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Abstract

In this article, we propose a domain specific language, Gubs (Ge-
nomic Unified Behaviour Specification), dedicated to the behavioural
specification of synthetic biological devices, viewed as discrete open
dynamical systems. Gubs is a rule-based declarative language. In
contrast to a closed system, a program is always a partial descrip-
tion of the behaviour of the system. The semantics of the language
accounts the existence of some hidden non-specified actions that pos-
sibly alter the behaviour of the programmed devices. The compilation
framework follows a scheme similar to automated theorem proving,
aiming at improving synthetic biological design safety.
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1 Introduction

Synthetic biology is an emerging scientific field combining the investiga-
tive nature of biology with the constructive nature of engineering [30] to
design synthetic biological systems. The issue is to devise new functional-
ity/behaviour that does not exist in nature. Then, the field of synthetic
biology is looking for principles and tools to make the biological devices
inter-operable and programmable [27]. Synthetic biology projects were first
focusing on the design and the improvement of small genetic devices com-
parable to logical gates for electronic circuits [31, 12]. Recently, projects
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have attempted to develop large bio-systems integrating different devices
with as a long-term goal, the design of de-novo synthetic genome [23]. In
this endeavour, computer-aided design (CAD) environments play a central
role by providing the required features to engineer systems: specification,
analysis, and tuning [5, 28, 38, 14]. Pioneer applications show the valuable
potential of such environments in the Igem competition.

Currently, the design of synthetic genome specifies the structural as-
sembly of Dna sequences (biobrick) as in Genocad [8]. Although this de-
scription is indispensable to provide a finalized specification of devices, the
abstraction level seems inappropriate for tackling large bio-systems. The
required size of programs for sequence description likely makes the task
error-prone and infeasible. In the same way as large software cannot be pro-
grammed in binary, large biological systems cannot be described as a DNA
sequence assembly. Then, scaling up the complexity of the synthetic biolog-
ical systems needs to complete the structural description by an additional
abstract programming layout based on a High-level programming languages
and harness the automatic conversion of the design specification into a DNA
sequence, like compilers. High-level programming languages for synthetic
biology is announced as a key milestone for the second wave of synthetic
biology to overcome the complexity of large synthetic system design [30].
Nonetheless, in this domain, language technology is still in its infancy and
transforming this vision into reality remains a daunting challenge.

Such high-level language should describe the devices in term of func-
tionalities, offering the ability to program the behaviour directly instead
of the structure supporting this behaviour. Indeed, behaviour specification
contributes to accurately document the device by adding its behavioural
description, to assess its functionality automatically and formally, notably
by generating test-benches from this specification, and to get a relative in-
dependence to technology because different biological structures can carry
out the same functionality. In this framework, the components are selected
and organized automatically or semi-automatically to generate a structural
description of the device at compile phase whose behaviour complies with
the specified function. One such approach has been already achieved in
hardware by using languages as Vhdl [1] or Verilog [37] to overcome the
growing complexity of electronic circuits. However, the major difference
in synthetic biology relates to the openness of biological system. Hence,
we propose to define a language dedicated to synthetic biology based on a
behavioural specification that handles the openness of system.

More precisely, Gubs is a rule-based declarative language dedicated
to the behavioural specification of discrete open dynamical systems for syn-
thetic biology interacting with its environment. Gubs symbolically defines
the behaviours to provide a relative independence from structures by post-
poning the biological component selection at compile phase. Within this
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framework, the compiler translates the behavioural specification to a struc-
tural description of a device whose behaviour carries the functional features
defined by a program. The proposed compilation method is inspired by
automated theorem proving.

After introducing related works(Section 2) on languages dedicated to
systems and synthetic biology, we introduce the main features of Gubs

language (Section 3), we define the semantics of Gubs based on hybrid
logic. Then, we detail the proof-based principles governing the compilation
(Section 5) illustrated with a complete example (Section 6).

2 Related Work

Several domain specific languages have been developed to model and simu-
late biological systems. Based on process calculus, seminally used to model
process concurrency, several rule-based languages model protein interac-
tions [29, 16, 11]. Another approach is based on logic, such as Biocham [9]
that formalizes the temporal properties of a biological system. As these
languages are dedicated to simulation, the objective is to close the systems
because the simulations need to integrate all the characteristics of the anal-
ysed systems. By comparison, the purpose of Gubs is different since the
issue is to represent the behaviour of a synthetic device in an organism,
leading to translate the notion of the openness of biological systems by the
semantics of the language.

In synthetic biology, structural description languages [14, 28, 5] allow
to specify well-formed genome sequences by grammars modularly and hier-
archically. Although the sequence description is necessary, the programmer
must previously anticipate the behaviour of the device to conceive. Besides,
the behavioural design is not included in the program while it initially mo-
tivates it. In Gubs, the design is driven by a behaviour description and
sequence selection is postponed at compile phase. Moreover, the size of the
structural description is also subject to a combinatorial explosion when the
complexity of programmed systems increases.

Amorphous programming languages has been also investigated to spec-
ify the biological devices at the scale of cell colonies, here considered as
a possible computing medium for amorphous program. J. Beal [4] demon-
strates a proof of concept of this approach in Proto, showing the feasibility
of an automatic compile chain. In Gubs, the compile chain is based on
rewriting rules whose correctness have been formally proved with regards
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to a semantics describing the constraints of an open system.

Developing a language for biological systems actually involves to con-
sider several unknowns due to their openness: lack of knowledge on all the
interactions in biological circuits and imprecise definition of initial condi-
tions. We only know the result of a chain of effects. Then, the major
constraint for programming open systems seems to be: how to provide an
expressive language to describe the dynamics of such systems, but simple
enough to capture the essence of the biological questions in a small program
in order to allow programming of large biological systems with a program
humanly achievable.

In the future, the design in synthetic biology will certainly require dif-
ferent programming layouts based on different paradigms addressing the
integration levels of biological systems. In a tower of languages, starting
from a language with collective operations on cell colonies, using an amor-
phous programming language as Proto [4] or a language for dynamical
systems with dynamical structures as MGS [22], and ending by a structural
description programmed in a grammar based language, the Gubs language
occupies the intermediary level dedicated to cell entity behavioural program-
ming.

3 GUBS Language

In this section, we describe the main features of Gubs. Informally, a Gubs

program describes the expected observed behaviour of a biological compo-
nent. A sequence of observation must comply to a sequence of events related
by a causal chain specified in a Gubs program.

Agents, attributes and states. The agents represent the biological ob-
jects. Hence their different observable states characterize their different
behaviours. The behaviours define the different capacities for actions on
the state of the other agents. It is worth noting that they are characterized
symbolically by a set of attributes identifying these different capacities. The
real significance of the attributes is a matter of convention depending on
the targeted realization (e.g., protein pathways, gene network) and will be
addressed through examples. For instance, the regulatory activity of a gene
is observationally related to thresholds of Rna transcripts concentration.
At a given threshold, a gene regulates a given set of genes whereas at an-
other one the regulation applies to another set of genes (See Figure 1). The
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different thresholds define the levels of gene activities leading to different
regulatory activities. For example, if we identify three different kinds of
regulatory activities for a gene G, the state of the gene will be defined by
three different attributes {Low,Mid,High} characterizing three possible be-
haviours symbolically. For example, G(Low) expresses the fact that agent
G is in state Low and then ready for the action corresponding to this at-
tribute. In some cases, a single state is sufficient to qualify the capacity for
the action of the agent. Hence, the agent is identified to its capacity. Then,
G means that agent G is available.

By contrast, G(Low) signifies that the state of the agent differs from
Low (G when an agent has a single capacity). It is worth to point out that,
not being in a state defined by an attribute, does not necessarily mean that
the agent state is in another attribute. Indeed, for open systems the state
of the agents could be of any sort that does not necessarily belong to the
pre-defined attributes.

Two kinds of relations on attributes are defined: an order, ≺, mean-
ing “less capacity than” and an inequality, ≉, meaning “different capac-
ity than”. Then Low ≺ Mid implies that the capacity for the action of
Mid includes the capacity related to Low . Usually, in a gene regulatory
model [17], the set of genes regulated at a given level will also be regulated
at a higher level. By contrast, in signalling pathways, the phosphorylation
of a protein induces a conformational change of the structure leading to a
specific signalling potentiality not occurring in the unphosphosrylated con-
formation. Assuming that Phos and UnPhos respectively represents the
phosphorylated and the unphosphorylated conformations of protein P , we
have Phos ≉ UnPhos. Then, P (Phos) implies P (UnPhos) implicitly. The
attributes and the relation between attributes will be declared as follows:
G ∶∶ {Low ≺ Mid,Mid ≺ High}, P ∶∶ {Phos ≉ UnPhos}. A set of attributes
replaces the relations if unknown and no specific relation is set between
attributes.

Finally, the description of the agent state is extended to a collection of
agent states as follows: g1 + . . . + gn, meaning that all the agent states, gi,
are observed simultaneously.

Constant and variables. InGubs, two kinds of agents are distinguished:
the constants and the variables. The constants designate the real pre-defined
objects in a corpus of knowledge. In biology, the constants may refer to
proteins or genes of interest. For example, the agent LacZ refers to LacZ
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protein or gene. By convention, their name starts with a capital letter.
The variables refer to an abstraction of these pre-defined objects and can
be potentially replaced (substituted) by any constant. By convention, the
variable names start with a lower-case letter.

Trace, event, and history. A Gubs program describes a behaviour, its
interpretation is based on the observations of designed systems. Then, the
issue is to formalize the notion of behaviour observation. To this end, we
focus on the notion of a trace that symbolically represents the evolution of
some quantities related to the agents of interest by the evolution of these
agent states. A trace can be obtained from experiments by establishing a
correspondence between measurements of some quantities (e.g., Rna tran-
script concentration) and attributes of agents. Formally, a trace, (Tt)1≤t≤m,
is a finite sequence of agent state sets where each set contains all observed
agent states at a given instant. For instance, the evolution of a concentration
evolving from Low to High for G may be described by the following trace
of 6 instants2: ({G(Low)},{G(Low)},{G(Mid)},{G(Mid)},{G(Mid)},{G(High)}), .

1 2 3 4 5 6 7

However, all the events in a trace are not necessarily relevant with regard to
the behaviour description. For example, if we focus on the evolution from
Low to High for G, we decide arbitrarily that only three events are relevant
for the behaviour description: G(Low) then G(Mid) and finally G(High);
without accounting the intermediary evolution stages occurring between.
Then, the behaviour recognition always emphasizes the key events in a trace
entailing its contraction to show their succession. Such a contracted series
is called a consistent history of the expected behaviour. Generally speak-
ing, an history is related to a chronological division of a trace into periods
where the events of a period represent all the agent states occurring at each
instant. Then, an history is a sequence of these event sets. Given a trace
(Tt)1≤t≤m, and a chronological division, (di)1≤i≤n such that di < di+1, corre-
sponding to a sequence of the starting dates for each period, the history is a
sequence of agent states occurring in each period, (Hi)1≤i<n, such that each
Hi = ⋃di≤t<di+1 Tt. Hence, a consistent history is purposely made to point
the characteristic event steps of a behaviour description out.

In the previous example, a chronological division of the trace lead-
ing to an history consistent with the expected evolution from Low to High
for G is (1,3,6,7) which corresponds to following discrete time-intervals

2Step 7 is inserted as an extra step to comply with the definition of the chronological
division.
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([1,2], [3,5], [6,6]). The resulting history is: ({G(Low)},{G(Mid)},{G(High)}).
Notice that (1,2,4,7) also fits. However, the chronological division (1,3,7)
leads to an inconsistent history because the level Mid and High are not
explicitly distinguished as too separate steps. Hence the history does not
follow the expected progress from low to high. The formal definition of the
consistency in the scope of the semantics will be given in Section 4.

Behavioural dependence and observation spot. A behavioural de-
pendence identifies a relation between behaviours as a causal relation on
events. Basically, the dependences should define the control of agents on
each other. However, the definition of the causality also needs to tackle
the openness of a system by adapting it to this context. An historical def-
inition of the causality, proposed by Hume [24], is formulated in terms of
regularity on events: “[we may define] a cause to be an object, followed by
another, and where all the objects similar to the first are followed by objects
similar to the second”. Although this definition appropriately characterizes
the notion of control, the openness of the system implies to account for the
environment actions that possibly alter the causal dependence chain. For

example, a programmed activation G1
+
Ð→ G2 may be contradicted by an

existing inhibition G3
−
Ð→ G2 addressing the same target gene G2. Hence,

while G1 is active, it may appear that G2 will not be active because the
regulatory strength of G3 is greater than the regulatory strength of G1, con-
tradicting the expected activation by a hidden inhibition. Hence, pushed to
the limit, this consideration prevents the ability to describe any behaviour
causally because any programmed action can be unexpectedly preempted
by an external one. Adapting the Hume’s definition, we define a causality
by the occur of its effect. If the effect is observed, the causal relation is
effective. which is different from the basic approach considering : if the
cause is observed, the causal relation is effective.

By ensuring that the design describes a new functionality which is
not observed naturally, the observation of effects becomes the sole events
indicating the trigger of causal dependences. Indeed, the observation of
a cause cannot be considered as an indicator because its action could be
preempted by external events. In other words, the proposed definition of
the causality reflects the fact that the device may be not functional due
to an external intervention. However, the functionality is still correctly
specified because this eventually is accounted in the definition of causality
validated by the observation of effects. Besides, as no cause external to
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the description is assumed to trigger the effects of dependences for the new
functionality, the over-determination by unknown causes is supposed to be
prevented, then ensuring that the program is the sole device entailing the
expected effects in the biological system. Hence, the definition of the causal
dependence will be governed by the effect leading to the following definition
of the dependence: “if effect e would occur then c occurs”. Moreover, the
scope of future (resp. past) is narrowed to a closest future (resp. past)
period, representing the fact that a response is always expected in a given
delay. Notice that, the proposed definition circumvents the afore mentioned
problem illustrated by the hidden inhibition because if the effect does not
occur the question of the existence of a cause is meaningless. This definition
is somehow equivalent to the causal claims proposed by Lewis [26] in terms
of counter-factual conditionals, i.e., “If c had not occurred, e would not
have occurred”.

Three behavioural dependences are defined in Gubs: the normal de-
noted by ◯→, persistent by ⊙→, and residual by ⊕→. These dependences are
primitive in the sense that they cannot be expressed by the others without
weakening there properties (see Table 5). Informally, for normal dependence
the cause precedes the effect providing the effect is observed; for persistent
dependence the cause still precedes the effect but it is maintained while
the effect is observed; and for residual dependence, the effect is maintained
despite the cause has disappeared. These dependences symbolize common
biological interactions. For instance, in genetic engineering, a recombina-
tion enables the emergence of a regulated gene or an hereditary trait per-
manently. Such a mechanism typifies the residual dependence in biology.
The relations between gene expressions at steady state are symbolized by
persistent dependence. The behavioural dependences are defined as follows
(see Section 4 for their formalization):

c ◯→ e: if e occurs then c occurred in the closest past.

c ⊙→ e: if e occurs then c occurred in the closest past and also cur-
rently.

c ⊕→ e: if e occurs then, either e occurred in the closest past or e does
not occurs in the closest past and c necessary occurs.

Figure 1 exemplifies the correspondence between experimental traces,
symbolic traces and the history for the causal dependences. All the de-
pendences are extended to a set of causes and a set of consequences, i.e.,
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Figure 1: The curves represent the typical behaviours of the causal depen-
dences based on the time evolution of a quantity (q) related to agents c and
e (e.g., Rna transcript for gene regulation). The symbolic agent states c
and e are here both associated to the maximal threshold of the quantity.
The symbolic trace (T ) is issued from a periodic sampling of the evolution
by identifying whether c or e occur. A consistent history (H) complying
to a causal dependence definition is represented below the trace. The first
graphic illustrates the normal causality: c ◯→ e, the second the persistent:
c ⊙→ e and the third the residual one: c ⊕→ e.
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c1 + . . . + cn ◯→ e1 + . . . + em. For example, let us define the activation and
the inhibition as follows:

g1
+
Ð→ g2 ≡ g1 ⊙→ g2, g1 ◯→ g2 and g1

−
Ð→ g2 ≡ g1 ⊙→ g2, g1 ◯→ g2. Then,

the program depicting a negative regulatory circuit with two genes, i.e.,

g1
+
Ð→ g2, g2

−
Ð→ g1, is: {g1 ⊙→ g2, g1 ◯→ g2, g2 ⊙→ g1, g2 ◯→ g1}.

The observation spots describe the set of observations expected in
a trace. For instance, observing that gene G is at level high is written
Obs::G(High). As the activation of a dependence lies on the observation of
the effect, the observation spot is used to determine which effects must be
necessarily observed. To some extends, observation spots can be assimilated
to experimental requirements. For example, in the negative regulatory cir-
cuit, the characteristic observation spots are: obs1::(g1 + g2),obs2::(g1 + g2).

Compartment & Context. A compartment encloses a set of depen-
dences making them local to the compartment. For instance, C{g1 ◯→ g2}
describes a normal dependence occurring in compartment C. The compart-
ments are hierarchically organized and all the compartments are included
in another except for the outermost one. Although the compartments di-
rectly refer to the compartmentalized cellular organization (e.g., nucleus,
mitochondria), they are also used to emphasize the isolation of some inter-
actions by syntactically enclosing the dependences into a compartment. C.s
refers to an agent state in compartment C.

A context refers to a stimulus acting on the system, as environmental
conditions or external signalling. The application of a context c to a set of
dependences b is written [c]b where c is either a variable or a constant. This
means that dependences of b are triggered when the context c is present. For
instance, recently Ye et al. [39] explore the opto-genetics signalling to control
the expression of target transgenes. The blue-light induces the expression
of transgene (tg) via a signalling cascade leading to the binding of Nfat

transcription factor to a specific promoter (Pnfat). The following program
using a context summarizes the process: [BlueLight]{NFAT ⊙→ tg}. A con-
text can be decomposed to several contexts, [k1, . . . , kn]b, meaning that all
the conditions must be met to trigger the dependences of b. The interpre-
tation is equivalent to a context cascading, [k1][k2] . . . [kn]b. Moreover, the
observation spots and the attribute definition are context insensitive.
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4 Semantics of GUBS

The interpretation of Gubs program is a formula of multi-modal hybrid
logic with the “Always” operator, H(A,@). Formally, a Gubs program
defines a set of causal relations and observation spots. Notice that those
sets can be empty. The program is translated into an hybrid logic formula.

Hybrid logic. In what follows, we recall the formal syntax and semantics
of hybrid logic. The hybrid logic [6, 7] offers the possibility to denominate
worlds by new symbols called nominals. They will be used in satisfaction
of modal operators @a; the formula @aφ asserts that φ is satisfied at the
unique point named by the nominal a identifying a particular truth value of
a formula at this point. Given a set of propositional symbols, PROP, a set
of relational symbols REL, and a set of nominals NOM disjoint to PROP, a
set of well formed formula in the signature of ⟨PROP,NOM,REL⟩ is defined
as follows:

φ ∶∶= ⊺ ∣p ∣ a ∣ ¬φ ∣ φ ∧ φ ∣ @aφ ∣ ⟨k⟩φ ∣ ⟨k⟩−φ ∣Aφ.

with p ∈ PROP, a ∈ NOM and k ∈ REL. Moreover, the syntax is extended to
other logical operators 3: �,∨,→, [k],E, in the usual way.

The semantics of H(A,@) is based on the Kripke model satisfaction
(Table 1). M, w ⊩ φ is interpreted as the satisfaction of a formula φ by a
model M at world w where ⊩ stands for the realizability relation (i.e., “is a
model of”). A model validates a formula, denoted by M ⊩ φ, if and only if
it is satisfied for all the worlds of the model (i.e., ∀w ∈ DomM ∶M, w ⊩ φ).

Definition 1 (Kripke model). A Kripke model is defined as a structure :

M = ⟨W, (Rk)k∈τ , V ⟩

where W = DomM is a non-empty set of worlds, τ ⊆ REL a subset of rela-
tional symbols denoting the modalities(i.e., label of edges), Rk ⊆W×W,k ∈ τ
a relation of accessibility, V ∶ (PROP ∪ NOM) → 2

W an interpretation at-
tributing to each nominal and propositional variable a set of worlds such
that any nominal addresses at most one world(i.e., ∀a ∈ NOM ∶ ∣V (a)∣ ≤ 1).
By convention, R stands for the union of the accessibility relation, R =

(⋃k∈τ Rk).
3 � = ¬⊺, ψ ∨ φ = ¬(¬ψ ∧ ¬φ), ψ → φ = ¬(ψ ∧ ¬φ), [k]φ = ¬⟨k⟩¬φ,Eφ = ¬A¬φ.
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The modal theory of a model M with respect to a set of formulas F ,
THF (M), is the set of formulas of F validated by M, i.e., THF (M) =
{φ ∈ F ∣ M ⊩ φ}. KS(φ) denotes the set of all models validating φ, i.e.,
KS(φ) = {M ∣M ⊩ φ}.

M,w ⊩ ⊺ iff true

M,w ⊩ a iff w ∈ V (a), a ∈ NOM ∪ PROP

M,w ⊩ ¬φ iff M,w ⊮ φ

M,w ⊩ φ1 ∧ φ2 iff M,w ⊩ φ1 andM,w ⊩ φ2
M,w ⊩ @aφ iff ∃w′ ∈W ∶ M,w′ ⊩ φ and {w′} = V (a)
M,w ⊩ ⟨k⟩φ iff ∃w′ ∈W ∶ M,w′ ⊩ φ and wRkw

′

M,w ⊩ ⟨k⟩−φ iff ∃w′ ∈W ∶ M,w′ ⊩ φ and w′Rkw

M,w ⊩Aφ iff ∀w′ ∈W ∶ M,w′ ⊩ φ

Table 1: Hybrid logic interpretation.

Semantics. A Gubs program is interpreted by an hybrid logic formula.
Hence, it is considered as observable if and only if its corresponding formula
is valid. The validity/satisfiability is defined from a Kripke model (Defini-
tion 1) gathering different possible histories. A world in a Kripke model
represents an event defined by a set of agent states at a given point in the
history 1.

Operator [ ] means “observed in all possible closest futures” and ⟨ ⟩
means “observed in a possible closest future at least” (resp. ⟨ ⟩−, [ ]− for the
closest past). Besides, accessibility relations, (Rk)k∈τ , represents a “tempo-
ral evolution” in regard to some contexts. Thus, they are indexed by the
non-empty parts of the set of all contexts of a program P , denoted by KP

(i.e., τ = 2KP ∖ {∅}). A non-empty set of contexts ∅ ⊂ K ⊆ KP , is then
a modality, i.e., ⟨K⟩, [K] with ⟨ ⟩ = ⟨∅⟩ by convention. Agent states are
variables of the formulas and observation spots are interpreted by nominals
used to identify worlds.

Let ⟨W, ●,Λ⟩ be the set of worlds W with the concatenation operation
and the neutral element, the empty world Λ and FH the set of well-formed
formulas of H(A,@), the denotational semantics is defined by four func-
tions: ⟦.⟧ ∶ P → FH, ⟦.⟧P ∶ P →W → 2W → FH, ⟦.⟧B ∶ B →W → FH, ⟦.⟧R ∶ R →
W→ FH, where P,B,R respectively stand for the set of Gubs programs, the
set of agent state sets and the set of relations on attributes. ⟦.⟧ is the main
function initiating the interpretation. ⟦.⟧P provides an interpretation for be-
haviours: causal relation, compartment, context and observation spot. ⟦.⟧B
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⟦{b}⟧ =A (⟦b⟧P (Λ)(∅))

⟦ǫ⟧P (C)(K) = ⊺
⟦b1, b2⟧P (C)(K) = ⟦b1⟧P (C)(K) ∧ ⟦b2⟧P (C)(K)
⟦s1 ◯→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ ⟨K⟩

− (⟦s1⟧B (C))
⟦s1 ⊙→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ (⟦s1⟧B (C) ∧ ⟨K⟩

− (⟦s1⟧B (C)))
⟦s1 ⊕→ s2⟧P (C)(K) = ⟦s2⟧B (C)→ ((⟨ ⟩

− ⟦s2⟧B (C)) ∨ (⟨K⟩
− ⟦s1⟧B (C)))

⟦g1,⋯, gn ∶ {r1,⋯, rm}⟧P (C)(K) = ⋀
n
i=1⋀

m
j=1 ⟦rj⟧R (C.gi)

⟦l::s⟧P (C)(K) = @l ⟦s⟧B (C)
⟦C ′{b}⟧P (C)(K) = ⟦b⟧P (C.C

′)(K)
⟦[K]{b}⟧P (C)(K

′) = ⟦b⟧P (C)(K ∪K′)

⟦s1 + . . . + sn⟧B (C) = ⋀
n
i=1 ⟦si⟧B (C)

⟦C ′.s⟧B (C) = ⟦s⟧B (C.C
′)

⟦g(a)⟧B (C) = C.ga
⟦g(a)⟧B (C) = ¬C.ga
⟦g⟧B (C) = C.g
⟦g⟧B (C) = ¬C.g

⟦a1 ≺ a2⟧R (g) = ga2
→ ga1

⟦a1 ≉ a2⟧R (g) = ga1
→ ¬ga2

∧ ga2
→ ¬ga1

⟦a⟧R (g) = ⊺

Table 2: Semantics of Gubs. In the definition, a represents an attribute, b a
behaviour, g an agent, s a set of agent states or an agent state, r a relation on
attributes, C a compartment, K a set of contexts and b a set of behaviours
(i.e., contexts, compartments, dependences, attributes, observation spots).

defines the interpretation of agent and agent set. Finally, ⟦.⟧R corresponds
to the interpretation of attribute relation. Table 2 defines these functions.
Table 3 describes two interpretations of Gubs program : the first program
is a negative cycle with two genes, the other one is a part of band detector
pattern used in Section 6.

The observability is based on the interpretation of a program translat-
ing it to an hybrid logic formula. An observable program corresponds to a
valid formula. Hence we use tableau method for hybrid logic which is proved
decidable for hybrid logic fragments without the binder. For this fragment,
tableau method is proved exp-time with a logarithm bottom floor[15]. Ac-
cording to the semantics (Table 2), the resulting formulas are in conjunctive
form with at most 3 disjunctive clauses for persistent causes. Each applica-
tion of the disjunction rule will create a new branch in the tree formed by
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Gubs program Hybrid logic interpretation
{ A(

g1 ⊙→ g2 , g2 → ((⟨ ⟩−g1) ∧ g1) ∧
g
1
◯→ g

2
, ¬g2 → (⟨ ⟩−¬g1) ∧

g2 ⊙→ g
1

, g1 → ((⟨ ⟩−¬g2) ∧ ¬g2) ∧
g
2
◯→ g1 , ¬g1 → (⟨ ⟩−g2) ∧

obs1 ∶∶ g1 + g2 , @obs1
(g1 ∧ ¬g2) ∧

obs2 ∶∶ g1 + g2 @obs2
(¬g1 ∧ g2)

} )

Gubs program Hybrid logic interpretation
{ A(

AHL:{low ≉mid ≉ high} , AHL high→ AHL mid ∧
AHL mid→ AHL low ∧

[Light]{detect ◯→ AHL(low)} , AHL low → ((⟨Light⟩−detect) ∧
[Light]{detect ◯→ AHL(mid)} , AHL mid→ ((⟨Light⟩−detect) ∧
[Light]{detect ◯→ AHL(high)} , AHL high→ ((⟨Light⟩−detect) ∧

} )

Table 3: Interpretation of Gubs program into hybrid logic.

the tableau resolution, so the complexity resulting of those formulas will be
in O(3n) where n is the number of lines in the normalized program.

Consistent history. Now, we formally define the consistency of the his-
tory with regards to models.

Definition 2 (Consistent history). Let Pn(M) be the set of path ending with
an observable spot on the last world for a model M, a consistent history,
MH , with regards to a program P is defined as follows:

1. MH is a model.

2. PN(MH) = {MH}.

3. MH ⊧ ⟦P ⟧

Remark 1. Note that, if Pn(M) is the set of all paths in M such that the
final point is named, ∀MH ∈ P (M), M ⊩ ⟦P ⟧⇒MH ⊩ ⟦P ⟧.

Notice that, if a program is validated by a model, all the histories are
validated.



GUBS, a Behaviour-Based Language
for Design in Synthetic Biology 15

5 Compilation

At compile time, a program is transformed to a structure (e.g., a Dna se-
quence) while inserted in a vector cell (such as a bacteria), that should
behave according to the programmed specification. The structure will re-
sult in an assembly of several devices stored in a library of components
(e.g., parts registry). As the design relates here to a behavioural/functional
description, we need to bridge the gap between structural and functional de-
scription. This stage is called the functional synthesis. The issue is to select
a set of components whose assembly preserves the behaviour of the program.
To achieve this goal, a Gubs program is associated to each component to
describe its behaviour. Thereby, the component assembly corresponds to a
program assembly preserving the behaviour of the compiled program. Pre-
serving a behaviour is captured by a property called the behavioural in-
clusion formalizing the fact that the characteristic observational traits of
the specified function must be recognized in traces related to the device
experiments. In other words, we can construct histories consistent with the
programmed behaviour from histories consistent with the device behaviour
description. The behavioral inclusion is defined from the interpretation of
the programs, as a logical consequence (Definition 3).

Definition 3 (Behavioral inclusion). A program Q behaviourally includes
another program P , if and only if the interpretation of the latter is a logical
consequence of the interpretation of the former:

P ^ Q ≜ ∀M ∶M ⊩ ⟦Q⟧ Ô⇒ M ⊩ ⟦P ⟧ .

The behavioral inclusion is a pre-order4 such that the empty program,
denoted by ǫ, is a minimum; meaning that a program with no expected
behaviour can be observed in all traces. A program whose interpretation
equals �, is a maximum. Figure 2 illustrates the behavioural inclusion on a
particular model P .

Observability. It may arise that no history will be consistent with a pro-
grammed behaviour. For example, the program {Obs ∶∶ g, g ⊙→ g} is not
observable in a trace. Indeed, its interpretation yields the following formula:
A((@Obsg) ∧ (g → ((⟨ ⟩−¬g) ∧ ¬g))), false in all models because world Obs
must both satisfies g and ¬g by definition of the persistent dependence. A

4A reflexive and transitive relation.
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P Q

{g1 ◯→ g3, {[k1]{g0 ◯→ g1},
[k3]{g3 ◯→ g4}, [k2]{g0 ◯→ g2},
[k4]{g3 ◯→ g5}, g1 ◯→ g3,

[k6]{g8 ◯→ g9}, g2 ◯→ g5,

[k7]{g8 ◯→ g10}, [k3]{g3 ◯→ g4},
g9 ◯→ g11, [k4]{g3 ◯→ g5},
g10 ◯→ g11, g6 ◯→ g8,

a ∶∶ g4} [k5]{g6 ◯→ g7},
[k6]{g8 ◯→ g9},
[k7]{g8 ◯→ g10},
g9 ◯→ g11,

g10 ◯→ g11,

a ∶∶ g4, b ∶∶ g5, c ∶ g11}
a : b :

g0

g1

g2

g3

g4 g5

g6

g7

c :

g8

g9 g10

g11

k1
k2

k3 k4

k5

k6 k7

Figure 2: Behavioural inclusion example. Consistent histories of P necessary
contains worlds coloured in grey. From the a,b,c observation spots, the
model corresponding to worlds in grey validate the original model. Hence,
the behaviour of P is included in the model of Q represented by the entire
graph.

Gubs program is said to be observable if and only if the formula resulting
from its interpretation is validated by one model at least. Hence, the inter-
pretation of an unobservable program is a contradiction. An unobservable
program can be assimilated to a programming error. The detection of such
errors can be carried out at compile time using tableaux method [10] that
automatically determines whether a formula is satisfiable in a model. Indeed
Gubs uses a fragment of H(A,@) named HL(@) logic which is decidable.
The observation of the behaviour is essential to validate a program to en-
sure its safety. Hence, the assembled components must be always observable
because a program behaviourally included in an observable program is also
observable (Proposition 1).

Proposition 1. A program behaviourally included in an observable program,
obs P, is observable: ∀P,Q ∈ P ∶ (obsQ) ∧ (P ^ Q) Ô⇒ obsP.

5.1 Functional Synthesis

Functional synthesis is the operation whereby biological components of a
library are selected and assembled to generate a device behaviourally includ-
ing the designed function. The behaviour of each component is described
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by a Gubs program. At its simplest, the functional synthesis could be con-
sidered as a proper substitution of variables by constants. For example, in

the following activation {G1
+
Ð→ g2}, g2 will be substituted by gene G2, pro-

viding that component Q describes the activation {G1
+
Ð→ G2}. However,

more complex situations may arise during component selection. For exam-

ple, if the activation G1
+
Ð→ G2 occurs with another regulation only i.e.,

Q = {G1
+
Ð→ G2,G3

+
Ð→ G4} then the selection of Q adds a supplementary

regulation.

Formally, a finite substitution is a set of mappings, σ = {vi ↦ bi}i, on
variables and constants such that a variable can be substituted by a variable
or a constant, and a constant can only substituted by itself5. For instance,
we have: {Obs::G(l) + b2, b1 ◯→ G(l)}[{b1 ↦ B1, b2 ↦ B2, l ↦ Low}] =
{Obs::G(Low) +B2,B1 ◯→ G(Low)}.

Functional synthesis rules. Functional synthesis is defined by rules (Ta-
ble 4) governing the component assembly. Only the dependences and the
attributes will be functionally synthesized. The observation spots are con-
sidered as annotations used for the compilation process. To ensure the
correctness, each transform must preserved the original behaviour. Hence,
each program resulting from the application of a rule must behaviourally
include the previous one. Formally, the functional synthesis is modelled
by a relation on programs denoted by �, i.e., Q �σ P where P is the ini-
tial program and Q the transformed one, such that each rule insures that:
Q �σ P is correct in regard to a substitution σ, that is P [σ] ^ Q[σ] and
Q[σ] is observable. Also notice that the behavioural inclusion is preserved
by substitution (Proposition 2).

Proposition 2. For all substitutions σ, we have: P ^ Q Ô⇒ P [σ] ^ Q[σ].

Table 4 describes the functional synthesis rules6. Γ is a set of components
representing the library. P ⊆Asm Q denotes the fact that program Q corre-
sponds to an assembly including P i.e., Q = (Q1, P,Q2) where Q1 or Q2 may
be an empty program. Rule (Inst.) describes the fact that an observable
instance of a part of a component in the library is functionally synthesized.

5 Pσ or P [σ] represents its application on program P and identity substitutions are
omitted.

6Rules are of the form:
hypothesis

conclusion
.
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- Instantiation -

Q[σ] ⊆Asm P [σ] obs (Q[σ]) Q ∈ Γ
(Inst.)

Q�σ P

- Commutativity, Contraction -

Q�σ P,P
′

(Com.)
Q�σ P

′, P

Q�σ P
(Cont.)

Q�σ P,P

- Assembly -

Q�σ P Q′ �σ′ P
′ σ∣VA(P )∩VA(P ′) = σ

′∣VA(P )∩VA(P ′) obs (Q[σ],Q′[σ′])
(Asm.)

Q,Q′ �σ∪σ′ P,P
′

Table 4: Functional synthesis rules

Rule (Com.) expresses the commutativity of the assembly. Rule (Cont.)
contracts the redundant formulation of programs. Finally, Rule (Asm.) de-
tails the conditions for an assembly of two components, each representing a
functional synthesis of a part of the designed function. A detailed example
of their use on a real case is given in Section 6.

Theorem 1. The functional synthesis rules (Table 4) are correct.

Another set of rules, more specifically devoted to dependences (Table 5),
defines the alternate possibilities to express similar behaviours. The table
also includes the rules for agent sets. Rule (Trans.) expands the chain of the
persistent dependences (S1 ⊙→ S3) by adding intermediary dependence (S2)
to refine a pathway. Rule (N2P.) weaken a normal dependence (S1 ◯→ S2) to

- Dependences -

Q�σ S1 ⊙→ S2, S2 ⊙→ S3,∆
(Trans.)

Q�σ S1 ⊙→ S3,∆

Q�σ S1 ⊙→ S2,∆
(N2P.)

Q�σ S1 ◯→ S2,∆
Q�σ S1 ◯→ S2,∆

(R2N.)
Q�σ S1 ⊕→ S2,∆

- Agent states -

S1 + S2 (SCom.)
S2 + S1

S + s (SCont.)
S + s + s

S + s (Incl.)
S

Table 5: Rules for the dependences and the agent states. Si stands for a
collection, s1+ . . .+sn, of agent states, including negation, and ∆ stands for
the rest of the program.
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a persistent one (S1 ⊙→ S2) since the latter is a normal dependence with an
additional property. And Rule (R2N.) weaken a residual dependence(S1 ⊕→
S2) to a normal dependence (S1 ◯→ S2), since normal dependence is also
residual dependence with a repetition of the effect restricted to one step.
According to these rules, all the dependence chains can be implemented
with persistent dependences. Final rules are devoted to agent states. Rule
(SCom.) and (SCont.) describe the propriety of + operator which is a logical
∧. Finally, (Incl.) specify that a behaviour can be extended with another
unless the original one still present.

Theorem 2. Dependences rules are correct according to the model specifica-
tion, and agent states rules are correct according to logic operators (Table 5).

A possible algorithm for the assembly could be based on a combinato-
rial application of the rules. However, such algorithm may reveal inefficient
in practice. The conditions for an efficient algorithm of compilation should
be based on an internal representation of a program, as a set of contextu-
alized dependences with attributes, {{A, [K]S1 ⍟→ S2}},where ⍟→ stands
for any kind of dependence, such that A,K,S1, S2 are respectively: a set
of attributes specification related to the agent involved in the dependency,
a set of contexts and sets of agent states. Any program can be encoded
under this representation from a normal form of the program (not detailed
here). Accordingly, the problem solved by the compilation algorithm can
be defined as follows (Definition 4):

Definition 4 (Functional Synthesis Problem (FSP)). Let Γ = {Qi}1≤i≤n
be set where each Qi is a set of contextualized dependences with attributes
and P a set of contextualized dependences with attributes, can we find the
smallest observable subset of components C ⊆ Γ, such that there exists a
substitution σ so that its application on the components of C form a cover
of P [σ],i.e., ∃σ ∶ P [σ] ⊆ ⋃Qj∈C Qj[σ] ∧ obsC.

As the set cover problem is reducible to this problem, the problem is
NP-complete (Proposition 3).

Proposition 3. The Functional Synthesis Problem is NP-Complete.

5.2 Compilation Steps

In this section, we detail the main steps of the compilation performing the
functional synthesis. The result of the compilation is composed of a com-
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ponent list and a substitution list attributing a constant to each variable of
the compiled program. The resolution is oriented towards a heuristic algo-
rithm aiming at finding a minimal set of components covering the behavior
of a program. Besides, extension capabilities are also considered for facil-
itating further software developments. Mainly, these developments would
improve the component selection, notably by integrating biological compat-
ibility between components without being necessary mentioned explicitly in
the program in order to ease the programmer task. Hence, the design of
the compiler must take the both requirements in consideration: the func-
tional synthesis and the software sustainability. These requirements orient
the development towards the use of a meta optimization heuristic, and more
precisely an evolutionary algorithm providing a suitable framework for the
resolution of the functional synthesis while facilitating the further develop-
ments..

Evolutionary algorithm [13, 21] is a class of meta heuristic optimiza-
tion algorithms inspired by Darwinian evolution principles mimicking the
biological evolution process: evolutionary algorithm selects candidate solu-
tions and stochastically makes them evolve by recombination and mutation
leading to improve their quality quantified by a fitness function. Gener-
ally speaking, evolutionary algorithm solves a multi-objective optimization
problem specified as follows [40]:

minimizeF (x) = (f1(x), . . . , fn(x)) such that x ∈X,

where X is a set of viable solutions/individuals chosen in a domain X ′ and
validated by a predicate p (i.e., X = {x ∈X ′ ∣ p(x)}) and F is a sequence of
objective/fitness functions, fi ∶X → R.

Accordingly, the application of evolutionary algorithm requires to spec-
ify the three elements (the encoding of individual x ∈ X, the viability con-
straint p and the fitness functions fi) in accordance with the concerned
problem, related here to FSP.

Individual. An individual stands for a proposal for solving FSP. It rep-
resents a subset of components C = {Qi}i chosen in database Γ. Then, as
individuals correspond to finite subsets of a reference set (database), they
are implemented by boolean vectors of size ∣Γ∣ such that 1 identifies the
selected elements and 0 for the others.

Fitness functions. The fitness functions guide the selection of viable in-
dividuals to improve the synthesis quality. By definition of FSP, the number
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of components (i.e., the number of elements equal to 1 in a vector) is neces-
sary a fitness function since we aim at minimizing it. However, other fitness
functions may be added for a better component selection guidance, notably
by accounting biological aspects. As evolutionary algorithm deals with mul-
tiple objectives, their addition is technically easy. The focus is then rather
puts on the ability to properly model biological constraints quantitatively.
This challenging problem is not studied in the article but considered as a
working perspective.

Viability constraints. The viability constraints are related to the observ-
ability of an individual on one hand, and the ability to determine whether an
individual behaviorally includes the program to compile on the other hand.
A possible approach to verify the observability can be achieved by trans-
lating the program into formula and then by applying a tableau method
to verify the satisfiability of the resulting formula. However, the exponen-
tial complexity of the algorithm would make its use impractical for some
cases. To circumvent this potential problem, we orient the validation of
the observability to another method, called the strong observability (Obs),
based on the syntax of the program determining a necessary condition for
the observability (i.e., Obs(P ) Ô⇒ obs(P )). Basically, a program is not
observable if the formula describing its semantics is an unsatisfiable formula
such as a variable and its negation. Hence, no Kripke model validates such
formula. In the context of Gubs, a such situation comes from the simul-
taneous occurrence of incompatible agent states. An incompatible pair of
agent states corresponds to: an agent state and its negation (e.g., g, ḡ),
agent states with mutually excluded attributes (e.g., g(Phos), g(UnPhos)
with Phos ≉ UnPhos ), or an agent state expressed by an attribute and the
negation of another agent state by an attribute with less capacity than the
first one (e.g., g(High), g(Low) with Low ≺ High). An incompatible pair of
agent states arises in the following cases: either an incompatible pair occur
in left or right side of a dependence, if there exists an incompatible pair
in the agent states of a chain of persistent dependences since the cause al-
ways occur with the effect by definition of the persistence. Otherwise, the
program is observable.

Therefore, the strong observability consists of checking whether these
cases appear in the program that can be achieved in polynomial time from
its text and the definition of attributes by analyzing: the agent states of
the dependences and the agent states for pair of persistent dependences in
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a chain of persistent dependences.

The behavioral inclusion implies to “match” each causal dependence
of the program with a causal dependence of an individual while respecting
the nature and the structure of the dependences. The matching is a pure
syntactic process proceeding on text of programs that is assimilated to an
unification of terms. For FSP, the unification algorithm is applied on asso-
ciative commutative and idempotent function (ACI-unification). Indeed, in
Table 4 and 5, Rules (Com.), (SCom.), and Rules (Cont.), (SCont.) identify
the respective role of the commutativity and the idempotency in the synthe-
sis whereas Rule (Inst.) (Table 4) characterizes the outcome of unification.
ACI-unification [2] solves equation of terms using associative, commutative
and idempotent operators by determining a list of substitution (unifier). In
our context, the objective is to find a substitution σ and a part Q of an
individual such that Q = Pσ where P is the program to compile. Thus, a
program is viewed as a term representing an union of causal dependences set
such that a causal relation stands for a symbolic (non commutative) binary
function applied on two sets containing variables and constants as param-
eters. ACI-unification problem is NP-Complete [25, 2]. However, in litera-
ture, efficient heuristics covering the different variations of ACI-unification
problem such as set unification have been proposed [35, 18, 36] and can be
adapted to our case.

Figure 3 describes the compilation process of a Gubs program. Addi-
tionally, several CAD environments for synthetic biology design use meta
optimization algorithms in a similar way than genetic programming for the
combinatorial logic function generation where the design of logical circuits
complying to an expected input/output profile specifying their behavior,
is automatically achieved by an evolutionary algorithm. Pioneer work on
synthetic biology has been undertaken in [19] for the design of a bistable
oscillatory circuit, by using a genetic algorithm. In [34], the authors ap-
ply a Monte-Carlo algorithm to synthesize a de-novo ribosome binding site.
In [33, 32], the authors propose an evolutionary algorithm based environ-
ment to automatically produce small regulatory networks from a library of
biological components that match with a behavior represented by an evo-
lution profile of RNA concentration for some target genes. These works
evidence the applicability of evolutionary algorithm for automatic design
in synthetic biology. Although the use of evolutionary algorithm in Gubs

differs, it supports the same objective and opens up the possibility of an
integration based on the same optimization framework.
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Figure 3: Overview of compilation process of Gubs.

6 Example

The application of rules underlying the compilation process is here described
in a real case for the design of the Band Detector proposed in [3]. This
example explains how from a simple abstract definition of the functionality
a complex design can be synthesized. Accordingly, Gubs may be used to
describe a behaviour with a high-level of abstraction as well as a low-level,
detailing the components involved in the design. We introduce each step
of the different transforms from the high-level program to the low-level one
in the example. Each is ruled by the application of rewriting rules defined
in Tables 4, 5, ensuring its correctness and so, its functional safety in the
context of open system. The design of the example aims at forming patterns
of different colours in a population of bacteria exploiting the quorum sensing
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Figure 4: The band detector regulatory circuit.

phenomenon by staining with fluorescent protein (GFP). The amount of
molecules of interest a cell receives depends on its relative position to the
cell diffusing the molecule of interest controlled by an external event: the
more the cell is far from the source, the fewer is the amount of molecules
received. The activation or inhibition of the fluorescent protein due to the
concentration will distinguish the bands surrounding the source. In the
original design, the protein does not fluoresce in an intermediary band.

From a computing standpoint, we can assimilate the design to a mes-
sage transmission coupled to a sensor/actuator responsible for fluorescence,
then leading to a concise Gubs program presented below: the diffusive
molecule is AHL which production is controlled by a context and the obser-
vation is applied on GFP. Two categories of cells are defined: the Sender
and the Receiver. Therefore, two Gubs programs identify the two cell types.

Sender = { AHL:{low ≉mid ≉ high},

[Light]{detect ◯→ AHL(low), detect ◯→ AHL(mid), detect ◯→ AHL(high)}}

Receiver = { AHL(low) ◯→ GFP,AHL(mid) ◯→ GFP,AHL(high) ◯→ GFP, obs1::GFP, obs2::GFP}

Figure 4 describes the original genetic circuit used in the article. The
diffusible molecule is the constant AHL. detect is a variable used to represent
the initial action of Light activating AHL diffusion. The gene LuxR has
three activation thresholds: at Level 2, it activates both LaclM1 and Cl, at
level 1, the amount of AHL only allows activation of Cl, and finally, at level
0, none are activated.

To ease compilation follow-up, we label each dependency of the sender-
receiver program (Table 6). We show that from the sender-receiver program,
we obtain the original design by applying the aforementioned rules with
an appropriate selection of components (Table 7). The regulations of Fig-
ure 4 are described in a Gubs program translating in terms of dependences
and relations on their attributes their regulatory action. We focus here on
some illustrative steps of the sender program compilation. The complete
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functional synthesis is given next. The compilation consists in finding the
appropriate components whose assembly behaviourally includes the sender-
receiver program, with the particularity that the diffusive molecule must be
the same in both programs.

Sender Receiver

P11 = {[Light]{detect ◯→ AHL(low)}} P21 = {AHL(low) ◯→ GFP}
P12 = {[Light]{detect ◯→ AHL(mid)}} P22 = {AHL(mid) ◯→ GFP}

P13 = {[Light]{detect ◯→ AHL(high)}} P23 = {AHL(high) ◯→ GFP}

with {AHL:{low ≉mid ≉ high}} as attributes of AHL.

Table 6: Separation of the dependences.

Q1 = {[Light]{detect ◯→ Tetr}}
Q2 = {Tetr

+
Ð→ Luxl}

Q3 = {AHL:{low ≉mid ≉ high},Luxl
+
Ð→ AHL(low),Luxl

+
Ð→ AHL(mid),Luxl

+
Ð→ AHL(high)}

Q4 = {AHL:{low ≉mid ≉ high},LuxR:{low ≉ {mid ≺ high}},
AHL(mid) ◯→ LuxR(mid),AHL(high) ◯→ LuxR(high)}

Q5 = {LuxR:{low ≉ {mid ≺ high}},LuxR(mid)
+
Ð→ Cl,LuxR(high)

+
Ð→ Cl + LaclM1}

Q6 = {Cl
−
Ð→ Lacl}

Q7 = {LaclM1
−
Ð→ GFP}

Q8 = {Lacl
−
Ð→ GFP}

Table 7: Part of the database dedicated to the Band Detector.

In the sequel, Pij refers to j
th normalized causal relation of the program

Pi where P1 is the Sender and P2 is the Receiver. Let us consider P11 whose
compilation is close to P12 and P13. Notice that P11 cannot be directly
instantiated with any component because, on the one hand, the component
Q1 contains a context like P11 but applied on gene Tetr instead of AHL,
and on the other hand Q3 has the AHL molecule but no context is defined.
So, to match P11 with the components Q1, Q2 and Q3, first, the normal
dependence is converted to persistent one (Rule (N2P.)).

Q1,Q2,Q3 �σ {[light]{detect ⊙→ AHL(low)}}
(N2P.)

Q1,Q2,Q3 �σ P11

Thereby, the resulting dependence can also be separated to match the as-
sembly Q1,Q2,Q3 by applying (Trans.) rule twice. v1 and v2 are fresh
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variables.

Q1,Q2,Q3 �σ P ′11 = {[light]{detect ⊙→ v2, v2 ⊙→ v1, v1 ⊙→ AHL(low)}
(Trans.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ v1, v1 ⊙→ AHL(low)}
(Trans.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ AHL(low)}

Finally, we obtain a new program program P ′11 compatible with Q1,Q2,Q3,
and each variable is substituted by a constant (biological element) with the
application of Rule (Inst.). For P ′11 we have:

Q1,Q2,Q3[σ = {light/Light, v1/Tetr, v2/Luxl}] ⊆Asm P ′11[σ] obs(Q1,Q2,Q3[σ])
(Inst.)

Q1,Q2,Q3 �σ [light]{detect ⊙→ v1, v1 ⊙→ v2, v2 ⊙→ AHL(low)}

By following this scheme for P12 and P13, we respectively obtain P ′12 and
P ′13. The final assembly corresponds to the functional synthesis of Sender
program.

Q1,Q2,Q3 �σ P ′11

⋮

Q1,Q2,Q3 �σ P11

Q1,Q2,Q3 �σ P ′12

⋮

Q1,Q2,Q3 �σ′ P12

Q1,Q2,Q3 �σ P ′13

⋮

Q1,Q2,Q3 �σ′′ P13
(Asm.)

Q1,Q2,Q3 �σ∪σ′∪σ′′ P11, P12, P13

In conclusion, the functional synthesis generates the original genetic circuit
(Figure 4) from the sender program. A similar approach can be also applied
to obtain the receiver program (see the complete proof below 6).

Sender = {AHL:{low ≉mid ≉ high}, [Light]{detect ◯→ Tetr},

Tetr
+
Ð→ Luxl,Luxl

+
Ð→ AHL(low),Luxl

+
Ð→ AHL(mid),Luxl

+
Ð→ AHL(high)}

Complete Compilation of the Band Detector

This section details step by step the application of the rules to perform the
functional synthesis of the Band Detector example Tables 8,9 and 10.
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- Sender -

Q1,Q2,Q3[σ = {detect/Detect, light/Light, v1/Tetr, v2/Luxl}] ⊆Asm P ′
11
[σ] obs(Q1,Q2,Q3[σ])

(Inst.)
Q1,Q2,Q3 �σ P ′

11
}

3

Q1,Q2,Q3[σ
′ = {detect/Detect, light/Light, v3/Tetr, v4/Luxl}] ⊆Asm P ′

12
[σ′] obs(Q1,Q2,Q3[σ

′])
(Inst.)

Q1,Q2,Q3 �σ′
P ′
12

3

Q1,Q2,Q3[σ
′′ = {detect/Detect, light/Light, v5/Tetr, v6/Luxl}] ⊆Asm P ′

13
[σ′′] obs(Q1,Q2,Q3[σ

′′])
(Inst.)

Q1,Q2,Q3 �σ′′
P ′
13

3

P ′
11
= [light]{detect ⊙→ v1, v1 ⊙→ v2, v2 ⊙→ AHL(low)}

(Trans.)
[light]{detect ⊙→ v1, v1 ⊙→ AHL(low)}

(Trans.)
[light]{detect ⊙→ AHL(low)}

(N2P.)
P11

2

P ′
12
= [light]{detect ⊙→ v3, v3 ⊙→ v4, v4 ⊙→ AHL(mid)}

(Trans.)
[light]{detect ⊙→ v3, v3 ⊙→ AHL(mid)}

(Trans.)
[light]{detect ⊙→ AHL(mid)}

(N2P.)
P12

2

P ′
13
= [light]{detect ⊙→ v5, v5 ⊙→ v6, v6 ⊙→ AHL(high)}

(Trans.)
[light]{detect ⊙→ v5, v5 ⊙→ AHL(high)}

(Trans.)
[light]{detect ⊙→ AHL(high)}

(N2P.)
P13

2

Q1,Q2,Q3 �σ P11 Q1,Q2,Q3 �σ′
P12 Q1,Q2,Q3 �σ′′

P13

(Asm.)
Q1,Q2,Q3 �σ∪σ′∪σ′′

P11,P12,P13

1

1. Firstly, we split the sender program in three sub programs P11, P12,
and P13, each corresponding to a causal relation.

2. Initially, P11, P12 and P13 don’t match with any component of the
database, so we extend them ( P ′11, P

′
12 and P ′13) to find a matching.

3. Finally, we can match P ′11, P
′
12 and P ′13 with components Q1,Q2,Q3.

Table 8: Sender compilation.
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- Receiver -

Q4,Q5,Q6,Q8[σ = {v1/LuxR,v2/Cl, v3/Lacl}] ⊆Asm P ′
21
[σ] obs(Q4,Q5,Q6,Q8[σ])

(Inst.)
Q4,Q5,Q6,Q8 �σ P ′

21

3

Q4,Q5,Q6,Q8[σ
′ = {v4/LuxR,v5/Cl, v6/Lacl}] ⊆Asm P ′

22
[σ′] obs(Q4,Q5,Q6,Q8[σ

′])
(Inst.)

Q4,Q5,Q6,Q8 �
′

σ
P ′
22

3

Q4,Q5,Q7[σ
′′ = {v7/LuxR,v8/LacM1}] ⊆Asm P ′

23
[σ′′] obs(Q4,Q5,Q7[σ

′′])
(Inst.)

Q4,Q5,Q7 �
′′

σ
P ′
23

3

P ′
21
= AHL(low) ⊙→ v1, v1 ⊙→ v2, v2 ⊙→ v3, v3 ⊙→GFP

(Trans.)
AHL(low) ⊙→ v1, v1 ⊙→ v2, v2 ⊙→GFP

(Trans.)
AHL(low) ⊙→ v1, v1 ⊙→GFP

(Trans.)
AHL(low) ⊙→GFP

(N2P.)
P21

2

P ′
22
= AHL(mid) ⊙→ v4, v4 ⊙→ v5, v5 ⊙→ v6, v6 ⊙→GFP

(Trans.)
AHL(mid) ⊙→ v4, v4 ⊙→ v5, v5 ⊙→GFP

(Trans.)
AHL(mid) ⊙→ v4, v4 ⊙→GFP

(Trans.)
AHL(mid) ⊙→GFP

(N2P.)
P22

2

P ′
23
= AHL(high) ⊙→ v7, v7 ⊙→ v8, v8 ⊙→GFP

(Trans.)
AHL(high) ⊙→ v7, v7 ⊙→GFP

(Trans.)
AHL(high) ⊙→GFP

(N2P.)
P23

2

Q4,Q5,Q6,Q8 �σ P21 Q4,Q5,Q6,Q8 �σ′
P22 Q4,Q5,Q7 �σ′′

P23

(Asm.)
Q4,Q5,Q6,Q7,Q8 �σ∪σ′∪σ′′

P21,P22,P23

1

1. As for the sender program, the receiver program is split in three sub-
programs P21, P22 and P23, each corresponding to a cause differing by
their AHL concentration.

2. P21, P22 and P23 initially do not match with any component in the
database. So, we extend them (P ′21, P

′
22 and P ′23) by applying exten-

sion rule (Ext.).

3. P ′21 and P ′23 describe the same behaviour for two different AHL con-
centrations. Thus, their respective variable (v1 and v7) is substituted
by the same constant LuxR. P ′22 describes the presence of GFP match-
ing with the components {Q4,Q5,Q6,Q8}. Finally, P ′21, P

′
22 and P ′23

match with components {Q4,Q5,Q6,Q7,Q8}.

Table 9: Receiver compilation.
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- Final design -

Sender

{AHL:{low ≉mid ≉ high}, [Light]{detect ◯→ Tetr},
Tetr

+
Ð→ LuxL, Luxl

+
Ð→ AHL(low),

Luxl
+
Ð→ AHL(mid), Luxl

+
Ð→ AHL(high)}

Receiver

{AHL:{low ≉mid ≉ high}, LuxR:{low ≉ {mid ≺ high}},
AHL(mid) ◯→ LuxR(mid), AHL(high) ◯→ LuxR(high),
LuxR(mid)

+
Ð→ Cl, LuxR(high)

+
Ð→ LaclM1,

Cl
−
Ð→ Lacl, LaclM1

−
Ð→ GFP, Lacl

−
Ð→ GFP}

Table 10: Complete band detector compilation.

7 Conclusion

In Gubs language, we propose to characterize a programming paradigm
abstracting the molecular interactions in the context of open system, that
differs to an approach dedicated to biological system modelling. Accordingly,
the interactions are symbolized by causal dependences whose interpretation
is driven by effect. We have demonstrated the proof-of-concept of the com-
pilation based on rewriting rules, and illustrated it on a realistic example.
A perspective of this work is to improve the component selection by identi-
fying the biological parameters and define the appropriate fitness function
for a selection also accounting quantitative biological constraints.
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Appendix

program ∶∶= {behaviour}
behaviour ∶∶= behaviour,behaviour ∣ behaviour
behaviour ∶∶= compartment ∣ dependence ∣ context ∣ observation ∣ defattributes
compartment ∶∶= varconstant {behaviour}
observation ∶∶= varconstant::words
context ∶∶= [varconstants] {behaviour}
dependence ∶∶= words ◯→ words ∣ words ⊙→ words ∣ words ⊕→ words
word ∶∶= attribute ∣ varconstant(attribute) ∣ varconstant.word
words ∶∶= words +word ∣ word
attribute ∶∶= varconstant ∣ varconstant
defattribute ∶∶= varconstants ∶ attspec
attspec ∶∶= defspec{varconstants} ∣ {attrels}
defspec ∶∶= exclusion ∣ inclusion
attrels ∶∶= attrels,attrel ∣ attrel
attrel ∶∶= varconstant ≺ varconstant ∣ varconstant ≉ varconstant ∣ varconstant
varconstant ∶∶= word ∣Word
varconstants ∶∶= varconstants,varconstant ∣ varconstant

Table 11: Syntax of Gubs program

Proofs

Proposition 1. By contradiction, assume that P is unobservable, then there
does not exist a model satisfying the formula. As Q is observable, we deduce
that there exists models satisfying Q, but no restricted model must satisfy
P , that contradicts the definition of the behavioural consequence.

Proposition 4. Let ψ ∈ FH be a formula, let σ ∶ (NOM ∪ PROP ∪ REL) →
(NOM∪PROP∪REL) be a substitution on nominals, variables and relational
symbols, let M = ⟨W, (Rk)k∈τ , V ⟩ be a model, we define the model M̃ =
⟨W, (R̃k)k∈τ̃ , Ṽ ⟩ from M as follows:

1. ∀a ∈ NOM ∪ PROP,∀w ∈W ∶ w ∈ V (aσ) ⇐⇒ w ∈ Ṽ (a)

2. ∀k ∈ τ̃ ∶ wRkσw
′
⇐⇒ wR̃kw

′;

we have: M, w ⊩ ψσ ⇐⇒ M̃, w ⊩ ψ.
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Proof. The proof is defined by induction on the formula:

without loss of generality, we assume that ψ is in Negation Normal
Form where negation occurs only immediately before variables only. Recall
that every formula can be set in Negation Normal Form.

M, w ⊩ a ⇐⇒ M̃, w ⊩ a, a ∈ PROP ∪ NOM. By (1), we have w ∈
V (aσ) ⇐⇒ w ∈ Ṽ (a) leading to the equivalence.

M, w ⊩ ¬a ⇐⇒ M̃, w ⊩ ¬a. By definition of the realizability rela-
tion, this is equivalent to: M̃, w ⊮ a ⇐⇒ M̃, w ⊮ a. By (1), this
equivalence holds.

M, w ⊩ (ψ1 ∧ ψ2)σ ⇐⇒ M̃, w ⊩ (ψ1 ∧ ψ2). By definition of the
substitution, we have to prove: M, w ⊩ (ψ1σ) ∧ (ψ2σ) ⇐⇒ M̃, w ⊩

(ψ1 ∧ ψ2). By definition of the realizability relation we can formulate
the property equivalently as follows:

M, w ⊩ (ψ1σ) ∧ M̃, w ⊩ (ψ2σ) ⇐⇒ M̃, w ⊩ ψ1 ∧ M̃, w ⊩ ψ2.

By induction hypothesis, we have: M̃, w ⊩ (ψ1σ) ⇐⇒ M̃, w ⊩ ψ1

and M̃, w ⊩ (ψ2σ) ⇐⇒ M̃, w ⊩ ψ2, implying the previous condition.

M, w ⊩ (ψ1 ∨ ψ2)σ ⇐⇒ M̃, w ⊩ (ψ1 ∨ ψ2). The proof is similar to
the proof of the previous item (∧).

M, w ⊩ (@aψ)σ ⇐⇒ M̃, w ⊩ @aψ. By definition of the substitution
we have to prove that: M, w ⊩ (@aσψσ) ⇐⇒ M̃, w ⊩ @aψ By
definition of the realizability relation, this is equivalent to:

∃w′ ∈W ∶ w ∈ V (aσ)∧M, w′ ⊩ ψσ ⇐⇒ ∃w′′ ∈W ∶ w′′ ∈ Ṽ (a)σ∧M̃, w′′ ⊩ ψ.

By setting w′ = w′′, from (1) we have: w′ ∈ V (aσ) ⇐⇒ w′ ∈ V (a).
By induction hypothesis, we have: M, w′ ⊩ ψσ ⇐⇒ M̃, w′ ⊩ ψ. The
both last properties imply that:

∃w′ ∈W ∶ w ∈ V (aσ)∧M, w′ ⊩ ψσ ⇐⇒ ∃w′ ∈W ∶ w′ ∈ Ṽ (a)σ∧M̃, w′′ ⊩ ψ,

which implies the initial property.

M, w ⊩ (⟨k⟩ψ)σ ⇐⇒ M̃, w ⊩ ⟨k⟩ψ. By definition of the substitution
we prove that: M, w ⊩ ⟨kσ⟩ψσ ⇐⇒ M̃, w ⊩ ⟨k⟩ψ.
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By definition of the realizability relation the condition is equivalent
to:

∃w′ ∈W ∶M, w′ ⊩ ψσ∧wRkσw
′
⇐⇒ ∃w′′ ∈W ∶ M̃, w′′ ⊩ ψ∧wR̃kw

′′.

By setting w′ = w′′, the following equivalence holds from (2): wRkσw
′
⇐⇒

wR̃kw
′. By induction hypothesis, we have: M, w′ ⊩ ψσ ⇐⇒ M̃, w′ ⊩

ψ. The both last properties imply that:

∃w′ ∈W ∶M, w′ ⊩ ψσ ∧wRkσw
′
⇐⇒ M̃, w′ ⊩ ψ ∧wR̃kw

′

which implies the initial property.

M, w ⊩ ([k]ψ)σ ⇐⇒ M̃, w ⊩ [k]ψ. The proof is similar to the
previous item.

M ⊩ (Eψ)σ ⇐⇒ M̃ ⊩ Eψ. By definition of the substitution we
prove that: M, w ⊩ E(ψσ) ⇐⇒ M̃, w ⊩ Eψ.

By definition of the realizability relation, we have:

∃w ∈W ∶M, w ⊩ (ψσ) ⇐⇒ M̃, w ⊩ ψ,

which is directly verified by induction hypothesis.

M ⊩ (Aψ)σ ⇐⇒ M̃ ⊩ Aψ. The proof is similar to the previous
item.

Proposition 2. First, let us remark that when P Ö Q, the property is trivially
verified. Besides, under the assumption P ^ Q, if Q[σ] is not observable
the property is also verified because an unobservable program includes all
programs behaviourally (Definition 3).

In the rest of the proof, we assume that P is behaviourally included in
Q and Q[σ] is observable (i.e., P ^ Q and obsQ[σ]). Hence, by definition
of the observability there exists a model M such that M ⊩ ⟦Q[σ]⟧. By
proposition 4, we deduce that there exists a model M̃ such that: M̃ ⊩ ⟦Q⟧.
Moreover, as P ^ Q by hypothesis, there exists S̃ ⊆ Dom M̃ such that:
M̃S̃ ⊩ ⟦P ⟧. By construction of M̃ we deduce that there exists a sub model of
M, denoted byM′, complying to the properties, (1) and (2) of Proposition 4
which corresponds to M̃S̃ . Moreover, we have M′

⊩ P [σ] by Proposition 4.
Then we conclude that: P [σ] ^ Q[σ].
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Proposition 3. By reduction to the minimum covering problem (SP5 in [20]).

The problem is in NP. Assume we have a substitution σ and Q = {Qi}i
a set of components, checking whether P [σ] is included in ⋃Qj∈C Qj[σ] is
performed in polynomial time.

The problem is NP-complete. The reduction is performed on minimum cov-
ering problem based on an encoding of elements by dependences.

Instance: Collection X of subsets of a finite set S, and a positive integer
k < ∣C ∣.
Question: Does X contain a cover for S of size k or less,i.e., a subset X ′ ⊆X
with ∣X ′∣ ≤ k such that every element of S belongs to at least one member
of X ′?

Reduction. Each element A ∈ S is assimilated to a constant and translated
into a dependence A ◯→ A. Therefore, the substitution is trivially the
identity. The database isX(i.e., X = Γ). Finally, the result of the functional
synthesis is X ′ (i.e., X ′ = C).

Theorem 1. First, let us remark that P ^ Q is true whenever M ⊮ Q by def-
inition of the behavioural inclusion (Definition 3). Hence, the proof doesn’t
consider the trivial verified case but rather the case where M ⊩ Q.

Inst. Directly from the definition of the behavioural inclusion (Definition 3).

Com. By definition of the semantics ⟦P,P ′⟧ = A(φ ∧ φ′) = A(φ′ ∧ φ) =
⟦P ′, P ⟧ with ⟦P ⟧P = φ and ⟦P ′⟧P = φ′. Thus, for all M we have:
M ⊩ ⟦P,P ′⟧ ⇐⇒ M ⊩ ⟦P ′, P ⟧. Hence, if Q ^ P,P ′ we conclude
that: Q ^ P ′, P .

Cont. Similar to the proof of (Com.).

Asm. First let us remark that σ∣VA(P )∩VA(P ′) = σ′∣VA(P )∩VA(P ′) means that
the substitution of the common variables are the same for σ and σ′,
leading to, Q[σ ∪ σ′] = Q[σ] and Q′[σ ∪ σ′] = Q′[σ′]. Let σ′′ = σ ∪ σ′.
Then, we have the following property by definition of the semantics
(Table 2) and σ′′.

∀M ∈ KS(⟦(Q,Q′)[σ′′]⟧) ∶M ⊩ ⟦Q[σ]⟧ ∧M ⊩ ⟦Q′[σ′]⟧ .

Notice that the set of models, KS(⟦(Q,Q′)[σ′′]⟧), is not empty since,
by hypothesis,
obs (Q[σ],Q′[σ′]) holds. As Q �σ P and Q′ �σ′ P

′, any model
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validating Q (resp. Q′) also validates P , (resp. P ′) by definition of
the functional synthesis. Then, we deduce that:

∀M ∈ KS(⟦(Q,Q′)[σ′′]⟧) ∶M ⊩ ⟦P [σ]⟧ ∧M ⊩ ⟦P ′[σ′]⟧ .

Then, we conclude that:

∀M ∈ KS(⟦(Q,Q′)[σ′′]⟧) ∶M ⊩ ⟦(P,P ′)[σ′′]⟧ .
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