
Scientific Annals of Computer Science vol. 23 (1), 2013, pp. 75–117

doi: 10.7561/SACS.2013.1.75

Modular Verification of Qualitative Pathway
Models with Fairness

Peter Drábik1, Andrea Maggiolo-Schettini1, Paolo Milazzo1,
Giovanni Pardini1

Abstract

Modular verification is a technique used to face the state explosion
problem often encountered in the verification of properties of complex
systems such as concurrent interactive systems. The modular approach
is based on the observation that properties of interest often concern a
rather small portion of the system. As a consequence, reduced models
can be constructed which approximate the overall system behaviour
thus allowing more efficient verification.

Biochemical pathways can be seen as complex concurrent interactive
systems. Consequently, verification of their properties is often com-
putationally very expensive and could take advantage of the modular
approach.

In this paper we develop a modular verification framework for
biochemical pathways. We view biochemical pathways as concurrent
systems of reactions competing for molecular resources. A modular
verification technique could be based on reduced models containing
only reactions involving molecular resources of interest.

For a proper description of the system behaviour we argue that
it is essential to consider a suitable notion of fairness, which is a
well-established notion in concurrency theory but novel in the field of
pathway modelling. The fairness notion we consider forbids starvation
of reactions, namely it ensures that a reaction that is enabled infinitely
often cannot always occur to the detriment of another infinitely often
enabled reaction causing the latter to never occur.

We prove the correctness of the approach and demonstrate it on the
model of the EGF receptor-induced MAP kinase cascade by Schoeberl
et al.

Keywords: Systems biology, cellular pathways, model checking, mod-
ular verification, model reduction, abstraction

1Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa,
Italy. Email: peter.drabik@gmail.com, {maggiolo,milazzo,pardinig}@di.unipi.it

76 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

1 Introduction

A big challenge of current biology is understanding the principles and func-
tioning of complex biological systems. Despite the great effort of molecular
biologists investigating the functioning of cellular components and networks,
we still cannot provide a detailed answer to the question “how a cell works?”.

In the last decades, scientists have gathered an enormous amount of
molecular level information. To uncover the principles of functioning of
a biological system, just collecting data does not suffice. Actually, it is
necessary to understand the functioning of parts and the way these interact
in complex systems. The aim of systems biology is to build, on top of the
data, the science that deals with principles of operation of biological systems.
The comprehension of these principles is done by modelling and analysis
exploiting mathematical means.

A typical scenario of modelling a biological system is as follows. To
build a model that explains the behaviour of a real biological system, first
a formalism needs to be chosen. Then a model of the system is created,
simulation is performed, and the behaviour is observed. The model is
validated by comparing the results with the real experiments. Simulation
allows not only validation of laboratory experiments, but also prediction of
behaviour under new conditions.

Depending on the considered simulation technique, simulation can
give either the average system behaviour or a number of possible system
behaviours. This may be insufficient when one is interested in analysing
all the behaviours of a system. In these cases model checking may be of
help. This technique permits the verification of properties (expressed as
logical formulae) by exploring all the possible behaviours of a system. This
analysis technique typically relies on a state space representation whose
size, unfortunately, makes the analysis often intractable for realistic models.
This is true in particular for systems of interest in systems biology (such
as metabolic pathways, signalling pathways, and gene regulatory networks),
which often consist of a huge number of components interacting in different
ways, thus exhibiting very complex behaviours.

Many formalisms originally developed by computer scientists to model
systems of interacting components have been applied to biology, also with
extensions to allow more precise descriptions of the biological behaviours
[2, 6, 10, 14, 35, 36]. Examples of well-established formal frameworks that
can be used to model, simulate and model check descriptions of biological
systems are [10, 24, 27].

Modular Verification of Qualitative Pathway
Models with Fairness 77

Model checking techniques have traditionally suffered from the state
explosion problem. Standard approaches to the solution of this problem
are based on abstractions or similar model reduction techniques (e.g. [11]).
Moreover, the use of Binary Decision Diagrams (BDDs) [12] to represent
the state space (symbolic model checking) often allows significantly larger
model to be treated [5].

A method for trying to avoid the state space explosion problem is to
consider a decomposition of the system, and to apply a modular verification
technique allowing global properties to be inferred from properties of the
system components. This approach can be particularly efficient when the
modelled systems consist of a high number of components, whereas properties
of interest deal only with a rather small subset of them. This is often the case
for properties of biological systems. Hence, for each property it would be
useful to be able to isolate a minimal fragment of the model that is necessary
for verifying such a property. If such a fragment can be obtained by working
only on the syntax of the model, the application of a standard verification
technique on the semantics of the fragment avoids the state explosion.

In previous work we developed a modular verification technique in which
the system of interest is described by means of a general automata-based
formalism, called sync-programs, suitable for qualitative description of a
large class of biological systems [19, 20]. Sync-programs include a notion of
synchronisation that enables the modelling of biological systems and support
modular construction of models. The modular verification technique is based
on property preservation and allows the verification of properties expressed
in the temporal logic ACTL− [26] to be verified on fragments of models.
In order to handle modelling and verification of more realistic biological
scenarios, we have proposed a dynamic version of our formalism along with
an extension of the modular verification framework [18].

The long-term aim of our research is the development of an efficient
modular verification framework specifically designed for biochemical path-
ways, and of a pathway analysis tool based on such a framework. At the first
stages of the development of the modular verification framework we faced
some problems the solution of which required the definition of concepts re-
lated to the formal modelling of biochemical pathways that we believe could
be interesting not only in the context of modular verification. In particular,
we defined a notion of fairness for biochemical pathways and a notion of
molecular component of a pathway. The former is a well-known concept in
concurrency theory that could be useful to describe more accurately the

78 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

dynamics of a pathway (in a qualitative framework). The latter is a notion
relating species involved in the same pathway such that two species are
considered to be part of the same molecular component if they can be seen
as different states of the same molecule. As far as we know, the adoption of
a notion of fairness in the context of biology is new. On the other hand, the
notion of molecular component has been often implicitly used (for instance
in the modelling of biological systems by means of automata), but now we
provide new insight on this notion.

In this paper we report preliminary results obtained during the devel-
opment of the modular verification framework. Modular verification requires
either adopting a modular notation for pathway modelling or finding a way
to decompose a pathway, simply expressed as a set of biochemical reactions,
into a number of modules. The approach that we choose to follow is in
between these two alternatives. Actually, we assume the pathway to be
expressed as a set of reactions in a “normal-form” satisfying some modulari-
sation requirements, and then we define a modularisation procedure that
allows modules to be inferred from reactions. In a recent paper [33] we
have also defined a semi-automatic algorithm that allows any pathway to be
transformed into normal-form. Hence, such an algorithm would allow our
modular verification approach to be applied to any pathway.

Modules inferred from reactions will be molecular components, hence
our modularisation procedure will allow us to consider a pathway not only
as a set of reactions, but also as a set of entities interacting with each other
(through reactions) and consequently changing state.

Once the molecular components of a pathway are identified, we can use
them to decompose the verification of a global pathway property into the
verification of a number of sub-properties related with groups of components.
To this aim we define a projection operation that allows a model fragment
describing the behaviour of a group of components to be obtained from a
model describing the whole pathway. Such a projection operation is actually
an abstraction function, since the behaviour of the group of components
will be over-approximated (i.e. the model will include behaviours that are
not present in the model of the whole pathway). By considering a suitable
temporal logic for the specification of properties (namely ACTL−, a fragment
of the CTL logic consisting only of universally quantified formulae) we can
prove that properties holding in model fragments obtained by projection
also hold in the complete model of the pathway.

Nothing can be said of properties that do not hold in a model fragment.

Modular Verification of Qualitative Pathway
Models with Fairness 79

They might be false in the model fragment since they were also false in the
original model, or they can be false in the model fragment because some
behaviours added by the projection operation violates them when they were
true in the original model. In case a property turns out to be false in a model
fragment obtained by projection, it is sometimes possible to assess whether
the property really does not hold in the original model by verifying some
stronger negative property. We will show some examples of this approach.

In order to verify properties of complete pathway models or of model
fragments it is possible to translate them into the input language of an
existing model checking tool. Specifically, we use the NuSMV model checker
[9], which is a well-established and efficient instrument.

We demonstrate the modular verification approach on the model of the
EGF receptor-induced MAP kinase cascade by Schoeberl et al. [37] and we
discuss how we plan to continue the development of the approach to improve
its efficiency.

Related Work

This paper is a revised extended version of [22]. The main improvement with
respect to the previous version is a careful revision of the formal definition
of the modular verification framework. In particular, we have revised the
formal definition of the semantics both at the concrete (complete models)
and abstract (projections) levels. Such a revision was aimed at avoiding
unnecessary transitions as much as possible, and hence at reducing as much
as possible the approximation in the abstract semantics. In addition, in
order to improve presentation of concepts we changed the structure of the
paper and added a number of examples. Finally, we included this section in
which our approach is compared with related work.

In [32] a reduction methodology for logical models of regulatory networks
is proposed. The logical formalism is a framework that allows regulatory
networks to be described as graphs where nodes are genes and arcs are
interactions between genes (promotion/inhibition). The behaviour of a
network can then be described as a state transition graph in which states
describe the expression level of each modelled gene and transitions describe a
changes in such expression levels due to interactions. The proposed reduction
methodology essentially consist in iteratively removing individual nodes by
defining bypass interactions from the regulators to the targets of each of
them. The logical formalism has also been translated into Petri nets in [8].
The translation encodes a node of a graph as a pair of places in the net, gene

80 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

interactions as net transitions and the expression level of the genes as the
marking of the net. Model reductions are defined also at the net level and
are aimed at removing unnecessary transitions.

Our modular verification framework is partially related with the ap-
proach based on logical modelling. Both approaches are based on formal
qualitative discrete models of biological networks, and both aims at verifying
behavioural properties. The approaches in [32, 8], however, are specific for
gene regulatory networks, whereas our approach is more general since it
aims at describing also reactions occurring between proteins, usually in the
context of metabolic and signalling pathways. Moreover, both approaches
face the problem of model reduction. The reduction approach we follow
is similar, in principle, to the one in [32]. Namely, in both cases we have
a model that is reduced by somehow removing parts of it describing some
biological entities. However, the fact that the logical framework is specifically
designed for regulatory networks makes the operation easier in that case (it
suffices to remove one node from a graph and adapt the involved edges). In
the case of our modular verification framework, removing parts from the
model is more complex since the described biological entities (e.g. proteins)
usually have a much more complex behaviour than genes (as they are seen
in regulatory networks).

In [16, 17] biological networks are described and analysed by means of
a discrete theoretical framework in which biological entities are modelled as
agents that can change state depending on states of the other agents. The
framework can be used to study different kinds of properties (asymptotic
dynamics, causality properties, etc...) of different kinds of biological networks.
In particular, in [17] modularity of interaction networks is considered by
studying the conditions for module formation and by characterising the
relations between the global behaviour of a network and the local behaviours
of its components. The approach in [17] has aims similar to the ones of
our approach. However, [17] focuses on asymptotic dynamics of networks,
whereas our approach deals with behavioural properties expressed as modal
logic formulae. Moreover, the nature of module in [17] is different from that
of molecular component in our framework since the former is essentially
a portion of the network, whereas the latter is the representation of an
individual biological entity.

In [3] conditions are investigated for the preservation of the behaviour
of a regulatory network when it is embedded into a larger network. Hence,
when such conditions are proved for a subnetwork of a larger regulatory

Modular Verification of Qualitative Pathway
Models with Fairness 81

network we obtain that any property of the subnetwork can be verified on the
subnetwork model rather than on the (larger) model of the whole regulatory
network. This makes the approach in [3] related with ours. However, our
approach is more general for two reasons: (i) it is not specific for regulatory
networks, and (ii) it is not limited to the cases of components (similar to
subnetworks) whose behaviour is completely independent from the rest of
the system. What really matters in our case is that only the properties to
be verified (and not the whole component behaviour) does not depend on
the behaviour of the rest of the system.

Feret et al. [13, 25] developed a reduction technique for pathway models
based on an abstraction technique that groups together (fragments of) species
representing different configurations of the same molecular complexes the
behaviour of which is the same. Such an approach can significantly reduce
the size of models by avoiding the combinatorial blow up of species. The
approach proposed by Feret et al. is completely different from ours so that
in principle it might be possible to combine the two approaches.

2 Modelling Notation for Biochemical Pathways

In biochemistry, metabolic pathways are networks of biochemical reactions
occurring within a cell. The reactions are connected by their intermediates:
products of one reaction are substrates for subsequent reactions. Reactions
are influenced by catalysts and inhibitors, which are molecules (proteins)
which can stimulate and block the occurrence of reactions, respectively. For
the sake of simplicity we do not consider inhibitors in this paper, although
they could be easily dealt with.

Given a set of species S, let us assume biochemical reactions constituting
a pathway to have the following form:

r1, . . . , rn → p1, . . . , pn′ {c1, . . . , cm}

where rj , pj and cj , for suitable values of j, are all in S. We have that rjs are
reactants, pjs are products and cjs are catalysts of the considered reaction.
Given a reaction R we define re(R) = {r1, . . . , rn}, pro(R) = {p1, . . . , pn′},
and cat(R) = {c1, . . . , cm}. We denote the set of species involved in reaction
R as species(R) = re(R) ∪ pro(R) ∪ cat(R). The set of all reactions over a
given set of species S is denoted by reactions(S). Finally, a pathway is a set
of reactions, P = {R1, . . . , RN} ⊆ reactions(S). Given a pathway P , we can
infer the set of species involved in it as species(P) =

⋃
R∈P species(R).

82 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

Note that, in the present paper, we use sets rather than multisets in
reactions. This is done since, as discussed in the next section, we choose
to describe pathways at a very high level of abstraction. Moreover, using
sets allows us to simplify the presentation of our approach. Note that all of
the concepts we will define could be defined by using multisets in place of
simple sets and the results would hold even in such a case.

2.1 Semantics

In general, the dynamics of a pathway can be described at several different
levels of abstraction. The most precise level consists of a quantitative
description in which quantities (or concentrations) of species are taken into
account, as well as reaction rates in either a deterministic or a stochastic
framework. At a more abstract level reaction rates can be ignored. Ultimately,
also quantities of species can be ignored by considering only their presence (or
absence) in the considered biochemical solution. The less abstract description
level is obviously the most precise, but also the most difficult to treat with
formal analysis techniques. The more abstract levels are more suitable for
the application of formal analysis techniques and are often precise enough
to provide useful information on the role of the species and of the reactions
involved in the pathway. We choose to adopt the most abstract description
level, and hence we define a qualitative formal semantics of pathways in
which species can only be either present or absent. This is a rather common
choice, done for instance also in [15, 4].

Starting from the initial state representing a biochemical solution, the
dynamics of the pathway is driven by the reactions. The occurrence of a
reaction may cause the appearance of some new species in the biochemical
solution. In this paper, we choose to interpret the effect of a reaction
depending on whether it is catalysed or not. In particular, the application
of a reaction always creates the products, but we choose reactants to be
consumed only by catalysed reactions. In other words, a reaction without
catalysts creates the products but does not consume the reactants, while
a reaction with catalysts creates the products and consumes the reactants.
We choose this interpretation since non-catalysed reactions usually reach a
steady-state of dynamic equilibrium in which both reactants and products
are present in the biochemical solution. On the other hand, a reaction
favoured by catalysts usually tends to be performed as long as there are
reactants. A consequence of this assumption is that a reversible reaction in
which both directions are catalysed, which frequently occurs in biological

Modular Verification of Qualitative Pathway
Models with Fairness 83

re(R) ⊆ s pro(R) 6⊆ s cat(R) = ∅

s
R−→ s ∪ pro(R)

(no-cat)

re(R) ⊆ s re(R) * pro(R) ∨ pro(R) * s ∅ 6= cat(R) ⊆ s

s
R−→ (s\re(R)) ∪ pro(R)

(cat)

∀R. s 6R−→

s
ε−→ s

(deadlock)

Figure 1: Inference rules of the semantics.

pathways, oscillates between two states. This is realistic in some cases, such
as in the case of oscillatory behaviours, but not always. We leave a more
detailed treatment of this aspect as future work.

Technically, the semantics is formalised as Labelled Transition System
(LTS), where each state corresponds to a set of species, and transitions
are labelled by the reaction which is applied. Formally, an LTS is a tuple
(S,Σ,→), where S is the set of states, Σ is the set of labels, and→⊆ S×Σ×S
is the transition relation.

Definition 1 (Semantics). Let P = {R1, . . . , Rn} be a pathway, and let
ε /∈ P . The semantics of P is defined as the LTS (P(species(P)), P ∪{ε},→),
where → is the least transition relation satisfying the inference rules of
Figure 1.

Rules (no-cat) and (cat) formalise the dynamics of reactions in the
absence and presence of catalysts, respectively. As regards non-catalysed
reactions, they are applicable only if the reactants are present, and some
products is missing. In this manner, since the resulting state is obtained
from the starting state by adding the products, the application of reactions
which would not change the state of the system are omitted. On the other
hand, in order for a catalysed reaction to occur, all of its reactants and
catalysts are required to be present. The resulting state is obtained by first
removing the reactants (which are thus consumed) and then adding the
products. Similarly to the previous case, only transitions causing a state
change are considered, as ensured by condition re(R) * pro(R)∨pro(R) * s.
Alternative combinations of catalysts that may enable the reaction should be
modelled as different reactions having the same reactants and products. In

84 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

general, excluding transitions which do not change the state of the system is
convenient for the verification as the size of the transition system is smaller
but the set of properties that hold stays the same.

Finally, rule (deadlock) provides each state in which no reaction is

enabled (denoted 6R−→) with a self-looping transition with empty label,
denoted ε. This rule was not present in [22], and its aim is simply to turn
every finite path into an equivalent infinite one in order to simplify the
definition of the modular verification methodology.

In the following, we denote the semantic function as LTS , namely
LTS (P) = (P(species(P)), P ∪ {ε},→), for some pathway P . A path in
LTS (P) is an infinite sequence π = s0, R0, s1, R1, s2, . . . where for all i ≥ 0,

si
Ri−→ si+1. We denote by πk the suffix of π starting at sk, namely πk =

sk, Rk, sk+1, Rk+1, sk+2,

Example 1. Let P be a pathway consisting of the following reactions:

P1, P2 → C (R1) P ∗1 ,M2 → D {E1} (R5)

P1 → P ∗1 (R2) D → P ∗1 ,M2 {E2} (R6)

P ∗1 → P1 (R3) D → {C,M∗1 } (R7)

M1 →M∗1 {P ∗1 } (R4)

The fragment of LTS(P) rooted at {P1, P2,M1,M2, E1, E2} is shown in
Figure 2. Note that no transition for reaction R3 is present, since all states
in which its reactants are present there are also its products (e.g. state s1).

2.2 Fairness

In order to describe the behaviour of a pathway more accurately we consider
a notion of fairness. We motivate it by considering a quantitative system

consisting of four reactions A
k1−→ B { D }, B k2−→ A { D }, A k3−→

C { D } and C
k4−→ A { D }, where k1, k2, k3 and k4 are the reaction rates.

By performing the qualitative abstraction, we get a pathway containing
reactions R1 = A→ B {D} and R2 = B → A {D}, R3 = A→ C {D} and
R4 = C → A {D}, whose semantics as defined above includes behaviours
such as the one where R3 never occurs. Such a behaviour is a qualitative
abstraction which is not correct, since the standard quantitative dynamics
ruled by the law of mass action would imply that both R1 and R3 occur
with a frequency proportional to their kinetic rates. Actually, in a stochastic

Modular Verification of Qualitative Pathway
Models with Fairness 85

P1P
∗
1 P2

M∗1M2E1E2

(s4)

P1P2

M∗1DE1E2

(s5)

P1P
∗
1 P2

M∗1DE1E2

(s6)

P1P
∗
1 P2

M1M2E1E2

(s1)

P1P2

M1M2E1E2

(s0)

P1P2

M1DE1E2

(s2)

P1P
∗
1 P2

M1DE1E2

(s3)

P1P2C
M1M2E1E2

(s7)

P1P
∗
1 P2C

M1M2E1E2

(s8)

P1P2C
M1DE1E2

(s9)

P1P
∗
1 P2C

M1DE1E2

(s10)

P1P
∗
1 P2C

M∗1M2E1E2

(s11)

P1P2C
M∗1DE1E2

(s12)

P1P
∗
1 P2C

M∗1DE1E2

(s13)

P1P2C
M∗1E1E2

(s14)

P1P
∗
1 P2C

M∗1E1E2

(s15)

R1 R1 R1 R1 R1

R1

(to s12)

(from s5)

R1

R1

(to s11)

(from s4)

R1

R2 R2

R2 R2

R2

R2

R2

R4 R4

R4 R4

R5

R5

R5

R5

R6

R6

R6

R6

R6

R6

R6

R6
R7 R7

ε

Figure 2: Representation of LTS(P) rooted at s0 = {P1, P2,M1,M2, E1, E2},
where P is as defined in Example 1. Set denotations (brackets and commas)
are omitted in state representations, whereas each state is associated with a
short name si, for i ∈ [0, 15].

86 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

π �LTL s ⇐⇒ ∃s, R, π′. π = s, R, π′ and s ∈ s

π �LTL ¬f ⇐⇒ π 6�LTL f
π �LTL f ∨ g ⇐⇒ π �LTL f or π �LTL g

π �LTL X g ⇐⇒ ∃s, R, π′. π = s, R, π′ and π′ �LTL g

π �LTL XR g ⇐⇒ ∃s, π′. π = s, R, π′ and π′ �LTL g

π �LTL f U g ⇐⇒ ∃k ≥ 0. πk �LTL g and

∀0 ≤ j < k. πj �LTL f

Figure 3: Satisfaction relation for LTL formulae.

setting both R1 and R3 would occur infinitely often with probability 1. A
correct qualitative abstraction of our system should therefore only include
paths in which both R1 and R3 occur infinitely many times.

A concept from concurrency theory that allows to specify the correct
behaviour is fairness, which stipulates that reactions should compete in a
fair manner. We consider the well-known notion of strong fairness [23], also
called compassion, which requires that if a reaction is enabled (ready to
occur) infinitely many times, then it will occur infinitely many times.

Technically, fairness is specified by a linear temporal logic [34] (LTL)
formula. For this reason, we briefly recall such a logic, instantiated to our
setting, before formally defining fairness. In particular, we consider a variant
of the LTL with action-specific next modality XR, where R is a transition
label, corresponding to a reaction in our setting. Given a finite set species
S (c.f.r. atomic propositions from canonical definition), the syntax of LTL
formulae is given by f ::= s | ¬f | f ∨ g | X g | XR g | f U g, where f, g are
meta-variables denoting LTL formulae, s ∈ S, and R is a reaction. Given a
pathway P , let us consider a Labelled Transition System LT S with states
P(species(P)) and labels P ∪ {ε}; the satisfaction relation �LTL of an LTL
formula f with respect to a path π ∈ LT S, denoted π �LTL f , is defined
in Figure 3. Additional logical operators can be defined, true = s ∨ ¬s,
false = ¬true, f ∧g = ¬(¬f ∨¬g) and f → g = ¬f ∨g. Moreover, additional
temporal operators eventually F g = true U g, and globally G g = ¬F ¬g,
are usually defined.

Definition 2 (Fairness). Let P be a pathway. A path π in LTS(P) is fair

Modular Verification of Qualitative Pathway
Models with Fairness 87

iff it satisfies the following LTL formula:

Φ =
∧
R∈P

(GF enabled(R))→ (GF occurs(R))

where

enabled(R) =

{
(
∧

r∈re(R) r) ∧ (
∧

c∈cat(R) c) if cat(R) 6= ∅, re(R) * pro(R);

(
∧

r∈re(R) r) ∧ (
∨

p∈pro(R) ¬p) ∧ (
∧

c∈cat(R) c) otherwise;

occurs(R) = XR true.

The definition of fairness requires each reaction which is enabled in-
finitely often in the path (GF enabled(R)) to also occur infinitely often
(GF occurs(R)). This prevents a component which can progress indefinitely
to block the application of reactions belonging to other components.

Given a reaction R, formula occurs(R) is satisfiable only if there is a
transition exiting from the state labelled by R, denoting the application of
such a reaction. As regards formula enabled(R), according to the format of
the reaction R (i.e. either catalysed or non-catalysed) it is satisfiable only
if the reaction is applicable in the state. First case deals with catalysed
reactions for which there is at least one reactant which is not also a product.
In this case, the reaction is enabled if both reactants and catalysts are
present, irregardless of the products already present in the state (since the
state is modified by removing the reactants). The second case deals with
both cases in which either the reaction is not catalysed, or it is catalysed and
reactants are a subset of the products; in both cases, apart reactants and
catalysts which need to be present, there must also be at least one product
missing.

Example 2. Let P be the pathway defined in Example 1, and LTS(P) be
its semantics. According to the definition of fairness, the following path is
fair:

π1 = s0, R2, s1, R5, s2, R2, s3, R1, s10, R4, s13, R7, s15, ε, s15, ε,

On the other hand, the following path in which the system loops between
states ss1 and ss1 is not fair:

π2 = s0, R2, s1, R5, s2, R6, s1, R5, s2, R6, s1, R5, s2, R6,

Indeed, in π2 reaction R2 is infinitely often enabled (every time the system
is in state s2) but it occurs only once. In other words reaction R6, that
competes with R2 for application in s2, always wins the competition thus
causing starvation of R2.

88 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

3 Identification of Molecular Components

The approach to modular verification of pathways that we propose is built
upon the concept of molecular component. The main observation is that
pathways are usually composed of a few basic biological entities which
interact; for example, a protein can be involved in a series of transformations,
starting from its initial synthesised form, which can then be activated and
later become part of different complexes.

A typical aspect of a biochemical pathway is that the process described
involves mainly a few chains of reactions, in which the occurrence of a reaction
produces some intermediate molecule which is then transformed subsequently
by other reactions. Intuitively, this allows us to regard the intermediate
molecular species which appear in the pathway as different “states” or
“configurations” of the same initial biological entity, and thus the reactions
as a synchronised state change of a set of such basic entities. According
to this view, in the modelling of biochemical pathways we can consider a
notion of molecular component [22, 21] that is the formal counterpart of the
notion of biological entity. A molecular component thus groups together all
the species mentioned in the model which correspond to different states of
the same biological entity.

In the previous section we have introduced the syntax of the modelling
formalism of biochemical pathways, in which a reaction is allowed to have
a different number of reactants and products. In order to identify the
components of a pathway, we assume that each reaction has the same number
of reactants and products. Moreover, we assume a positional correspondence
between the reactants and the products, in particular we assume that product
pj is the result of the transformation of reactant rj by the reaction.

The idea behind this assumption on the form of reactions is that
reactions of cellular pathways very often represent bindings (and unbindings)
of well-defined macromolecules, such as proteins and genes, to form (or to
break) complexes either with other macromolecules or with small molecules
such as ions and nutrients. Also conformational changes are common, in
which a protein (or a complex constituted by a few proteins) changes its
own “state”. If we consider a complex not as a single species, but as a
set of species, one for each molecule involved in it, we have that all of the
mentioned kinds of reaction turn out to have as many product as reactants.

In general, pathways are not expressed using this kind of “normal-form”
reactions, with positional correspondence between reactants and products.
We argue that, under conditions often found in practice, a pathway can be

Modular Verification of Qualitative Pathway
Models with Fairness 89

rewritten in normal form by making explicit the molecular species involved in
each reaction, thus allowing its decomposition into components. The aspect
of translating a generic pathway model into a normal-form pathway, has
been addressed in [33], in which we proposed a semi-automatic algorithm for
component identification in SBML pathway models. In [30] the algorithm
has been tested on a vast array of real pathway models expressed by using
the SBML notation [28], namely on all of the 436 models available in the
BioModels database [29] under the category “curated models”. The results of
the test showed that in most cases the algorithm has been able to transform
the pathways into normal form (and also to infer molecular components) in
a fully automatic way.

Example 3. Let P be the pathway defined in Example 1. The corresponding
pathway in “normal-form” P ′ consists of the following reactions:

P1, P2 → CP1 , CP2 (R′1) P ∗1 ,M2 → DP∗
1
, DM2 {E1} (R′5)

P1 → P ∗1 (R′2) DP∗
1
, DM2 → P ∗1 ,M2 {E2} (R′6)

P ∗1 → P1 (R′3) DP∗
1
, DM2 → ZP∗

1
, ZM2 {M∗1 , CP1 , CP2} (R′7)

M1 →M∗1 {P ∗1 } (R′4)

where species C representing the complex obtained by the binding of P1 with
P2 has been replaced by the two species CP1 and CP2 representing the bound
states of P1 and P2, respectively. Similarly, complex D has been replaced
(three times) by DP ∗1

and DM2 . Moreover, dummy species ZP ∗1 and ZM2 have
been introduced to represent the degraded states of DP ∗1

and DM2 , respectively.

3.1 Component Inference from Normal-Form Pathways

We present an algorithm that given a pathway P infers the components
appearing in it, by returning a partition of the species into sets, each
corresponding to a different component. We assume that the pathway P
consists of normal-form reactions r1, . . . , rn → p1, . . . , pn {c1, . . . , cm} in
which there is a one-to-one correspondence between reactants and products.

We illustrate the intuitive idea on an example. Each reaction can be seen
as a synchronisation of components. For example reaction r1, r2 → p1, p2 {c}
can be interpreted as a synchronisation of three components: one that
changes its state from r1 into p1, another component that changes its state
from r2 into p2, and a component which participates passively and stays in
a state c. Since we suppose that only one reaction takes place at a time in
the whole system, the states of all the components do not change other than

90 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

Algorithm 1 Algorithm to partition species into different components

Let map : S 7→ Z be a total injective mapping
for all R in P do

let R = r1, . . . , rn → p1, . . . , pn {c1, . . . , cm}
for all j ∈ {1, . . . , n} do

map :=

{
x 7→ map(rj) if map(x) = map(pj)

x 7→ map(x) if map(x) 6= map(pj)
end for

end for
return map

those involved in the reaction in the way we described. From the example
we can see that species r1 and p1 belong to the same component. Similarly
r2 belongs to the component that contains p2, while c is from a separate one.

The algorithm to infer components from a normal-form pathway is
given in Algorithm 1. It assumes an infinite set of component names Z.
Initially, each species is assumed to belong to a different component, then the
algorithm refines this assumption by iterating over the reactions constituting
P . For each reaction in the pathway, the algorithm updates the mapping by
unifying the species assigned to the i-th reactant with the i-th product, for
all i ∈ {1, . . . , n}. The result of the algorithm is a mapping map assigning
each species to its component.

In the following, we denote by comp(P) the set of components of a
given pathway P ; formally, it is defined as the image of mapping map. Using
the same notation, we denote by comp(R) = comp({R}) the components of
a given reaction R.

Example 4. Let P ′ be the pathway defined in Example 3. The set of
components comp(P ′) computed by the algorithm is as follows:

comp(P ′) =
{
{P1, CP1 , P

∗
1 , DP ∗1

, ZP ∗1 } , {P2, CP2} , {M1,M
∗
1 } ,

{M2, DM2 , ZM2} , {E1} , {E2}
}

Six components are inferred from reactions. Each component is the set of
states of a different entity involved in the pathway.

A component interaction graph can be drawn which visualises the com-
ponents of a pathway and their interactions. It is a directed graph in which
vertices are system components (elements of comp(P)) and edges connect

Modular Verification of Qualitative Pathway
Models with Fairness 91

components that are involved together in a reaction. If two components are
both involved as reactants (and consequently products), the edge connecting
them will not be oriented. If one of the two is involved as reactant and
the other as catalyst, then the edge will start from the vertex representing
the latter to the vertex representing the former. There is no edge between
vertices representing components involved in the same reactions only as
catalysts. An example of component interaction graph will be shown in
Section 5.3.

4 Modular Verification

In this section we define a modular verification technique for pathway models.
We proceed by defining the projection of a pathway with the help of the
identified components. Such a projection can be seen as an abstraction,
giving rise to abstract pathways. We prove that a successful verification of a
property in the abstraction implies its truth in the original model.

4.1 Abstract Pathways: Syntax, Semantics and Fairness

We are interested in analysing only a portion of the entire pathway, in
particular a portion induced by only a subset of all components. Let I =
comp(P) and J ⊆ I, we define the projection of a pathway P onto J as
the abstract pathway P �J . In the following, by abusing the notation, we
assume function species to be also defined on sets of components J as
species(J) =

⋃
x∈J species(x). Moreover, we denote as u�J the projection of

a set of species u over a set of components J , which is formally defined as
u�J = u ∩ species(J).

Definition 3. Let P be a pathway. The abstract pathway P �J , obtained
by abstracting w.r.t. a set of components J ⊆ comp(P), is defined as
P �J = (PRc, PRnc, ARc, ARnc), where:

PRc = {R ∈ P | comp(R) ⊆ J, cat(R) 6= ∅}
PRnc = {R ∈ P | comp(R) ⊆ J, cat(R) = ∅}

ARc =
⋃
R∈P

{
R�J

∣∣ comp(R)\J 6= comp(R), re(R)�J 6= ∅, cat(R) 6= ∅
}

ARnc =
⋃
R∈P

{
R�J

∣∣ comp(R)\J 6= comp(R), re(R)�J 6= ∅, cat(R) = ∅
}

where R�J = re(R)�J → pro(R)�J {cat(R)�J}.

92 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

An abstract pathway consists of four sets of reactions, namely PRc, PRnc,
ARc, ARnc. If we consider sets PR = PRc ∪ PRnc and AR = ARc ∪ARnc,
then reactions are distinguished between unmodified reactions in PR, and
abstract reactions in AR. In particular, PR contains reactions which deal
only with components inside J , while AR contains projections of reactions
that influence components both inside and outside J . On the other hand,
reactions which affect only components outside of J are excluded from the
abstract pathway.

Moreover, both sets of reactions PR and AR are further classified
between catalysed reactions (PRc and ARc) and non-catalysed reactions
(PRnc and ARnc). Note that reactions are classified as catalysed/non-
catalysed according to their form in the original pathway, rather than their
resulting form in the abstract pathway. This aspect is actually important
only for reactions in AR, where projecting a catalysed reaction R over J
may cause its abstract version to have an empty set of catalysts if catalysts
are only from components not in J .

Example 5. Let P ′ be the pathway defined in Example 3, and let J be the
following subset of comp(P ′):{

{P1, CP1 , P
∗
1 , DP ∗1

, ZP ∗1 } , {M2, DM2 , ZM2} , {E1}
}
.

The projection of P ′ onto J , P ′�J , is given by the following sets of reactions:

PRc = {R′′5} PRnc = {R′′2 , R′′3} ARc = {R′′6 , R′′7} ARnc = {R′′1}

where reactions are defined as follows:

P1 → CP1 (R′′1)

P1 → P ∗1 (R′′2)

P ∗1 → P1 (R′′3)

P ∗1 ,M2 → DP ∗1
, DM2 {E1} (R′′5)

DP ∗1
, DM2 → P ∗1 ,M2 (R′′6)

DP ∗1
, DM2 → ZP ∗1 , ZM2 {CP1} (R′′7)

Note that: (i) reaction R′4 has no corresponding reaction in P ′�J ; (ii)
although reactions R′′6 does not include any catalyst, it is in ARc since the
corresponding reaction R′6 in P ′ included one catalyst.

Modular Verification of Qualitative Pathway
Models with Fairness 93

R ∈ PRnc ∪ARnc re(R) ⊆ s pro(R) 6⊆ s

s
R−→α s ∪ pro(R)

(no-cat)

R ∈ PRc ∪ARc re(R) ⊆ s cat(R) ⊆ s
re(R) * pro(R) ∨ pro(R) * s

s
R−→α (s\re(R)) ∪ pro(R)

(cat)

R ∈ ARc ∪ARnc s
R−→α s′

s
ε−→α s

(self-loop)

∀R ∈ PRc ∪ PRnc ∪ARc ∪ARnc. s 6R−→

s
ε−→α s

(deadlock)

Figure 4: Inference rules of the abstract semantics.

Definition 4 (Abstract semantics). Let Pα = (PRc, PRnc, ARc, ARnc) be
an abstract pathway, and Pα = PRc ∪ PRnc ∪ ARc ∪ ARnc. The abstract
semantics of Pα is defined as the LTS (P(species(Pα)), Pα ∪{ε},→α), where
→α is the least transition relation satisfying the inference rules of Figure 4.

In the following, the abstract semantic function is denoted LTSα, i.e.
LTSα(Pα) = (P(species(Pα)), Pα ∪ {ε},→α). Note that a pathway is es-
sentially a special case of abstract pathway, since the semantics of P is
equivalent (isomorphic) to that of P �comp(P).

Rules (no-cat), (cat), and (deadlock) are analogous to the rules with
the same name from semantics of Definition 1. Note that rule (no-cat) deals
with the application of non-catalysed reactions from the sets PRnc and
ARnc, rule (cat) deals with catalysed reactions from PRc and ARc, and
rule (deadlock) considers any reaction in PR ∪AR. The abstract semantics
also provides rule (self-loop) which allows deriving a self-loop transition for
projected reactions in AR. The purpose of this transition is to model the
case in which a projected reaction R�J is applicable in the abstract state s
(i.e. both projected reactants re(R)�J and projected catalysts cat(R)�J are
present in s), but for which the corresponding unprojected reaction would
not be applicable in the original state because some reactant/catalysts from
unobservable components are missing.

Example 6. Let P ′�J be as in Example 5. The fragment of the abstract

94 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

P1M2E1

(s′0)
P1P

∗
1M2E1

(s′1)

P1DP∗
1

DM2E1

(s′2)

P1P
∗
1DP∗

1

DM2E1

(s′3)

P1CP1

M2E1

(s′7)

P1P
∗
1CP1

M2E1

(s′8)

P1CP1DP∗
1

DM2E1

(s′9)

P1P
∗
1CP1DP∗

1

DM2E1

(s′10)

P1CP1ZP∗
1

ZM2E1

(s′14)

P1P
∗
1CP1

ZP∗
1
ZM2E1

(s′15)

R′′1 R′′1 R′′1 R′′1

R′′2 R′′2

R′′2 R′′2

R′′2

R′′5

R′′5

R′′6

R′′6

R′′6

R′′6R′′7 R′′7

ε ε
ε ε

ε ε

ε

Figure 5: Representation of LTSα(P ′�J) rooted at s′0 = {P1,M2, E1}, where
P ′�J is as defined in Example 5. Set denotations (brackets and commas)
are omitted in state representations, whereas each state is associated with a
short name s′i, where i is as in Figure 2.

semantics of P ′�J , denoted LTSα(P ′�J), rooted at {P1,M2, E1} is shown
in Figure 5.

With respect to the semantics of the original pathway P (see Figure 2)
the abstract semantics there are less states. In the abstract semantics,
however, there are a few more transitions with label ε than in the semantics
of P . These are in states s′0, s′1, s′2, s′3, s′9 and s′10. In those states there
are enabled reactions from either ARc or ARnc (e.g. reaction R′′1) that have
been modified by projection and hence depend by some component not in J
that in principle may be blocked in a state that never allows these reactions
to occur. The ε transition models such a situation.

Modular Verification of Qualitative Pathway
Models with Fairness 95

Abstract fairness

In the case of abstract pathways fairness constraints can be applied only
to reactions in PR. In fact, note that, given the state s, each applicable

reaction in AR allows deriving two transitions: (i) s
R−→α s′ (using either

rules (cat)/(no-cat), for some s′) describing the application of the reaction,
and (ii) s

ε−→α s, (using rule (self-loop)) describing the non-application of
the reaction. Since each applicable reaction in AR allows deriving these
two transitions, it might happen that one of the two is always preferred,
capturing the situation in which the corresponding unprojected reaction is
either always enabled or always disabled. In other words, this describes the
case in which some reactants or catalysts from components which have been
projected out are not present in the original state.

The formal definition of abstract fairness, which follows, is analogous
to Definition 2. As we have anticipated, the only difference is that it deals
only with unmodified reactions included in PR.

Definition 5 (Abstract fairness). Let Pα = (PRc, PRnc, ARc, ARnc) be an
abstract pathway. A path π in LTSα(Pα) is fair iff it satisfies the following
LTL formula:

Φα =
∧

R∈PRc∪PRnc

(GF enabled(R))→ (GF occurs(R))

where

enabled(R) =

{
(
∧
r∈re(R) r) ∧ (

∧
c∈cat(R) c) if R ∈ PRc, re(R) * pro(R);

(
∧
r∈re(R) r) ∧ (

∨
p∈pro(R) ¬p) ∧ (

∧
c∈cat(R) c) otherwise;

occurs(R) = XR true.

Example 7. Let us consider the semantics of P ′�J described in Example 6
and shown in Figure 5. According to the definition of abstract fairness we
have that the following paths are fair:

π′1 = s′0, R
′′
2 , s
′
1, R

′′
5 , s
′
2, R

′′
2 , s
′
3, R

′′
1 , s
′
10, R

′′
7 , s
′
15, ε, s

′
15, ε, . . . ,

π′2 = s′0, R
′′
2 , s
′
1, R

′′
5 , s
′
2, R

′′
2 , s
′
3, ε, s

′
3, ε, s

′
3, ε,

On the other hand, the following paths are not fair:

π′3 = s′0, R
′′
2 , s
′
1, R

′′
5 , s
′
2, R

′′
6 , s
′
1, R

′′
5 , s
′
2, R

′′
6 , s
′
1, R

′′
5 , s
′
2, R

′′
6 , . . . ,

96 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

π′4 = s′0, R
′′
2 , s
′
1, R

′′
5 , s
′
2, ε, s

′
2, ε, s

′
2, ε,

Paths π′1 and π′3 are analogous to paths π1 and π2 in Example 2. Path π′2 is
fair since both reactions enabled in s′3 are not subject to the fairness condition
since they are in AR. Finally, path π′4 is not fair since reaction R′′2, that is
enabled in s′2, is in PR, and hence the fairness condition applies to it.

4.2 Logic for Specifying Properties

Properties of pathways are specified in temporal logic with species as atomic
propositions. The logic we consider is a fragment of the Computation Tree
Logic CTL. Following Attie and Emerson [1], we assume the logic ACTL− for
specification of properties. ACTL is the “universal fragment” of CTL which
results from CTL by restricting negation to propositions and eliminating the
existential path quantifier and ACTL− is ACTL without the AX modality.

Definition 6. The syntax of ACTL− is defined inductively as follows:

• The constants true and false are formulae. s and ¬s are formulae for
any atomic proposition s, where the set of atomic propositions AP are
the set of all species S.

• If f, g are formulae, then so are f ∧ g and f ∨ g.

• If f, g are formulae, then so are A[f U g] and A[f Uw g].

Given a set of components J , we define the logic ACTL−J to be ACTL−

where the atomic propositions are drawn from APJ = species(J). We
define the following abbreviations in ACTL−: AF f ≡ A[true U f] and
AG f ≡ A[f Uw false].

Properties expressible by ACTL− formulae represent a significant class
of properties investigated in the systems biology literature as identified
in [31], such as properties concerning exclusion (“It is not possible for a
state s to occur”), necessary consequence (“If a state s1 occurs, then it is
necessarily followed by a state s2”), and necessary persistence (“A state s
must persist indefinitely”). On the other hand, properties as occurrence,
possible consequence, sequence and possible persistence are of inherently
existential nature, and are not expressible in ACTL−.

We define the semantics of ACTL− formulae on a generic labelled
transition system LT S, where each state corresponds to a subset of the
possible species S, and transitions are labelled by reactions. This requires

Modular Verification of Qualitative Pathway
Models with Fairness 97

LT S, s �φ true

LT S, s 6�φ false

LT S, s �φ s ⇐⇒ s ∈ s

LT S, s �φ ¬s ⇐⇒ s /∈ s

LT S, s �φ f ∧ g ⇐⇒ LT S, s �φ f and LT S, s �φ g

LT S, s �φ f ∨ g ⇐⇒ LT S, s �φ f or LT S, s �φ g

LT S, s �φ Af ⇐⇒ for all paths π starting from s such that

π �LTL φ it holds LT S, π �φ f

LT S, π �φ f U g ⇐⇒ π = s0, R0, s1, R1, . . .

∃k ≥ 0. LT S, sk �φ g and

∀0 ≤ j < k. LT S, sj �φ f

LT S, π �φ f Uw g ⇐⇒ π = s0, R0, s1, R1, . . .

∀k ≥ 0. if LT S, sk 6�φ f then

∃0 ≤ j ≤ k. LT S, sj �φ g

Figure 6: Satisfaction relation for ACTL− formulae.

defining the satisfaction relation �φ over both states and paths, where φ is an
LTL formula specifying the fairness constraint. In particular, LT S, f �φ s
means that f is satisfied by state s of LT S, while LT S, f �φ π means that
f is satisfied by path π of LT S. In both cases we consider only fair paths,
i.e. path satisfying φ.

Definition 7. Let LT S = (P(S), P,→) be an LTS, with S being a finite
set of species and P ⊆ reactions(S), and φ an LTL formula specifying the
fairness constraint. The satisfaction relation �φ is inductively defined as in
Figure 6.

Example 8. Let us consider LTSα(P ′�J) as in Example 6 with initial state
s′0. It holds

LTSα(P ′�J), s′0 �φ AF (P ∗1 ∧ ¬M2)

since every fair path terminates with a ε loop in either s′3, s′10, or s′15, and
in all of these states (P ∗1 ∧ ¬M2) holds.

By the theorem to be proved in the next section we have that property
AF (P∗1 ∧ ¬M2) also holds in P ′ from Example 3. Consequently, the property
also holds in the original pathway P defined in Example 1.

98 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

4.3 Modular Verification Theorems

Now we prove that in order to verify an ACTL−J property for a pathway
P and a set of components J , it is enough to verify the same property in
the abstract semantics of the abstract pathway P �J . The principle behind
property preservation is that each path in the semantics of the modelled
pathway must have a corresponding abstract path in the abstract semantics
of a model obtained by projection. This, combined with the fact that ACTL−

properties are universally quantified (namely describe properties that have
to be satisfied by all paths) ensures that if an ACTL− property holds in the
abstract semantics of the projection, then it will also hold in the semantics
of the original model. In fact, for the components considered in a projection
the semantics of the original model will contain essentially a subset of the
paths of the projected model.

First we define the path projection, which from a path in semantics
of a pathway with the set of components I removes transitions made by
components outside of portion J ⊆ I and restricts the rest of transitions
onto J .

Definition 8. Let π = s0, R0, s1, R1, s2,

πdJ =

(s0dJ, ε)∞ if ∀i ≥ 0. sidJ = si+1dJ
skdJ,Rk�J, πk+1dJ if ∃k ≥ 0. skdJ 6= sk+1dJ

and ∀0 ≤ i < k. sidJ = si+1dJ

where (s, ε)∞ denotes the path such that (s, ε)∞ = s, ε, (s, ε)∞, and sdJ =
s ∩ species(J).

Now we are in the position to present the crucial result, which states
that a fair path in the semantics of a pathway P is projected into an abstract
fair path in the abstract semantics of the abstract pathway P �J . It is split
into four lemmas. Lemma 1 states that if there exists a transition in the
semantics of P describing the occurrence of a reaction that changes the
portion of the state specified by J , then a corresponding transition exists
in the abstract semantics of P �J . Lemma 2 considers fair paths in the
semantics of a pathway and states that, if from a certain point onwards the
portion of the state induced by J never changes, then there is a corresponding
transition labelled by ε in the abstract semantics. Lemmas 1 and 2 are used
to prove Lemma 3, which shows that, given a fair path π in the semantics, its
projection πdJ according to Definition 8 is a path in the abstract semantics

Modular Verification of Qualitative Pathway
Models with Fairness 99

of P �J . Finally, Lemma 4 states that the abstraction of a fair path is also
fair with respect to the abstract fairness.

Lemma 1. Let R 6= ε. If s
R−→ s′ and sdJ 6= s′dJ then sdJ R�J−−→α s′dJ .

Proof. The proof is by induction on the inference rules of Definition 1.

Case (no-cat). We assume transition s
R−→ s ∪ pro(R), such that sdJ 6=

(s∪pro(R))dJ . Hence sdJ 6= sdJ ∪pro(R)dJ , which implies pro(R)dJ * sdJ
and pro(R�J) * sdJ . Moreover, as regards the reactants, re(R) ⊆ s implies
re(R)dJ ⊆ sdJ , thus re(R�J) ⊆ sdJ .

In order to show that transition sdJ R�J−−→α s′dJ with s′ = s ∪ pro(R)
can always be derived, we consider the different forms of rule R.

1. If either (i) comp(R) ⊆ J ; or (ii) comp(R)\J 6= comp(R) and re(R�J) 6=
∅ then, in both cases, R�J ∈ PRnc ∪ARnc. For the first case, it holds
that R�J = R. For the second case, note that by the assumed po-
sitional correspondence between reactants and products and by the
definition of projection we have that re(R�J) 6= ∅ iff pro(R�J) 6= ∅.
Hence, if re(R�J) was empty we would have also pro(R�J) empty and
hence sdJ = s′dJ . Rule premises are already satisfied, thus transition

sdJ R�J−−→α sdJ ∪ pro(R�J) can be derived, where the target state is
such that sdJ ∪ pro(R�J) = sdJ ∪ pro(R)dJ = (s ∪ pro(R))dJ = s′dJ .

2. The case comp(R) ∩ J = ∅ cannot occur, since it would imply that
pro(R)dJ = ∅, which is absurd since pro(R)dJ * sdJ .

Case (cat). Let us assume transition s
R−→ (s\re(R)) ∪ pro(R) can be

derived by using rule (cat), with sdJ 6= ((s\re(R)) ∪ pro(R))dJ . Simi-
larly to the previous case, premises of the rule imply both re(R�J) ⊆ sdJ
and cat(R�J) ⊆ sdJ . Moreover, (s\re(R) ∪ pro(R))dJ = (s\re(R))dJ ∪
pro(R)dJ = (sdJ)\re(R�J) ∪ pro(R�J). Therefore sdJ 6= (sdJ)\re(R�J) ∪
pro(R�J), which implies that either (i) re(R�J) * pro(R�J), since re(R�J) ⊆
sdJ , or (ii) pro(R�J) * sdJ .

Finally, we consider the different forms of reaction R.

1. If either comp(R) ⊆ J or comp(R)\J 6= comp(R) then, in both cases,

R�J ∈ PRc ∪ ARc, allowing transition sdJ R�J−−→α (sdJ)\re(R�J) ∪
pro(R�J) to be derived, where the target state is s.t. (sdJ)\re(R�J)∪
pro(R�J) = (s\re(R) ∪ pro(R))dJ .

100 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

2. The case comp(R) ∩ J = ∅ cannot occur, since it would imply both
re(R)dJ = ∅ and pro(R)dJ = ∅, which is absurd since we assumed
that either re(R)dJ * pro(R)dJ or pro(R)dJ * sdJ .

Lemma 2. Let π = s0, R0, s1, R1, . . . ∈ LTS (P) be such that π �LTL Φ. If
there exists k ≥ 0 such that ∀i ≥ k. sidJ = si+1dJ then skdJ

ε−→α skdJ .

Proof. Let k ≥ 0 be such that ∀i ≥ k. sidJ = si+1dJ . We distinguish
three possible cases, according to the form of the path π, as detailed in the
following.

Case ∀i ≥ k. Ri = ε. This implies that ∀R. si 6
R−→. As regards the

abstract pathway, no reaction in R ∈ PRc ∪ PRnc is applicable in sidJ ,

otherwise transition si
R−→ s′, for some s′, could be derived, contradicting

the hypothesis.

Therefore, if there is at least one abstract reaction R�J ∈ ARc ∪ARnc
applicable in sidJ (i.e. a transition using either rule (no-cat)/(cat) for R�J
can be derived) then a corresponding transition sidJ

ε−→α sidJ can be also
derived by using rule (self-loop). On the other hand, if no abstract reaction
R�J ∈ ARc ∪ARnc is applicable in sidJ , then transition sidJ

ε−→α sidJ can
be derived by using rule (deadlock).

Case ∀i ≥ k. Ri 6= ε. Reactions Ri, ∀i ≥ k, cannot be used to derive
transitions in the semantics of the abstract pathway since they do not change
sidJ . Let us suppose there exists a reaction R�J ∈ ARc ∪ ARnc which is

applicable in state skdJ , i.e. skdJ
R�J−−→α s′ for some s′ 6= skdJ , using either

rule (no-cat)/(cat). Therefore rule (self-loop) can also be applied, allowing
transition skdJ

ε−→α skdJ to be derived.

On the other hand, let us assume that no reaction R�J ∈ ARc ∪ARnc
is applicable in state skdJ , therefore rule (self-loop) cannot be applied. Let
us suppose, by absurd, that also rule (deadlock) cannot be applied, namely

∃R ∈ PRc ∪ PRnc. skdJ
R−→α s′, for some s′ 6= skdJ . Since ∀i ≥ k. sidJ =

skdJ , this implies that ∀i ≥ k. sidJ
R−→ s′. Because reaction R is the same as

in the original pathway, this also entails that ∀i ≥ k. ∃s′′. si
R−→ s′′, namely

reaction R is enabled infinitely often in path π. According to the fairness
constraint, such a reaction R need to occur in the path, i.e. there must exist

h ≥ k such that sh
R−→ sh+1 with sh 6= sh+1. Because R ∈ PRc ∪PRnc, this

implies that shdJ 6= sh+1dJ , which is a contradiction since we assumed that
∀i ≥ k. sidJ = si+1dJ .

Case ∃h > k. (∀k ≤ i < h. Ri 6= ε) ∧ (∀j ≥ h. Rj = ε). Note

Modular Verification of Qualitative Pathway
Models with Fairness 101

that, by definition of semantics of pathways, it is not possible to have
a transition with label R, for some reaction R, after a transition with
label ε. The first case can be applied to subpath π′ starting from sh, i.e.
π′ = sh, sh+1, This implies that shdJ

ε−→α shdJ , and thus skdJ
ε−→α skdJ

since skdJ = sk+1dJ = · · · = shdJ .

Lemma 3. π ∈ LTS (P) with π �LTL Φ implies πdJ ∈ LTSα(P �J)

Proof. Let π = s0, R0, s1, R1, s2, The proof is by cases on the definition
of path projection πdJ from Definition 8.

Case ∀i ≥ 0. sidJ = si+1dJ . According to Lemma 2, transition
s0dJ

ε−→α s0dJ is present in the abstract semantics, thus (s0dJ, ε)∞ ∈
LTSα(P �J).

Case ∃k ≥ 0. skdJ 6= sk+1dJ and ∀0 ≤ i < k. sidJ = si+1dJ . Let

us consider transition sk
Rk−−→α sk+1; according to the semantics, condition

skdJ 6= sk+1 implies that Rk 6= ε. Therefore, it follows from Lemma 1 that

skdJ
R�J−−→α sk+1dJ . Let us assume that πk+1dJ ∈ LTSα(P �J). It is easy to

see that, according to Definition 8, the starting state of πk+1dJ is sk+1dJ .
Therefore, πdJ ∈ LTSα(P �J).

Lemma 4. π ∈ LTS (P) with π �LTL Φ implies πdJ �LTL Φα.

Proof. Suppose that π �LTL Φ, i.e. π �LTL
∧
R∈P (GF enabled(R)) →

(GF occurs(R)). Let P �J = (PRc, PRnc, ARc, ARnc). We want to prove
that πdJ �LTL Φα, that is πdJ �LTL

∧
R∈PRc∪PRnc(GF enabled(R)) →

(GF occurs(R)). It is easy to see that, for any reaction R from PRc ∪PRnc,
it holds that, for all i ≥ 0:

1. πi �LTL enabled(R) implies πidJ �LTL enabled(R);

2. πi �LTL occurs(R) implies πidJ �LTL occurs(R).

The proof is concluded by noting that, since πi is a suffix of π, then, by
Definition 8, πidJ is a suffix of πdJ .

We conclude this section with the property preservation theorem, which
states that a successful verification of a property in the abstraction implies
its truth in the original model.

Theorem 1. For a pathway P , J ⊆ comp(P), and f an ACTL−J formula
we have LTSα(P �J), sdJ �Φα f implies LTS (P), s �Φ f .

102 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

Proof. By induction on the structure of f .

f = s. By definition of state projection, since s ∈ species(J), then
s ∈ sdJ iff s ∈ s, i.e. LTSα(P �J), sdJ �Φα s iff LTS (P), s �Φ s. Analogously
for f = ¬s.

f = g ∧ h. By induction hypothesis.

f = g ∨ h. By induction hypothesis.

f = A[g U h]. Given a fair path π in LTS (P) starting from s, according
to Lemmas 3 and 4 it holds that πdJ is a fair path in LTSα(P �J). By defini-
tion of path projection, πdJ starts from sdJ . Since LTSα(P �J), sdJ �Φα f , it
holds LTSα(P �J), πdJ �Φα g U h. As a consequence, πdJ = s0, R0, s1, R1, . . .
and ∃k ≥ 0. LTSα(P �J), sk �Φα h and ∀0 ≤ j < k. LTSα(P �J), sj �Φα g.
By definition of path projection, π = s0

′, R′0, s1
′, R′1, . . ., and there exists

k′ ≥ k such that ∀0 ≤ i < k′. ∃0 ≤ j < k. si
′dJ = sj, and sk′

′dJ = sk.
Therefore, LTS (P), π �Φ g U h and hence LTS (P), s �Φ f .

f = A[g Uw h]. Given a fair path π in LTS (P) starting from s, according
to Lemmas 3 and 4 it holds that πdJ is a fair path in LTSα(P �J). By defini-
tion of path projection, πdJ starts from sdJ . Since LTSα(P �J), sdJ �Φα f , it
holds LTSα(P �J), πdJ �Φα g Uw h. This implies that either LTSα(P �J), πdJ
�Φα g U h or LTSα(P �J), πdJ �Φα G g. In the first case the proof is the same
as for f = A[g U h]. In the second case we have that πdJ = s0, R0, s1, R1, . . .
and ∀k ≥ 0. LTSα(P �J), sk �Φα g. By definition of path projection,
π = s0

′, R′0, s1
′, R′1, . . ., and ∀k′ ≥ 0. ∃k ≥ 0. sk′

′dJ = sk. Therefore,
LTS (P), π �Φ G g and hence LTS (P), s �Φ f .

5 Modelling the EGF Receptor-Induced MAP Ki-
nase Cascade

We apply our modular verification approach to a well-established compu-
tational model of the EGF signalling pathway. We consider the model of
the MAP kinase cascade activated by surface and internalised EGF recep-
tors, proposed by Schoeberl et al. in [37]. This model includes a detailed
description of the reactions that involve active EGF receptors and several
effectors named GAP, ShC, SOS, Grb2, RasGDP/GTP and Raf. Moreover,
the model describes the activity of internalised receptors, namely receptors
that are no longer located on the cell membrane, but on a vesicle obtained by
endocytosis and floating in the cytoplasm. Such internalised receptors con-
tinue to interact with effectors and to contribute to the pathway functioning,
but actually the pathway can be seen as composed by two almost identical

Modular Verification of Qualitative Pathway
Models with Fairness 103

branches: the first consisting of the reactions stimulated by receptors on
the cell membrane and the second consisting of reactions stimulated by
internalised receptors.

A diagram representing all of the reactions of the pathway considered
in the model is shown in Figure 7. In the figure, each species is identified
by a short name, and also by a number (in black) in the interval [1− 87].
The number of species which occur more than once is shown only for one
of their occurrences. Arrows represent reactions, which are also associated
with an identifier (in grey), for a total of 102 reactions. The two branches
of the pathway are partially combined in the figure. In particular, the
representation of most of the species is combined with the representation
of its internalised counterpart. In such cases, the number between brackets
identifies the internalised species. The same holds for reactions: in many
cases an arrow denotes both a reaction stimulated by receptors in the
cell membrane and the corresponding reaction stimulated by internalised
receptors.

The set of reactions constituting the pathway can be trivially recon-
structed from the diagram in Figure 7. The only non-trivial aspect is related
with the presence in the diagram of some reactions in which one reactants
is actually acting as a catalyst. For instance, this happens in the case of
the reactions involving Raf∗ and MEK, in which Raf∗ initially binds MEK
and then releases it phosphorylated. We describe these two reactions in the
diagram with the following single catalysed reaction:

MEK→ MEK-P {Raf∗}

Other species acting as catalysts are MEK-PP, Phosphatase1, Phos-
phatase2 and Phosphatase3. By applying the same transformation also to
the reactions they are involved in we obtain a pathway constituted by 80
reactions, which constitutes the starting point for the application of the
techniques presented in the paper. We call this pathway PEGF .

We recall that fairness requires that a reaction that is infinitely often
enabled is also infinitely often performed. This prevents starvation situations
to happen among reactions. In the case of PEGF the two branches of the
pathway include reactions that could be involved in infinite loops (e.g. the
reactions involving MEK and ERK). This means that the semantics of the
pathway includes behaviours in which only one branch executes forever even
if the other is constantly enabled. Such unrealistic behaviours are excluded
by the adoption of fairness.

104 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

A
T

P

A
D

P

P
i

G
rb

2

30

R
as

−G
D

P

M
E

K
−P

P

E
R

K
−M

E
K

−P
P

E
R

K
−P

M
E

K
−P

P

60

E
R

K
−P

−M
E

K
−P

P

22

46
 (

73
)

48
 (

74
)

56
 (

80
)

G
rb

2

40

32
 (

63
)

43
 (

71
)

(6
8)

37

R
as

−G
T

P

R
af

−R
as

−G
T

P
42

 (
70

)

44

45
 (

72
)

M
E

K
M

E
K

−R
af

*
R

af
*

M
E

K
−P

−R
af

*
M

E
K

−P

R
af

* 54
 (

79
)

47

R
af

*
51

 (
77

)

50
 (

76
)

53

49
 (

75
)

58
 (

82
)

61
 (

84
)

R
as

−G
T

P25
 (

19
)

R
as

−G
D

P
26

28
 (

69
)

R
as

−G
T

P
*

3831

39

29
 (

21
)

27
 (

20
)

G
A

P

P
’a

se
1

v1
6,

 6
3

v1
7,

 6
4

v1
8,

 6
5

v1
9,

 6
6

v2
0,

 6
7

v2
1,

 6
8

v2
2,

 6
9

v2
4,

 7
1

v2
5,

 7
2

v2
6,

 7
3

v2
7,

 7
4

v2
8,

 7
5

v2
9,

 7
6

v3
2,

 7
9

v3
3

v4
0

v3
8

v3
5

v3
4,

 8
0

v3
6

v4
2,

 8
4

v4
4,

 8
6

v4
5,

 8
7

v4
7,

 8
9

v5
2,

 9
4

v5
3,

 9
5

v5
4,

 9
6

v5
5,

 9
7

v5
6,

 9
8

v5
7,

 9
9

v5
8,

 1
00

v3
0,

 7
7

v3
1,

 7
8

v5
1,

 9
3

15
 (

17
)

33
 (

64
)

34
(6

5)

36
 (

67
)

S
hc

*G
rb

2−
S

os

S
hc

*−
G

rb
2

S
hc

*

G
rb

2−
S

os

S
os

R
af

*−
P

’a
se

62
 (

85
)

57
 (

81
)

59
 (

83
)

v4
3,

 8
5

v4
6,

 8
8v2

3,
 7

0

S
hc

S
os24

v3
7,

 8
1

v3
9,

 8
2

E
R

K
−P

E
R

K
−P

P
−P

’a
se

3

P
ho

sp
ha

ta
se

3

P
ho

sp
ha

ta
se

2

S
os

A
D

P
G

A
P

5
2

3

A
T

P
v3

4

v6 6

v7

A
T

P
A

D
P

E
G

F
id

eg13

v1
3

10
11

v6
0

v6
2

87
86

8

E
G

F
R

�
✁✂

✄
�
✁✂
☎

E
G

F
1

v1
(E

G
F

−E
G

F
R

)2
(E

G
F

−E
G

F
R

*)
2−

G
A

P
(E

G
F

−E
G

F
R

*)
2

(E
G

F
−E

G
F

R
i*

)2

E
G

F
R

id
eg

(E
G

F
−E

G
F

R
i*

)2
de

g

E
G

F
R

i

E
G

F
i

v1
0

�
✁✂

✄
�
✁✂
☎✆

(E
G

F
−E

G
F

R
i)2

v1
1

v1
2

v6
1

16

�
✁✂

✄
�
✁✂
☎

�
✁✂

✄
�
✁✂
☎✆

v1
4

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−S
hc

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−S
hc

*

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−S
hc

*−
G

rb
2

v4
1,

 8
3

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−S
hc

*−
G

rb
2−

S
os

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−S
hc

*−
G

rb
2−

S
os

−R
as

−G
T

P
(E

G
F

−E
G

F
R

*)
2−

G
A

P
−S

hc
*−

G
rb

2−
S

os
−R

as
−G

D
P

G
rb

2S
O

S

(E
G

F
−E

G
F

R
*)

2−
G

A
P(E

G
F

−E
G

F
R

*)
2−

G
A

P
−G

rb
2

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−G
rb

2−
S

os

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−G
rb

2−
S

os
−R

as
−G

T
P

(E
G

F
−E

G
F

R
*)

2−
G

A
P

−G
rb

2−
S

os
−R

as
−G

D
P

v8

P
’a

se
3

E
R

K
55

E
R

K
−P

−P
’a

se
3

v5
9,

 1
01

E
R

K
−P

P

P
’a

se
2

M
E

K
−P

−P
’a

se
2

M
E

K
−P

P
v4

8,
 9

0
M

E
K

−P
P

−P
’a

se
2

52
 (

78
)

v4
9,

 9
1

M
E

K
−P

v5
0,

 9
2

R
as

−G
T

P
*

R
af41

(E
G

F
−E

G
F

R
*)

2−
G

A
P

14

P
ho

sp
ha

ta
se

1

v2

v−
6

35
 (

66
)

23
 (

18
)

Figure 7: Scheme of the EGF receptor-induced MAP kinase cascade [37].

Modular Verification of Qualitative Pathway
Models with Fairness 105

EGF

EGFi

EGFR

GAP

Shc

RasGDP

Grb2

Sos

Phosphatase1Raf

MEK

ERK

Phosphatase2

Phosphatase3

Figure 8: Component interaction graph of PEGF .

5.1 Initial State

We adopt a semi-automatic heuristic procedure to find an initial state of the
pathway. The idea is the following: for each species s in species(P), if there
is no reaction creating it (i.e. if s 6∈

⋃
R∈P pro(R)) then in the initial state s

is present. This means that species that cannot be produced are assumed
to be present in the initial state. Otherwise their presence in the model
would not be meaningful. Subsequently, we resort again to the partitioning
of species according to components to find other species to be inserted. In
particular, we find those components containing no species present in the
previous phase. These components must contain loops, hence we choose
manually some of their species to insert. All other species are assumed
absent.

5.2 The Model

The model PEGF is made up of 143 species and 80 reactions. It is in the
correct form assumed in Section 3.1 and no preprocessing is needed. After
performing the components identification procedure, 14 components are
identified. On Figure 8 we can see the component interaction graph of PEGF .
Each node of the graph is labelled by the intuitive name of the component
that we have chosen.

Visually, we can do some simple observations on the component interac-
tion graph. We can identify enzymes like Phosphatase1, Phosphatase2 and
Phosphatase3. We can see the first part of the pathway corresponding to
the EGF receptor and its interaction with effectors, and its connection to
the MAP kinase cascade through the component RasGDP.

106 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

5.3 Experiments

In this section we exploit the NuSMV model checker to perform some
experiments on the model of the EGF pathway. NuSMV includes model
checking algorithms that allow fairness constraints to be taken into account.
We rely on such algorithms to manage fairness constraints introduced in
this paper. Moreover, in order to carry out the projection and encode the
resulting abstract pathway in the NuSMV format we have developed a tool
(available upon request).

The first experiment is aimed at showing how modular verification could
be applied to verify a global property of the pathway, namely that the final
product of the pathway is always produced. This can be done in a modular
way by proving sub-properties in three different model fragments obtained
by projection.

Subsequently, a number of experiments are performed with the aim of
showing how the molecular components we identified in the pathway can be
used to better understand the pathway dynamics. In particular, we check
whether there are some molecular components that are not really necessary
to obtain the final product of the pathway. This will be done by applying
model checking on models in which molecular components are selectively
disabled by setting their initial states to false. Also in this case the modular
verification approach is adopted.

In this case study modular verification allows properties to be verified
faster than on the complete model. However, modular verification is still not
significantly more efficient than verification on the complete model. This is
due to the projection operation we are considering at the moment, which
is rather rough. In Section 6 we discuss why this modular verification is
a promising approach for the analysis of pathways, and how we plan to
improve the approach to make it substantially more efficient.

To run the experiment we used NuSMV 2.5.4 on a workstation equipped
with an Intel i5 CPU 2.80 Ghz, with 8GB RAM and running Ubuntu
GNU/Linux. In order to make verification faster NuSMV was executed
in batch mode by enabling dynamic reordering of BDD variables and by
disabling the generation of counterexamples.

5.3.1 Modular Verification of a Global Property

The final product of the MAP kinase cascade activated by surface and
internalised EGF receptors is species ERK-PP. Since surface and internalised

Modular Verification of Qualitative Pathway
Models with Fairness 107

receptors activate two different branches of the pathway, we denote by
ERK-PP the product of the branch activated by the surface receptors and by
ERK-PPi the product of the branch activated by the internalised receptors.

The property to be verified is

AF (ERK-PP ∨ ERK-PPi) (1)

The property holds in the complete model and its verification required
260 seconds. By looking at the diagram in Figure 7 we noticed that the
pathway could be partitioned in three parts, with two species acting as
“gates”. These two species are (EGF-EGFR∗)2-GAP and Raf∗. Hence, we
decided to try to apply modular verification by splitting property 1 into the
following three sub-properties:

AF ((EGF-EGFR∗)2-GAP) (2)

AG((EGF-EGFR∗)2-GAP→ (AF Raf∗)) (3)

AG(Raf∗ → AF (ERK-PP ∨ ERK-PPi)) (4)

Property (2) states that in all paths of the system a state in which species
(EGF-EGFR∗)2-GAP is present is eventually reached. Property (3) states
that whenever a state is reached in which species (EGF-EGFR∗)2-GAP is
present, then a state in which Raf∗ is present is eventually reached. Finally,
property (4) states that whenever a state is reached in which species Raf∗

is present, then a state in which either ERK-PP or ERK-PPi is present is
eventually reached. It is easy to see that the conjunction of (2), (3) and (4)
implies (1).

We considered three projections of the complete model to be used
to verify properties (2), (3) and (4), respectively. In particular, from the
component interaction graph of the model (shown in Figure 8) we extracted
the following subsets to be used for projections:

• in order to verify (2) we considered the subset J1 consisting of compo-
nents EGF , EGFi , EGFR and GAP ;

• in order to verify (3) we considered the subset J2 consisting of compo-
nents EGFR, GAP , Shc, RasGDP , Grb2 and Sos;

• in order to verify (4) we considered the subset J3 consisting of compo-
nents RasGDP , Raf , MEK , ERK , Phosphatase1 , Phosphatase2 and
Phosphatase3 .

108 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

We obtained that (2), (3) and (4) hold in the abstract semantics of the
abstract pathways P �J1, P �J2 and P �J3, respectively. Moreover, model
checking required less than three seconds for (2), 213 seconds for (3) and less
than one second for (4). Overall, modular verification required 217 seconds,
that is 43 seconds less than verification on the complete model. Note that
the time needed to perform pathway projection over a set of components is
negligible.

5.3.2 Reasoning on Molecular Components

As it can be seen in the component interaction graph and in the diagram in
Figure 7, some molecular components are involved in complex interactions.
This is true in particular for components EGFR, GAP , RasGDP , Sos, Shc
and Grb2 which form a clique in the component interaction graph. We
are interested in understanding whether all of these components are really
necessary in order to obtain the final products of the pathway. The idea
is to test whether the final species are produced when the components of
interest are assumed one by one as disabled. Molecular components EGFR
and RasGDP are for sure necessary since they connect the clique with the
other molecular components of the pathway. Consequently, we focus our
analysis on GAP , Sos, Shc and Grb2 .

In order to disable a molecular component we consider as absent all of
its species in the initial state of the systems. Hence, we consider a set of
four (complete) models, each with one of the four components under study
disabled. On each model we try to verify property (1): if the property does
not hold, then the component that is disabled in such a model is necessary for
the pathway; on the other hand, if the property holds, then the component
turns out to be not necessary since the products of the pathway can be
obtained even without it. The same tests can be also done in a modular way
by decomposing the pathway and the property as in Section 5.3.1.

In Table 1 we summarise the property verification results and compare
verification times obtained by model checking the complete models and by
following the modular approach. The first row of data in the table reports
verification results in which no component is disabled (as in Section 5.3.1).
The other results show that Shc is not a necessary component, whereas all of
the other three are. As previously, the time required by modular verification
is smaller than the one required by model checking the complete model. This
is true in particular in the case in which GAP is disabled since property (2),
the verification of which is very fast, turns out to be false.

Modular Verification of Qualitative Pathway
Models with Fairness 109

V
e
ri

fi
c
a
ti

o
n

c
o
m

p
le

te
m

o
d

e
l

M
o
d

u
la

r
V

e
ri

fi
c
a
ti

o
n

D
is

a
b

le
d

c
o
m

p
o
n

e
n
t

P
ro

p
e
rt

y
R

e
su

lt
T

im
e

P
ro

p
e
rt

y
R

e
su

lt
T

im
e

T
o
ta

l
ti

m
e

n
on

e
(1

)
tr

u
e

26
0s

(2
)

tr
u

e
3
s

(3
)

tr
u

e
2
13

s
2
17

s
(4

)
tr

u
e

1
s

G
A

P
(1

)
fa

ls
e

25
2s

(2
),

(5
)

fa
ls

e,
tr

u
e

2
s

2s

S
o
s

(1
)

fa
ls

e
25

3s
(2

)
tr

u
e

3
s

2
10

s
(3

),
(6

)
fa

ls
e,

tr
u

e
2
07

s

S
h
c

(1
)

tr
u

e
25

2s
(2

)
tr

u
e

3
s

2
12

s
(3

)
tr

u
e

2
08

s
(4

)
tr

u
e

1
s

G
rb

2
(1

)
fa

ls
e

25
3s

(2
)

tr
u

e
3
s

2
11

s
(3

),
(6

)
fa

ls
e,

tr
u

e
2
08

s

T
a
b
le

1
:

M
o
d
el

ch
ec

k
in

g
re

su
lt

s
a
n
d

co
m

p
a
ri

so
n

o
f

v
er

ifi
ca

ti
o
n

ti
m

es
.

(T
im

e
n
ee

d
ed

fo
r

co
n
st

ru
ct

in
g

re
d
u
ce

d
m

o
d

el
s

is
n
eg

li
g
ib

le
.)

110 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

Note that in the case of modular verification of the models in which
GAP , Sos and Grb2 were disabled we needed to verify some additional
properties. In particular, in the case of GAP we have that property (2)
does not hold in the abstract semantics of P �J1, and in the cases of Sos
and Grb2 property (3) does not hold in the abstract semantics of P �J2.
We remark that our modular verification approach guarantees only that
properties proved to hold in a model fragment also hold in the complete
model. Nothing can be said, instead, of properties that does not hold in
the model fragments. In order to avoid applying model checking on the
complete model to check whether these properties hold there, we consider
some new properties whose satisfaction in suitable model fragments implies
that properties (2) and (3) actually do not hold. In order to prove that (2)
is actually false when GAP is disabled we consider the following property:

AG(¬(EGF-EGFR∗)2-GAP) (5)

In order to prove that (3) is actually false when either Sos or Grb2 is disabled
we consider the following property:

AG(¬Raf∗) (6)

Note that it is convenient to verify properties (5) and (6) together with
(2) and (3), respectively. This avoids spending twice the time needed by
the model checker to construct the data structure necessary to perform
the verification. In the case of our experiments the construction of such
data structures takes usually the 98%-99% of the verification time. Times
reported in Table 1 are based on this optimisation.

6 Discussion and Conclusions

In this paper we presented preliminary results in the development of a
modular verification framework for biochemical pathways. We defined a
modelling notation for pathways associated with a formal semantics and a
notion of fairness that allows the dynamics to be accurately described by
avoiding starvation situations among reactions. Moreover, we investigated a
notion of molecular component of a pathway and we provided a methodology
to infer molecular components from pathways the reactions of which satisfy
some assumptions. Molecular components were then used by a projection
operation that allows abstract pathways modelling an over-approximation

Modular Verification of Qualitative Pathway
Models with Fairness 111

of the behaviour of a group of components to be obtained from a pathway
model. The fact that a property expressed by means of the ACTL− logic
holds in an abstract pathway was shown to imply that they hold also in the
complete pathway model. This preservation is at the basis of the modular
verification approach which was demonstrated on a well-established model
of the EGF pathway.

The results of experiments given in Section 5.3 show that our modular
verification approach allows properties to be verified in a shorter time than
in the case of verification of the complete pathway model. However, in most
of the cases the time saved was relatively small (∼ 15%). We believe that
the cause of this limited gain in efficiency is due to the projection operation
we are considering at the moment, which is still somewhat rough. Our plan
to improve efficiency is to improve the projection operation by including in
it minimisation of components. In particular, projection could be used to
abstract from some of the model components as it happens now, but also
to minimise the remaining components. Minimisation should be aimed at
removing from the model all the reactions describing internal changes of
the considered components. Indeed, removing internal changes do not affect
satisfiability of properties (if the state reached after an internal change is
actually not mentioned in the considered property). Minimisation can be
obtained by translating a component and its reactions into a finite state
automaton, and then by applying a standard minimisation algorithm on
it. Minimisation could also be aimed at replacing sequences of reactions
with single reactions when they involve more than one component but do
not present any branching opportunity in between the sequence (i.e. no
other reaction is applicable to the same species in between the sequence).
These minimisation operations would allow, for example, to reduce the size
of the model of the components constituting the clique in the component
interaction graph in Figure 8. Indeed, most of the reactions involving GAP ,
Shc, Sos and Grb2 could be probably removed from the model. This would
allow for a significant improvement in modular verification efficiency.

In the case study, the choice of splitting the global property into three
sub-properties has been crucial since it allowed our modular verification
methodology to be successfully applied. In general, finding a set of sub-
properties suitable for modular verification when possible can be a difficult
task. Most real pathways, however, when observed at a very abstract level,
show a sequential dynamics in which from initial substrates a sequence of
intermediate species are obtained until the final product is produced. During

112 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

this roughly sequential process there might be some components involved
only at the beginning, others only in intermediate stages, and others only at
the end. The component interaction graph can help the modeller to identify
which molecular components are involved in which stage, and consequently
which species are “checkpoints” between subsequent stages. In turn, this can
suggest how to split the global property into a set of sub-properties in a way
similar to the one we followed, namely by testing with each sub-property the
reachability of states in which checkpoint species for stage n are present by
assuming that checkpoint species for stage n−1 have already been produced.
We believe that this approach could also be automatised, although it will not
be successful for all pathways and for all properties. Indeed, this approach
is actually an instantiation of the assume-guarantee paradigm for which
automatisations have been proposed [7].

Moreover, we believe that with more complex and realistic pathways
splitting properties into sub-properties will be less needed since often the
properties will not be as “global” as in our case study, and there will probably
be many components whose contribution to the satisfaction of such properties
is limited. In addition, the definition of a finer projection operation could
allow property splitting to become less and less necessary.

References

[1] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent systems
with many similar processes. ACM Transactions on Programming
Languages and Systems, 20(1):51–115, 1998. doi:10.1145/271510.

271519.

[2] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo
Troina. A calculus of looping sequences for modelling microbiological
systems. Fundamenta Informaticae, 72(1-3):21–35, 2006.

[3] Gilles Bernot and Fariza Tahi. Behaviour preservation of a biological
regulatory network when embedded into a larger network. Fundamenta
Informaticae, 91(3):463–485, 2009. doi:10.3233/FI-2009-0052.

[4] Chiara Bodei, Andrea Bracciali, and Davide Chiarugi. On deducing
causality in metabolic networks. BMC Bioinformatics, 9(Suppl 4):S8,
2008. doi:10.1186/1471-2105-9-S4-S8.

http://dx.doi.org/10.1145/271510.271519
http://dx.doi.org/10.1145/271510.271519
http://dx.doi.org/10.3233/FI-2009-0052
http://dx.doi.org/10.1186/1471-2105-9-S4-S8

Modular Verification of Qualitative Pathway
Models with Fairness 113

[5] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170, 1992. doi:

10.1016/0890-5401(92)90017-A.

[6] Luca Cardelli. Brane calculi. In Vincent Danos and Vincent Schachter,
editors, Computational Methods in Systems Biology, volume 3082 of
Lecture Notes in Computer Science, pages 257–278. Springer Berlin
Heidelberg, 2005. doi:10.1007/978-3-540-25974-9_24.

[7] Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasanna Thati.
Automated assume-guarantee reasoning for simulation conformance. In
Kousha Etessami and SriramK. Rajamani, editors, Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages
534–547. Springer Berlin Heidelberg, 2005. doi:10.1007/11513988_51.

[8] Claudine Chaouiya, Elisabeth Remy, and Denis Thieffry. Petri net mod-
elling of biological regulatory networks. Journal of Discrete Algorithms,
6(2):165–177, 2008. doi:10.1016/j.jda.2007.06.003.

[9] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. NuSMV version 2: An opensource tool for symbolic
model checking. In Proc. International Conference on Computer-Aided
Verification (CAV 2002), volume 2404 of Lecture Notes in Computer
Science, pages 359–364, Copenhagen, Denmark, 2002. Springer Berlin
Heidelberg. doi:10.1007/3-540-45657-0_29.

[10] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for
the modelling and analysis of biological systems. Theoretical Computer
Science, 410(33-34):3065–3084, 2009. doi:10.1016/j.tcs.2009.02.

037.

[11] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages
and Systems, 16(5):1512–1542, 1994. doi:10.1145/186025.186051.

[12] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 1999.

[13] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean
Krivine. Abstracting the differential semantics of rule-based models:

http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/978-3-540-25974-9_24
http://dx.doi.org/10.1007/11513988_51
http://dx.doi.org/10.1016/j.jda.2007.06.003
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1145/186025.186051

114 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

exact and automated model reduction. In Logic in Computer Science
(LICS), 2010 25th Annual IEEE Symposium on, pages 362–381. IEEE,
2010. doi:10.1109/LICS.2010.44.

[14] Vincent Danos and Cosimo Laneve. Formal molecular biology. The-
oretical Computer Science, 325(1):69–110, 2004. doi:10.1016/j.tcs.
2004.03.065.

[15] Maria I Davidich and Stefan Bornholdt. Boolean network model predicts
cell cycle sequence of fission yeast. PLoS One, 3(2):e1672, 2008. doi:
10.1371/journal.pone.0001672.

[16] Franck Delaplace, Hanna Klaudel, and Amandine Cartier-Michaud.
Discrete causal model view of biological networks. In Proceedings of
the 8th International Conference on Computational Methods in Systems
Biology, CMSB ’10, pages 4–13, New York, NY, USA, 2010. ACM.
doi:10.1145/1839764.1839767.

[17] Franck Delaplace, Hanna Klaudel, Tarek Melliti, and Sylvain Sené.
Analysis of modular organisation of interaction networks based on
asymptotic dynamics. In David Gilbert and Monika Heiner, editors,
Computational Methods in Systems Biology, Lecture Notes in Computer
Science, pages 148–165. Springer Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-33636-2_10.

[18] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Dynamic
sync-programs for modular verification of biological systems. In 2nd
Int. Workshop on Non-Classical Models of Automata and applications
(NCMA’10), volume 263, Jena, Germany, 2010. Austrian Computer
Society.

[19] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Modu-
lar verification of interactive systems with an application to biology.
Electronic Notes in Theoretical Computer Science, 268:61–75, 2010.
doi:10.1016/j.entcs.2010.12.006.

[20] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Modu-
lar verification of interactive systems with an application to biology.
Scientific Annals of Computer Science, 21:39–72, 2011.

http://dx.doi.org/10.1109/LICS.2010.44
http://dx.doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/10.1371/journal.pone.0001672
http://dx.doi.org/10.1371/journal.pone.0001672
http://dx.doi.org/10.1145/1839764.1839767
http://dx.doi.org/10.1007/978-3-642-33636-2_10
http://dx.doi.org/10.1007/978-3-642-33636-2_10
http://dx.doi.org/10.1016/j.entcs.2010.12.006

Modular Verification of Qualitative Pathway
Models with Fairness 115

[21] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. On
conditions for modular verification in systems of synchronising com-
ponents. Fundamenta Informaticae, 120(3-4):259–274, 2012. doi:

10.3233/FI-2012-761.

[22] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Towards
modular verification of pathways: fairness and assumptions. In Gabriel
Ciobanu, editor, Proceedings 6th Workshop on Membrane Computing
and Biologically Inspired Process Calculi, Newcastle, UK, 8th September
2012, volume 100 of Electronic Proceedings in Theoretical Computer
Science, pages 63–81. Open Publishing Association, 2012. doi:10.

4204/EPTCS.100.5.

[23] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking:
branching time logic strikes back. Science of Computer Programming,
8(3):275–306, 1987. doi:10.1016/0167-6423(87)90036-0.

[24] François Fages, Sylvain Soliman, and Nathalie Chabrier-Rivier. Mod-
elling and querying interaction networks in the biochemical abstract
machine BIOCHAM. Journal of Biological Physics and Chemistry,
4(2):64–73, 2004. doi:10.4024/2040402.jbpc.04.02.

[25] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer, and Walter
Fontana. Internal coarse-graining of molecular systems. Proceedings
of the National Academy of Sciences, 106(16):6453–6458, 2009. doi:

10.1073/pnas.0809908106.

[26] Orna Grumberg and David E Long. Model checking and modular
verification. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(3):843–871, 1994. doi:10.1145/177492.177725.

[27] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and
Oksana Tymchyshyn. Probabilistic model checking of complex biological
pathways. Theoretical Computer Science, 391(3):239–257, 2008. doi:

10.1016/j.tcs.2007.11.013.

[28] M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, and
the rest of the SBML Forum. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics, 19(4):524–531, 2003. doi:10.1093/

bioinformatics/btg015.

http://dx.doi.org/10.3233/FI-2012-761
http://dx.doi.org/10.3233/FI-2012-761
http://dx.doi.org/10.4204/EPTCS.100.5
http://dx.doi.org/10.4204/EPTCS.100.5
http://dx.doi.org/10.1016/0167-6423(87)90036-0
http://dx.doi.org/10.4024/2040402.jbpc.04.02
http://dx.doi.org/10.1073/pnas.0809908106
http://dx.doi.org/10.1073/pnas.0809908106
http://dx.doi.org/10.1145/177492.177725
http://dx.doi.org/10.1016/j.tcs.2007.11.013
http://dx.doi.org/10.1016/j.tcs.2007.11.013
http://dx.doi.org/10.1093/bioinformatics/btg015
http://dx.doi.org/10.1093/bioinformatics/btg015

116 P. Drábik, A. Maggiolo-Schettini, P. Milazzo, G. Pardini

[29] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah,
L. Li, E. He, A. Henry, M.I. Stefan, J.L. Snoep, M. Hucka, N. Le Novère,
and C. Laibe. BioModels Database: An enhanced, curated and anno-
tated resource for published quantitative kinetic models. BMC Systems
Biology, 4:92, 2010. doi:10.1186/1752-0509-4-92.

[30] Andrea Maggiolo-Schettini, Paolo Milazzo, and Giovanni Pardini. Ap-
plication of a semi-automatic algorithm for identification of molecular
components in SBML models. In Proceedings of Wivace 2013, Italian
Workshop on Artificial Life and Evolutionary Computation, (Milan,
Italy, July 1-2, 2013), Electronic Proceedings in Theoretical Computer
Science, 2013. To appear.

[31] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas,
and Hidde de Jong. Temporal logic patterns for querying dynamic
models of cellular interaction networks. Bioinformatics, 24(16):i227–
i233, 2008. doi:10.1093/bioinformatics/btn275.

[32] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya.
Dynamically consistent reduction of logical regulatory graphs. Theoret-
ical Computer Science, 412(21):2207–2218, 2011. doi:10.1016/j.tcs.
2010.10.021.

[33] Giovanni Pardini, Paolo Milazzo, and Andrea Maggiolo-Schettini. An
algorithm for the identification of components in biochemical pathways.
In Proceedings of CS2Bio 2013, 4th International Workshop on Inter-
actions between Computer Science and Biology, (Florence, Italy, June
6, 2013), Electronic Notes in Theoretical Computer Science, 2013. To
appear.

[34] Amir Pnueli. The temporal semantics of concurrent programs. Theoreti-
cal Computer Science, 13(1):45–60, 1981. doi:10.1016/0304-3975(81)
90110-9.

[35] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman.
Application of a stochastic name-passing calculus to representation
and simulation of molecular processes. Information Processing Letters,
80(1):25–31, 2001. doi:10.1016/S0020-0190(01)00214-9.

[36] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli,
and Ehud Shapiro. Bioambients: an abstraction for biological com-

http://dx.doi.org/10.1186/1752-0509-4-92
http://dx.doi.org/10.1093/bioinformatics/btn275
http://dx.doi.org/10.1016/j.tcs.2010.10.021
http://dx.doi.org/10.1016/j.tcs.2010.10.021
http://dx.doi.org/10.1016/0304-3975(81)90110-9
http://dx.doi.org/10.1016/0304-3975(81)90110-9
http://dx.doi.org/10.1016/S0020-0190(01)00214-9

Modular Verification of Qualitative Pathway
Models with Fairness 117

partments. Theoretical Computer Science, 325(1):141–167, 2004. doi:
10.1016/j.tcs.2004.03.061.

[37] Birgit Schoeberl, Claudia Eichler-Jonsson, Ernst Dieter Gilles, and
Gertraud Muller. Computational modeling of the dynamics of the MAP
kinase cascade activated by surface and internalized EGF receptors. Na-
ture Biotechnology, 20(4):370–375, 2002. doi:10.1038/nbt0402-370.

c© Scientific Annals of Computer Science 2013

http://dx.doi.org/10.1016/j.tcs.2004.03.061
http://dx.doi.org/10.1016/j.tcs.2004.03.061
http://dx.doi.org/10.1038/nbt0402-370

	Introduction
	Modelling Notation for Biochemical Pathways
	Semantics
	Fairness

	Identification of Molecular Components
	Component Inference from Normal-Form Pathways

	Modular Verification
	Abstract Pathways: Syntax, Semantics and Fairness
	Logic for Specifying Properties
	Modular Verification Theorems

	Modelling the EGF Receptor-Induced MAP Kinase Cascade
	Initial State
	The Model
	Experiments
	Modular Verification of a Global Property
	Reasoning on Molecular Components

	Discussion and Conclusions

