)
= µ

(
F
{1}
{1}\

(
Lµ

){1}
{1}

)
+µ

(
F∅
{1}

)
. (4.3)

The induction hypothesis, and our assumption above on the families H, imply that

µ

(
F
{1}
{1}\

(
Lµ

){1}
{1}

)
≤ 1

2 µ

(
F
{1}
{1}∆Lµ

+
1

)
≤ 1

2Cε
+
1 . (4.4)

Rearranging (4.2), we have

ε
+
1 ≤ 2(ε− c2µ

−
1 ). (4.5)

Putting together (4.3), (4.4) and (4.5), we obtain

µ
(
F∆Lµ

)
≤C(ε− c2µ

−
1 )+µ

−
1 ≤Cε,

provided C ≥ 1
c2

. This completes the proof in Case (1).
Suppose now that Case (2) occurs. Replacing F by a family G weakly isomorphic to it, we may

assume that

c2µ
(
F\S{1,2}

)
+ 1

4 ε
++
1,2 (F)≤ ε. (4.6)

Assume w.l.o.g. that the minimum of µ(F
{1,2}
{1,2}∆H) over all families H weakly isomorphic to L

µ(F
{1,2}
{1,2})

is attained where H = L
µ(F

{1,2}
{1,2})

, i.e. where H is a lexicographically ordered family with respect to the

usual ordering 3≤ ·· · ≤ n.
We now have

µ
(
F∆Lµ

)
≤ 1

4 µ

(
F
{1,2}
{1,2}∆Lµ

++
1,2 (F)

)
+2µ

(
F\S{1,2}

)
. (4.7)

By the induction hypothesis, we have

µ

(
F
{1,2}
{1,2}∆Lµ

++
1,2 (F)

)
≤Cε

++
1,2 . (4.8)

Putting together (4.6), (4.7) and (4.8), we obtain

µ
(
F∆Lµ

)
≤C

(
ε− c2µ

(
F\S{1,2}

))
+2µ

(
F\S{1,2}

)
≤Cε,

where the last inequality holds provided C ≥ 2
c2

. This completes the proof.
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5 Fractional lexicographic families and their properties

A fractional lexicographic family of order n is a function F : P([n])→ D, where D= { b
2a : a ∈ N, b ∈

{0,1, . . . ,2a}} denotes the set of dyadic rationals between 0 and 1. Intuitively, a fractional lexicographic
family F : P([n])→ D represents a (non-fractional) family G⊂ P([n+m]), for some m ∈ N, such that
GB
[n] is a lexicographically ordered family of measure F (B), for each B⊂ [n]. Formally, if F : P([n])→D,

we choose any m ∈ N such that 2mF(P([n]))⊂ Z, and associate to F the family

Fass ⊂ P([n+m])

such that (Fass)
B
[n] is the lexicographically ordered family of measure F(B), for each B ⊂ [n]. If F is

a fractional lexicographic family, then by a slight abuse of notation we define µ(F), I[F], µ
+
i (F) and

µ
−
i (F) (for i ∈ [n]) to be the corresponding quantities for the associated family Fass ⊂ P([m+n]); it

is easy to see that these are independent of the choice of m, provided we define Infi[Fass] = 0 for all
i > n+m.

The usefulness of fractional lexicographic families comes from the fact that inductive arguments
enable us to reduce statements about general families to statements about fractional lexicographic families
of order n, for small n. Specifically, we need a thorough analysis of the case n = 1 and the case n = 2.
These statements encapsulate the idea that families of small total influence can only have their measure
split between two disjoint codimension-1 subcubes (or between four disjoint codimension-2 subcubes) in
certain ways. The proofs of the statements are technical and the reader is advised (at least at first reading)
to read the statements of the lemmas without going into their proofs.

5.1 Properties of fractional lexicographic families of order 1

If 0 ≤ µ−,µ+ ≤ 1, we denote by Lµ−,µ+ the fractional lexicographic family L : {∅,{1}} → [0,1] of
order 1, with L({1}) = µ+ and L(∅) = µ−.

Let µ = 2− j + r, where j ≥ 2 and 0 < r ≤ 2− j. Observe that

µ
−
i

(
Lµ

)
= 0 if i≤ j−1,
= 2r if i = j,
≥ 1

2 µ if i≥ j+1.

(5.1)

The next lemma says roughly that if a fractional lexicographic family L = Lµ−,µ+ of order 1 has
0 < µ− ≤ r, then I

[
Lµ−,µ+

]
is somewhat large.

Lemma 5.1. Let j ≥ 2, let 0 < r ≤ 2− j, let µ = 2− j + r, and let 0≤ µ− ≤ µ+ ≤ 1 with µ−+µ+

2 = µ . If
µ− ≤ r, then I

[
Lµ−,µ+

]
≥ I
[
Lµ

]
+2µ−.

If instead, 3r ≤ µ− ≤ 1
2 µ , then I

[
Lµ−,µ+

]
≥ I
[
Lµ

]
+ 2

3 µ−.

In order to prove the lemma, we need the following preparatory claim.

Claim 5.2. Let µ = µ−+µ+

2 = 1
4 + r, where 0 < r≤ 1/4 and 0≤ µ−,µ+ ≤ 1. Suppose that µ− ≤ r. Then

I
[
Lµ−,µ+

]
≥ I
[
Lµ

]
+2µ

−.
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Proof. Write L= Lµ−,µ+ . Then we may view L as a fractional lexicographical family on P([2]) such
that L({1,2}) = 1, L(∅) =∅, L({2}) = 2µ−, and L({1}) = 2µ+−1. Using Lemma 3.1 (and writing
L in place of Lass in the first line of (5.2) below), we have

I [L] = 1
4 ∑

B⊂{1,2}
I[LB
{1,2}]+

1
2

(
µ(L

{1,2}
{1,2})−µ(L

{1}
{1,2})

)
+ 1

2

(
µ(L

{1,2}
{1,2})−µ(L

{2}
{1,2})

)
(5.2)

+ 1
2

(
µ(L

{1}
{1,2})−µ(L∅

{1,2})
)
+ 1

2

(
µ(L

{2}
{1,2})−µ(L∅

{1,2})
)

= 1
4

(
I
[
L2µ−

]
+ I
[
L2µ+−1

])
+L({1,2})−L(∅).

Similarly, M := Lµ may viewed as a lexicographical family on P([2]) with M(∅) =∅, M({2}) =∅,
M({1,2}) = 1, and M({1}) = 4µ−1. So as in (5.2), we have

I [M] = 1
4 I
[
L4µ−1

]
+L({1,2})−L(∅) . (5.3)

Putting (5.2) and (5.3) together, we have

I [L]− I [M] = 1
4

(
I
[
L2µ−

]
+ I
[
L2µ+−1

]
− I
[
L4µ−1

])
. (5.4)

We now consider the families F1 := L 4µ−1
2

and F2 := L2µ−,2µ+−1. The isoperimetric inequality implies
that

I [F2]≥ I [F1] . (5.5)

Let us compute the influences of F1 and F2. We have

I [F1] =
1
2 I
[
L4µ−1

]
+4µ−1 (5.6)

and
I [F2] =

1
2 I
[
L2µ−

]
+ 1

2 I
[
L2µ+−1

]
+2µ

+−1−2µ
−. (5.7)

(Here, we used the fact that 2µ+−1 = 4µ−2µ−−1 = 4r−2µ− ≥ 2µ−.)
Combining (5.4)-(5.7) yields

I [L]− I [M] = 1
4

(
I
[
L2µ−

]
+ I
[
L2µ+−1

]
− I
[
L4µ−1

])
= 1

2

(
I [F2]−

(
2µ

+−1−2µ
−))− 1

2

(
I [F1]−

(
2µ

++2µ
−−1

))
≥ 2µ

−,

as required.

We can now prove Lemma 5.1.

Proof of Lemma 5.1. We prove the first statement by induction on j. Suppose that µ− ≤ r. Since
µ+ = 2µ−µ− >

(1
2

) j−1, we have j ≥ 2. Claim 5.2 implies the base case j = 2. Let j ≥ 3, and assume
the statement holds for smaller values of j. Since µ ≤ 1/8, (Lµ−,µ+)ass is contained in the dictatorship
D2. By Lemma 3.1, we have

I
[
Lµ−,µ+

]
= 1

2 I
[(
Lµ−,µ+

){2}
{2}

]
+ 1

2 I
[(
Lµ−,µ+

){∅}
{2}

]
+ Inf2

[
Lµ−,µ+

]
= 1

2 I
[
L2µ−,2µ+

]
+2µ. (5.8)
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Similarly,
I
[
Lµ

]
= 1

2 I
[
L2µ

]
+2µ. (5.9)

The induction hypothesis implies that

I
[
L2µ−,2µ+

]
≥ I
[
L2µ

]
+4µ

−. (5.10)

Combining (5.8), (5.9), and (5.10), we obtain I
[
Lµ−,µ+

]
≥ I
[
Lµ

]
+2µ−, as required.

Now suppose that 3r ≤ µ− ≤ 1
2 µ . We proceed again by induction on j. First suppose j = 1. Note

that I
[
L1−µ+,1−µ−

]
= I
[
Lµ−,µ+

]
, and that µ

(
L1−µ+,1−µ−

)
= 1

2 − r = 1
4 +
(1

4 − r
)
. We also have

µ
+ = 2µ−µ

− ≥ 3
4 +

3
2 r.

Hence,
1−µ

+ ≤ 1
4 −

3
2 r ≤ 1

4 − r.

Claim 5.2 implies that

I
[
Lµ−,µ+

]
= I
[
L1−µ+,1−µ−

]
≥ I
[
L1−µ

]
+2
(
1−µ

+
)
= I
[
Lµ

]
+2
(
1−2µ +µ

−)
= I
[
Lµ

]
+2
(
µ
−−2r

)
≥ I
[
Lµ

]
+ 2

3 µ
−,

as desired. The inductive step is almost exactly the same as in the previous case, relying on the fact that
(Lµ−,µ+)ass is contained in the dictatorship D2.

5.2 Properties of fractional lexicographic families of order 2

Let µ = 2− j + r, where j ≥ 2 and 0 < r ≤ 2− j, and let L : P([2])→ [0,1] be a fractional lexicographic
family of order 2 and measure µ . The following lemma says that if both µ

−
1 (L) and µ

−
2 (L) are ‘somewhat

close’ to 2r (which, by (5.1), is the value of µ j(Lµ)), then L has ‘somewhat large’ total influence.

Lemma 5.3. There exists an absolute constant c> 0 such that the following holds. Let µ = 2− j+r, where
j ∈N and r ≤ 2− j. Let L : P([2])→ [0,1] be a fractional lexicographic family of order 2 and measure µ .
Suppose that r ≤ µ

−
1 (L)≤ 3r, that r ≤ µ

−
2 (L)≤ 3r, and that r ≤ cµ . Then I [L]≥ I

[
Lµ

]
+ r/2.

(In fact, we may take c = 1/6.)

Proof. Suppose w.l.o.g. that L({2})≤ L({1}). We split into two cases: L({2})≥ r
2 , and L({2})≤ r

2 .
First suppose that L({2})≥ r

2 . Note that, by hypothesis,

1
2L( /0)+ 1

2L({2}) = µ
−
1 (L)≤ 3r, 1

2L( /0)+ 1
2L({1}) = µ

−
2 (L)≤ 3r,

so

L({1,2}) = 4µ−L( /0)−L({1})−L({2})≥ 4µ−2L( /0)−L({1})−L({2})≥ 4µ−12r ≥ 4r,

provided c≤ 1/4. By Lemma 3.1, we have

I [L]≥ 1
2 I[L{2}{2}]+

1
2 I[L∅

{2}]+µ
+
2 (L)−µ

−
2 (L) . (5.11)
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Let L′ be the fractional lexicographic family of order 2, such that

L′ (∅) = 0, L′ ({1}) = 2µ
−
2 (L), L′ ({2}) = L({2}) , L′ ({1,2}) = L({1,2}) .

Note that µ
−
2 (L)≤ 1/2 provided c≤ 1/6, that L′({2}) = L({2})≤ L({1})≤ 2µ

−
2 (L) = L′({1}), and

that L′ ({1,2})≥ L′ ({1}) provided c≤ 2/9.
By Lemma 3.1, we have

I
[
L′
]
= 1

2 I[L{2}{2}]+
1
2 I[L

µ
−
2
]+µ

+
2 (L)−µ

−
2 (L) . (5.12)

By the isoperimetric inequality, (5.11) and (5.12), we have

I [L]≥ I
[
L′
]
. (5.13)

Also by Lemma 3.1, we have

I
[
L′
]
= 1

4 I
[
LL({1,2})

]
+ 1

4 I
[
LL′({1})

]
+ 1

4 I
[
LL′({2})

]
+L({1,2}) . (5.14)

Let L′′ be the fractional lexicographic family of order 2, such that

L′′ ({∅}) = 0, L′′ ({2}) = 0, L′′ ({1}) = L′ ({1})+L′ ({2}) , L′′ ({1,2}) = L({1,2}) .

Note that L′({1})+L′({2})≤ L({1,2}) provided c≤ 1/6. By Lemma 3.1, we have

I
[
L′′
]
= 1

4 I
[
LL({1,2})

]
+ 1

4 I
[
LL′({1})+L′({2})

]
+L({1,2}) . (5.15)

The isoperimetric inequality implies that

I
[
LL′({2}),L′({1})

]
≥ I
[
LL′({2})+L′({1})

2

]
= I
[
L0,L′({1})+L′({2})

]
= 1

2 I
[
LL′({1})+L′({2})

]
+L′ ({1})+L′ ({2}) .

Applying Lemma 3.1, we obtain

1
2 I
[
LL′({1})

]
+ 1

2 I
[
LL′({2})

]
+L′ ({1})−L′ ({2}) = I

[
LL′({2}),L′({1})

]
≥ 1

2 I
[
LL′({1})+L′({2})

]
+L′ ({1})+L′ ({2}) ,

so rearranging,

1
2 I
[
LL′({1})

]
+ 1

2 I
[
LL′({2})

]
≥ 1

2 I
[
LL′({1})+L′({2})

]
+2L′({2}). (5.16)

Putting everything together, we have

I[L]≥ I[L′]≥ 1
4 I
[
LL({1,2})

]
+L({1,2})+ 1

4 I
[
LL′({1})+L′({2})

]
+L′({2})

= I[L′′]+L({2})≥ I[Lµ ]+L({2})≥ I[Lµ ]+ r/2,

as required.
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Suppose now that L({2}) ≤ r
2 . Since µ

−
1 (L) ≥ r, we have L(∅) ≥ 3r

2 . Let L′ be the fractional
lexicographic family of order 2 such that

L′ (∅) = 0, L′ ({2}) = L({2}) , L′ ({1}) = L(∅)+L({1}) , L′ ({1,2}) = L({1,2}) .

Note that L(∅)+L({1})≤ L({1,2}), provided c≤ 2/9. By Lemma 3.1, we have

I[L] = 1
4

(
I[LL(∅)]+ I[LL({1})]+ I[LL({2})]+ I[LL({1,2})]

)
+L({1,2})− 1

2L({1})−L({2})+ 1
2L(∅)+ 1

2 |L(∅)−L({1})|,

and
I[L′] = 1

4

(
I[LL(∅)+L({1})]+ I[LL({2})]+ I[LL({1,2})]

)
+L({1,2}),

and therefore

I[L]− I[L′] = 1
4(I[LL(∅)]+ I[LL({1})]− I[LL(∅)+L({1})]) (5.17)

+ 1
2(L(∅)−L({1}))+ 1

2 |L(∅)−L({1})|−L({2})
= 1

4(I[LL(∅)]+ I[LL({1})]− I[LL(∅)+L({1})])+min{L(∅)−L({1}),0}−L({2}). (5.18)

For all µ−,µ+ ≥ 0 such that µ−+µ+ ≤ 1, we have

1
2 I[Lµ− ]+

1
2 I[Lµ+ ]+ |µ+−µ

−|= I[Lµ+,µ− ]≥ 1
2 I[Lµ++µ− ]+µ

++µ
−,

using Lemma 3.1 and the isoperimetric inequality, so

I[Lµ− ]+ I[Lµ+ ]− I[Lµ++µ− ]≥ 4min{µ+,µ−}.

Applying this with µ− = L(∅) and µ+ = L({1}) gives

I[LL(∅)]+ I[LL({1})]− I[LL(∅)+L({1})])≥ 4min{L(∅),L({1})}.

Combining this with (5.18) yields

I[L]− I[L′]≥min{L(∅),L({1})}+min{L(∅)−L({1}),0}−L({2})
= L(∅)−L({2})≥ 3r

2 −
r
2 = r.

The isoperimetric inequality now implies that

I [L]≥ I
[
L′
]
+ r ≥ I

[
Lµ

]
+ r,

completing the proof.
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6 Two ‘bootstrapping’ lemmas

In this section, we prove two ‘bootstrapping’ lemmas which say, roughly speaking, that if F is ‘somewhat’
close to being contained in a subcube of codimension 1 or 2, then it is ‘very’ close to being contained in
that subcube. In what follows, we write µ = 2− j + r, where j ≥ 2 and 0 < r ≤ 2− j, we let ε > 0, and we
let F ⊂ P([n]) be a family with measure µ (F) = µ , and with I [F] = I

[
Lµ

]
+ ε .

Recall that our goal is to prove Proposition 4.1. First, we deal with the case where r is ‘large’. In
this case, our aim is to show that min{2µ

−
i + 1

2 ε
+
i ,2µ

+
i + 1

2 ε
−
i } ≤ ε for some i ∈ [n]. The following

‘bootstrapping’ lemma says that this inequality holds provided only that µ
−
i (F)≤ r.

Lemma 6.1. Let 0 ≤ µ ≤ 1
2 and write µ = 2− j + r, where j ≥ 2 and r ≤ 2− j. Let F ⊂ P([n]) be a

family with measure µ (F) = µ , and with I [F] = I
[
Lµ

]
+ ε . If µ

−
i := µ

−
i (F)≤ r for some i ∈ [n], then

2µ
−
i + 1

2 ε
+
i ≤ ε .

Proof. Using Lemma 3.1, the isoperimetric inequality and Lemma 5.1, we have

I [F] = 1
2 I
[
F
{i}
{i}

]
+ 1

2 I
[
F∅
{i}

]
+ Infi [F]

≥ 1
2 I
[
Lµ

+
i

]
+ 1

2 ε
+
i + 1

2 I
[
L

µ
−
i

]
+µ

+
i −µ

−
i

= I
[
L

µ
−
i ,µ+

i

]
+ 1

2 ε
+
i

≥ I
[
Lµ

]
+2µ

−
i + 1

2 ε
+
i .

Rearranging yields
2µ
−
i + 1

2 ε
+
i ≤ I [F]− I

[
Lµ

]
= ε,

proving the lemma.

We now prove a bootstrapping lemma suitable for the case where r is ‘small’. Here, our final goal
is to show that there exists a family G weakly isomorphic to F such that either cµ

−
1 (G)+ 1

2 ε
+
1 (G)≤ ε ,

or else cµ
(
G\S{1,2}

)
+ 1

4 ε
++
1,2 (G)≤ ε . We show that one of these inequalities holds provided µ

−
1 (G)≤

µ
−
2 (G)≤ cµ , if c is a sufficiently small positive constant.

Lemma 6.2. Let ε > 0, let 0< µ ≤ 1
2 , and write µ = 2− j+r, where j≥ 2 and 0< r≤ 2− j. Let F⊂P([n])

be a family with measure µ (F) = µ , and with I [F] = I
[
Lµ

]
+ ε . Suppose that µ

−
1 (F)≤ µ

−
2 (F)≤ 1

6 µ .
Then either 2

3 µ
−
2 (F)+ 1

2 ε
+
2 (F)≤ ε , or 2µ

−
1 (F)+ 1

2 ε
+
1 (F)≤ ε , or 1

6 µ
(
F\S{1,2}

)
+ 1

4 ε
++
1,2 (F)≤ ε .

Proof. The case where µ
−
1 ≤ r is covered by Lemma 6.1, and the case where µ

−
2 ≥ 3r can be covered

similarly by using the second part of Lemma 5.1 instead of its first part. So we may assume that
r ≤ µ

−
1 ≤ µ

−
2 ≤ 3r.

Let L be the fractional lexicographic family of order 2, with

L({1,2}) = µ
++
1,2 , L({1}) = µ

+−
1,2 , L({2}) = µ

−+
1,2 , L({∅}) = µ

−−
1,2 .

Using Lemma 3.1, the isoperimetric inequality and Lemma 5.3, we obtain

I [F]≥ I [L]+ 1
4 ε

++
1,2 ≥ I

[
Lµ

]
+ 1

4 ε
++
1,2 + 1

2 r,
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and therefore
ε ≥ 1

4 ε
++
1,2 + 1

2 r ≥ 1
4 ε

++
1,2 + 1

12(µ
−
1 +µ

−
2 )≥ 1

4 ε
++
1,2 + 1

6 µ(F \S{1,2}),
proving the lemma.

7 F is essentially contained in a codimension-1 subcube (µ large)

In this section we essentially complete the proof of Proposition 4.1 in the case where µ (F) = 1
4 + r, for

r ≤ 1
4 bounded away from 0 (i.e. r ≥ c1 for some absolute constant c1 > 0). In this case, by Lemma 6.1 it

will suffice to prove the following.

Proposition 7.1. For each c1 > 0 there exists c2 = c2 (c1)> 0 such that the following holds. If F⊂P([n])
is a family with 1

4 + c1 ≤ µ := µ (F) ≤ 1
2 and I [F] ≤ I

[
Lµ

]
+ c2, then there exists a family G weakly

isomorphic to F such that µ
−
1 (G)≤ c1.

Equivalently, the conclusion of Proposition 7.1 can be restated by saying that there exists a coordinate
i ∈ [n] such that min

{
µ
−
i (F),µ+

i (F)
}
≤ c1.

Throughout this section, F ⊂ P([n]) will be a family with 1
4 + c1 ≤ µ := µ (F) ≤ 1

2 , and with
I [F] ≤ I

[
Lµ

]
+ c2, where c2 will be sufficiently small in terms of c1. We assume without loss of

generality that µ
−
i ≤ µ

+
i for each i ∈ [n], and that

Infn[F]≤ Infn−1[F]≤ ·· · ≤ Inf1[F].

We also assume that c1 = 2−k for some k ∈ N.

The proof of Proposition 7.1 consists of the following six steps, similarly to in [24].

1. We show that there is a ‘gap’ between ‘good’ families that satisfy the proposition, and ‘bad’ families
which would furnish a counterexample to it. More precisely, we show that if µ

−
i (F)> c1 for each

i ∈ [n] and if F2 ⊂ P([n]) is a family with µ (F2) = µ (F) and with I [F2]≤ I [F], which satisfies
µ
−
i (F2)≤ c1 for some i ∈ [n], then µ (F∆F2)>

c1
2 .

2. We reduce the proposition to the case where F is increasing.

3. We prove the proposition in the case where F depends on a constant Oc2 (1) number of coordinates.

4. In the other case, where n is large, we show that the ‘n-stable’ family

F̃ := Sn,n−1 (Sn,n−2 · · ·(Sn,1 (F)))

satisfies µ(F̃) = µ(F), I[F̃]≤ I[F], and µ(F̃∆F)≤ c1
2 . This reduces us to the case where F is an

increasing, n-stable family.

5. In the case where F is n-stable and |In(F)| ≥ 2 (say A 6= B ∈ In (F)), we show that if both
F1 := (F\{B})∪{A\{n}} and F2 := (F\{A})∪{B\{n}} are good, then F is also good. (Note
that |In (F1)|< |In (F) |, and that |In (F2)|< |In (F)|.)

6. Step (5) reduces us to the case where |In (F)| ≤ 1, i.e. the family F is very evenly balanced in
direction n; we can then complete the proof by induction on n.
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7.1 Gap between good families and bad families

If 0≤ s≤ 1 and F,G⊂ P([n]), we say G is an s-small modification of F if µ (G) = µ (F), I [G]≤ I [F]
and µ (F∆G) ≤ s. If F ⊂ P([n]) and c1,c2 > 0, we say that F is bad (with respect to (c1,c2)) if it is a
counterexample to Proposition 7.1, and good (with respect to (c1,c2)) otherwise.

Lemma 7.2. Let F ⊂ P([n]) such that I [F] ≤ I
[
Lµ

]
+ c2. Let G be a c1

2 -small modification of F, and
suppose that c2 ≤ c1. If G is good, then so is F.

Proof. Suppose for a contradiction that F is bad and G is good. Then by assumption,

I [G]≤ I [F]≤ I
[
Lµ

]
+ c2.

Since G is good, we either have µ
−
i (G)≤ c1 or µ

+
i (G)≤ c1 for some i ∈ [n]. By Lemma 6.1, this implies

that we either have
µ
−
i (G)≤ 1

2 c2 ≤ 1
2 c1

or
µ
+
i (G)≤ 1

2 c2 ≤ 1
2 c1,

since c2 ≤ c1. Since µ (G∆F)≤ c1
2 , we have µ(F\G)≤ c1

4 , and therefore µ
−
i (F)≤ µ

−
i (G)+2µ(F\G)≤

c1
2 + c1

2 = c1 if µ
−
i (G)≤ c1

2 , and µ
+
i (F)≤ µ

+
i (G)+2µ(F \G)≤ c1

2 + c1
2 ≤ c1 if µ

+
i (G)≤ c1

2 . Hence, F
is good, a contradiction.

7.2 Reduction to the case where F is increasing

Here we show that one can transform F into an increasing family by a series of c1
2 -small modifications.

(For brevity, if i ∈ [n] we henceforth write S∅i for S∅{i}.) It suffices to prove the following lemma.

Lemma 7.3. Let F ⊂ P([n]) with µ(F) = µ , µ
−
i (F) ≤ µ

+
i (F) for all i ∈ [n], and I [F] ≤ I

[
Lµ

]
+ c1.

Then for each i ∈ [n], S∅i (F) is a c1
2 -small modification of F.

Proof. By Lemma 3.4, we have I[S∅i (F)]≤ I[F]. By the isoperimetric inequality, we have(
µ
+
i −µ

−
i

)
+ 1

2 I
[
L

µ
−
i

]
+ 1

2 I
[
Lµ

+
i

]
= I
[
L

µ
−
i ,µ+

i

]
≥ I
[
Lµ

]
.

By Lemma 3.1, and by the isoperimetric inequality applied to F
{i}
{i} and to F∅

{i}, we have

Infi [F]+
1
2 I
[
L

µ
−
i

]
+ 1

2 I
[
Lµ

+
i

]
≤ I [F]≤ I

[
Lµ

]
+ c1. (7.1)

These imply that
Infi [F]−

(
µ
+
i −µ

−
i

)
≤ c1. (7.2)

Now note that
Infi [F] = µ

+
i (S∅i (F))−µ

−
i (S∅i (F)) . (7.3)

Combining (7.2) and (7.3), we obtain

µ (F∆S∅i (F)) =
1
2

(
µ
+
i (S∅i (F))−µ

+
i (F)

)
+ 1

2

(
µ
−
i (F)−µ

−
i (S∅i (F))

)
≤ c1

2 ,

as required.
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The next corollary follows immediately from Lemmas 7.2 and 7.3.

Corollary 7.4. Let F ⊂ P([n]) with µ(F) = µ , µ
−
i (F)≤ µ

+
i (F) for all i ∈ [n] and I[F]≤ I[Lµ ]+c2, let

c2 ≤ c1, and let
G := (S∅n ◦S∅n−1 ◦ · · · ◦S∅1)(F) .

If the increasing family G is good, then so is F.

From now on we assume that F is increasing.

7.3 Proof in the case where n is small

We now show that Proposition 7.1 holds in the case where n is small. In fact, crudely, we have the
following.

Lemma 7.5. Suppose that n ≤ n0 and F ⊂ P([n]) with µ(F) = µ and I[F] ≤ I[Lµ ] + c2. Then F is
weakly isomorphic to Lµ , provided c2 < 2−(n0−1).

Proof. If c2 < 2−(n−1), then we must have I [F] = I
[
Lµ

]
(note that the influence of any family depending

on n variables is of the form i
2n−1 ). The lemma now follows from the uniqueness part of the isoperimetric

inequality.

7.4 Reduction to the case where F is n-stable

We say that F is n-stable if Sn,i (F) = F for each i ∈ [n−1], and if A∪{n} ∈ F whenever A ∈ F. (As
usual, we write Si, j for S{i}{ j}, for brevity.) Here, we show that if F ⊂ P([n]) is bad and n is large then
there exists a c1

2 -small modification of F that is n-stable. We need the following well-known lemma.

Lemma 7.6. Let i 6= j ∈ [n]. Then µ (Si, j (F)) = µ (F) and I [Si, j (F)]≤ I [F].

We remark that the operator Si, j preserves monotonicity, for each i 6= j. We also need the following
crude upper bound on the total influence of lexicographically ordered families.

Claim 7.7. I
[
Lµ

]
≤ 2 for each µ ∈ [0,1].

Proof. We prove the claim by induction on n. If n = 1 then in fact I
[
Lµ

]
≤ 1. We may assume that

µ ≤ 1
2 , since I

[
L1−µ

]
= I
[
Lµ

]
. Hence, the induction hypothesis implies that

I
[
Lµ

]
= I
[
L0,2µ

]
= 2µ + 1

2 I
[
L2µ

]
≤ 2.

The following lemma reduces Proposition 7.1 to the case where n is stable.

Lemma 7.8. Let F ⊂ P([n]) be an increasing family with µ(F) = µ and I[F]≤ I[Lµ ]+c2, suppose that
Infn[F] = mini∈[n] Infi[F], and let

F̃ := Sn,n−1 (· · ·Sn,2 (Sn,1 (F))) .

If c2 < min{2−(6/c1−1),1,c1}, and the n-stable family F̃ is good, then so is F.
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Proof. By Lemma 7.2, it suffices to show that F̃ is a c1
2 -small modification of F. For this, by Lemma 7.6,

it suffices to prove that µ
(
F̃∆F

)
≤ c1

2 . The key observation is that

µ(F̃∆F) = 2µ(F\F̃)≤ 2µ(In(F)). (7.4)

Indeed,

A 7→ A∪{iA},

where iA := min{i : (A∪{i})\{n} /∈ F}}, is an injection from F\F̃ to In(F). Now note that

µ(In(F)) =
Infn (F)

2
≤ I (F)

2n
≤

I
[
Lµ

]
+ c2

2n
. (7.5)

To complete the proof of the lemma, note that (7.4) and (7.5) imply that

µ
(
F̃∆F

)
≤

I
[
Lµ

]
+ c2

n
<

3
n
,

provided c2 < 1, using Claim 7.7. Suppose that F is bad. By Lemma 7.5, we may assume that n≥ 6/c1,
provided c2 < 2−(6/c1−1), and therefore µ(F̃∆F)≤ 1

2 c1. Hence, F̃ is a c1
2 -small modification of F, and

we are done by Lemma 7.2, provided c2 ≤ c1.

From now on we assume also that F is n-stable.

7.5 The case where |In| ≥ 2

Here we show that if |In| ≥ 2, then there exists a 1
2n−1 -small modification of F with smaller |In|. This will

allow us to reduce to the case where |In| ≤ 1.

Lemma 7.9. Let A,B ∈ In (F) such that A 6= B, and let F1 = (F\{A})∪{B\{n}}, F2 = (F\{B})∪
{A\{n}}. Then either I [F1]< I [F] or I [F2]< I [F].

Proof. Suppose w.l.o.g. that |A| ≥ |B|; we will show that I [F1] < I [F]. Since F is n-stable, we have
A\{i} /∈ F for each i ∈ A (note that ((A\{i})\{n})∪{i}= A\{n} /∈ F). This implies that

|∂ (F \{A})|− |∂F| ≤ n−2 |A| .

Since (B\{n})∪{i} ∈ F for each i /∈ B\{n}, we have

|∂ ((F \{A})∪{B\{n}})|− |∂ (F \{A})| ≤ 2 |B|−n−2.

This implies that |∂F1| ≤ |∂F|+(n−2 |A|)+(2 |B|−n−2)≤ |∂F|−2.
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7.6 Proof of Proposition 7.1

We prove the proposition by induction on n. Let c1 = 2−k, where k ∈ N. Assume that

c2 < min{2−(6/c1−1),1,c1}.

The case n ≤ k+ 1 follows from Lemma 7.5. Let n ≥ k+ 2, and let F be as in the hypothesis of the
proposition. Suppose for a contradiction that F is bad. By Corollary 7.4, we may assume that F is
increasing; by Lemma 7.8, we may assume that F is n-stable, and by Lemmas 7.2, 7.5, and 7.9 we may
assume that |In (F)| ≤ 1. If |In (F)|= 0, then F does not depend on the nth coordinate and the proposition
holds by the induction hypothesis. Suppose that |In (F)|= 1. Then, by Lemma 3.1, we have

I [F] = 1
2 I
[
F
{n}
{n}

]
+ 1

2 I
[
F∅
{n}

]
+ Infn [F] =

1
2 I
[
F
{n}
{n}

]
+ 1

2 I
[
F∅
{n}

]
+

1
2n−1 . (7.6)

Since |F| is odd, and since in the lexicographic ordering, sets containing n alternate with sets not
containing n, we have Lµ = (L

µ
−
n ,µ+

n
)ass, and therefore

I
[
Lµ

]
= 1

2 I
[
L

µ
−
n (F)

]
+ 1

2 I
[
Lµ

+
n (F)

]
+

1
2n−1 . (7.7)

By (7.6) and (7.7), we either have I[F{n}{n}]≤ I[Lµ
+
n
]+ c2 or I[F∅

{n}]≤ I[L
µ
−
n
]+ c2. Recall that we are

assuming c1 = 2−k for some k ∈ N, and that n≥ k+2. Since 1/4+2−k ≤ µ = µ−n +2−n, 2n−1µ−n ∈ Z
and n > k, we have µ−n ≥ 1/4+2−k. Moreover, since µ ≤ 1/2, µ+

n = µ +2−n and 2n−1µ+
n ∈ Z, we must

have µ ≤ 1/2−2−n, and therefore µ+
n ≤ 1/2. Hence,

1
4 + c1 ≤ µ

−
n < µ

+
n ≤ 1

2 .

Therefore, we may apply the induction hypothesis to one of F∅
{n} and F

{n}
{n}. Suppose first that µ

−
i (F∅

{n})≤
c1. Then, by Lemma 6.1, we have µ

−
i (F∅

{n})≤
c2
2 . This implies that

µ
−
i (F)≤ µ

−
i

(
F∅
{n}

)
+2−n ≤ 1

2 c2 +2−n ≤ c1 = 2−k

since c2 ≤ c1 and n > k. Hence, F is good, as desired. The case where I[F{n}{n}]≤ I[Lµ
+
n (F)]+ c2 is similar.

8 F is essentially contained in a codimension-2 subcube (µ small)

In this section we essentially complete the proof of Proposition 4.1 in the case where µ (F) is ‘small’.
Specifically, we prove the following.

Proposition 8.1. For each c > 0, there exists d = d (c) > 0 such that the following holds. Suppose
F ⊂ P([n]) with µ := µ (F) ≤ 1

4 + d and I [F] ≤ I
[
Lµ

]
+ dµ . Then there exists a family G weakly

isomorphic to F, such that µ
−
1 (G)≤ µ

−
2 (G)≤ cµ .

We start by reducing to the case where F is increasing.
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Lemma 8.2. If Proposition 8.1 holds for all increasing families F, then it holds for all families F.

Proof. Given c> 0, let d′= d′(c)> 0 such that each increasing family G with µ(G)≤ 1/4+d′, satisfying
I [G]≤ I

[
Lµ(G)

]
+d′µ(G) also satisfies µ

−
i (G)≤ µ

−
j (G)≤ cµ(G)

2 for some i 6= j ∈ [n]. Let d =min{c,d′}.
Let F ⊂ P([n]) be some family satisfying µ := µ(F) ≤ 1/4+ d and I [F] ≤ I

[
Lµ

]
+ dµ . We may

assume without loss of generality that µ
−
i (F) ≤ µ

+
i (F) for each i ∈ [n]. By Lemma 7.3, we have

µ (S∅1 (F)∆F)≤ dµ

2 , and therefore

µ

(
F∅
{1}

)
≤ µ

(
(S∅1 (F))

∅
{1}

)
+ 1

2 dµ. (8.1)

Note also that µ(S∅1 (F)
∅
{i}) = µ(F∅

{i}) for any i≥ 2. Now let

G := S∅n
(
S∅(n−1) · · ·(S∅1 (F))

)
;

clearly, G is increasing. As in (8.1), we have

µ

(
F∅
{i}

)
≤ µ

(
G∅
{i}

)
+ 1

2 dµ ∀i ∈ [n].

By Lemma 3.4, we have I [G] ≤ I [F] ≤ I
[
Lµ

]
+ dµ . Since d ≤ d′, there exist two coordinates

i 6= j ∈ [n] such that µ
−
i (G)≤ µ

−
j (G)≤ cµ

2 . Hence, µ
−
i (F)≤ µ

−
i (G)+ dµ

2 ≤ cµ , and similarly, µ
−
j (F)≤

µ
−
j (G)+ cµ

2 ≤ cµ , as required.

The key lemma for the proof of Proposition 8.1 is the following.

Lemma 8.3. Let F ⊂ P([n]) be increasing, with µ (F)≤ 1
2 . Let

F1 = Sn,1Sn−1,1 ◦ · · · ◦S2,1 (F) ,

F2 = S{n,n−1}1 ◦ · · · ◦S{3,2}1 (F1) ,

...

Fn = S{n,n−1,...,2}1 (Fn−1) .

Then

(i) Fn is contained in the dictatorship D1,

(ii) I [Fn]≤ I [F], and

(iii) µ
−
i (Fn)≥ µ

−
i (F) for any i > 1.
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Proof. To prove (i), first note that Fn is increasing, using the fact that SS1(G) is increasing whenever G is
increasing and SS′1(G) = G for all S′ ⊂ S with |S′|= |S|−1. Suppose for a contradiction that Fn *D1;
then there exists S⊂ {2, . . . ,n} such that S ∈ Fn, so by the monotonicity of Fn, we have {2,3, . . . ,n} ∈ Fn.
But then, by construction of Fn, we have D1 ⊂ Fn, and so D1∪{{2,3, . . . ,n}} ⊂ Fn, contradicting the
fact that µ(Fn) = µ(F)≤ 1/2.

Statement (ii) follows by repeated application of Lemma 3.3, and (iii) is clear.

The idea of the proof of Proposition 8.1 is as follows. Let F ⊂ P([n]) be an increasing family
as in the hypothesis of the proposition; assume w.l.o.g. that µ

−
1 (F) = mini(µ

−
i (F)). Let Fn be the

family from Lemma 8.3. By Lemma 8.3, we have µ
−
i ((Fn)

{1}
{1}) = 2µ

−
i (Fn)≥ 2µ

−
i (F) for all i > 1, and

µ((Fn)
{1}
{1}) = 2µ(F). This allows us perform an inductive argument, doubling the measure of the family

at each step, and thus reducing to the case of measure somewhat larger than 1/4 (encapsulated in the
following lemma, which enables us to do the base case of the induction).

Lemma 8.4. For each c > 0, there exist d1 = d1 (c)> 0, d2 = d2(c)> 0 such that the following holds.
Suppose that F ⊂ P([n]) is increasing with 1

4 +d1 ≤ µ (F)≤ 1
2 +2d1, and that

I [F]≤ I
[
Lµ(F)

]
+d2µ (F) .

Then µ
−
i (F)≤ cµ(F) for some i ∈ [n].

Proof. If µ (F)≤ 1
2 , the lemma follows from applying Proposition 7.1 to F. In the case where µ (F)≥ 1

2 ,
it follows by applying Proposition 7.1 to Fc.

We now prove Proposition 8.1.

Proof of Proposition 8.1. By Lemma 8.2, it suffices to prove the proposition for increasing families.
Let c > 0, and let F ⊂ P([n]) be an increasing family as in the statement of the proposition, where
d = min{d1(c),d2(c)} and d1(c),d2(c) are as in Lemma 8.4. Write µ := µ(F). Write µ = 2− j · µ0,
where 1

4 + d1 ≤ µ0 ≤ 1
2 + 2d1 and j ∈ N. We prove by induction on j that Proposition 8.1 holds (for

increasing families) with the above choice of d. Let j ≥ 1. Suppose w.l.o.g. that F satisifes

µ
−
1 (F)≤ µ

−
2 (F)≤ ·· · ≤ µ

−
n (F).

Let Fn be as in Lemma 8.3. Let F′ = (Fn)
{1}
{1}; then µ(F′) = 2µ . If j = 1, then µ(F′) = µ0 ∈ [1/4+

d1,1/2+2d1], and so it follows from Lemma 8.4 that

min
i>1

µ
−
i

(
F′
)
≤ cµ

(
F′
)
= 2cµ.

Suppose that mini>1 µ
−
i (F′) = µ−m (F′). Then

µ
−
1 (F)≤ µ

−
2 (F)≤ µ

−
m (F)≤ µ

−
m (Fn) =

1
2 µ
−
m
(
F′
)
≤ cµ,

completing the base case of the induction. Now let j ≥ 2, and assume the desired statement holds when j
is replaced by j−1. Applying the induction hypothesis to F′ yields

min
i>1

µ
−
i

(
F′
)
≤ cµ

(
F′
)
= 2cµ,

and so by the same argument as above, we have µ
−
1 (F)≤ µ

−
2 (F)≤ cµ , completing the inductive step,

and proving the proposition.

DISCRETE ANALYSIS, 2018:9, 29pp. 25

http://dx.doi.org/10.19086/da


DAVID ELLIS, NATHAN KELLER AND NOAM LIFSHITZ

9 Wrapping up the proof of Proposition 4.1

Proposition 4.1 follows easily by combining Propositions 7.1 and 8.1 with the corresponding bootstrapping
lemmas. We recall the statement of Proposition 4.1 for the convenience of the reader.

Proposition. There exist absolute constants c1,c2 > 0 such that the following holds. Let µ ≤ 1
2 , let

ε ≤ c1µ , and let F⊂ P([n]) be a family with I [F] = I
[
Lµ

]
+ε and µ (F) = µ . Then there exists a family

G weakly isomorphic to F such that one of the following holds.

• Case (1): c2µ
−
1 (G)+ 1

2 ε
+
1 (G)≤ ε , or

• Case (2): c2µ
(
G\S{1,2}

)
+ 1

4 ε
++
1,2 (G)≤ ε .

Proof. Let F ⊂ P([n]) be as in the hypothesis of the proposition. Let G be a family weakly isomorphic to
F, satisfying

µ
−
1 (G)≤ µ

−
2 (G)≤ ·· · ≤ µ

−
n (G)≤ µ

+
n (G)≤ ·· · ≤ µ

+
1 (G) .

Lemma 6.2 implies that either Case (1) or Case (2) holds if µ
−
2 (G)≤ 1

6 µ , provided c2 ≤ 1
6 . By Proposition

8.1, there exists d > 0 such that the inequality µ
−
2 (G)≤ 1

6 µ holds provided µ (G)≤ 1
4 +d, and provided

c1 ≤ d. Thus, by Lemma 6.2, Case (1) or Case (2) holds for any family F satisfying µ (F)≤ 1
4 +d.

We may henceforth assume that 1
4 +d ≤ µ (F)≤ 1

2 . By Proposition 7.1, we have µ
−
1 (G)≤ d provided

c1 is sufficiently small depending on d. Hence, by Lemma 6.1, we have c2µ
−
1 (G)+ 1

2 ε
+
1 (G)≤ ε , provided

c2 ≤ 2, so Case (1) holds. This completes the proof.

Remark 9.1. For ease of exposition, we have not attempted to optimize the value of the absolute constant
C given by our proof of Theorem 1.5. (It can be checked that our proof, as written, yields C = 26·2360

.
This can easily be reduced to C = 2360, by introducing an extra constant into the statement of Proposition
8.1.) Unfortunately, it does not seem possible to modify our approach to obtain C = 2 (see Conjecture
10.1 below).

10 Conclusion and open problems

As mentioned above, we conjecture that Theorem 1.5 holds with C = 2.

Conjecture 10.1. If F ⊂ P([n]) and L⊂ P([n]) is the initial segment of the lexicographic ordering with
|L|= |F|, then there exists a family G⊂ P([n]) weakly isomorphic to L, such that

|F∆G| ≤ 2(|∂F|− |∂L|).

More generally, it would be of interest to determine more precisely the behaviour of the function

s(n,m, l) := max{min{|F∆G| : G∼= L} : F ⊂ P([n]) , |F|= m, |∂F| ≤ |∂L|+ l},

where L denotes the initial segment of the lexicographic ordering of size m.
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