
Scientific Annals of Computer Science vol. 28 (1), 2018, pp. 141–156

doi: 10.7561/SACS.2018.1.141

On Partition Metric Space, Index Function, and
Data Compression

Dan A. Simovici1, Roman Sizov1

Abstract

We discuss a metric structure on the set of partitions of a finite
set induced by the Gini index and two applications of this metric: the
identification of determining sets for index functions using techniques
that originate in machine learning, and a data compression algorithm.

Keywords: Gini index, Vapnik-Chervonenkis dimension, index func-
tion, determining set, compression

1 Introduction

The Gini index was developed as a measure of wealth inequality by the
Italian statistician Corrado Gini [1, 2] and became increasingly important
in machine learning. The Gini index is related but distinct from Shannon
entropy (since it belongs to the same family of measures of diversity of
probability distributions) and can be given an algebraic treatment that is
useful in our context.

We discuss two rather distinct problems where the Gini index and a
metric induced by this index on the set of partitions of a finite set prove to
be useful, namely, the identification of determining sets for index functions,
and a compression algorithm.

Index functions were introduced and studied by T. Sasao in a series of
papers [3–10,15,16] and have multiple applications including terminal access
controllers, IP address table lookup, packet filtering, memory patch and virus
scan circuits, fault maps for memory, etc. In general, the number of variables

1University of Massachusetts Boston, Computer Science Department, Boston, USA,
Emails: dsim@cs.umb.edu, rsizov@cs.umb.edu

142 D.A. Simovici, R. Sizov

is large and these functions do not depend effectively on all their variables.
Therefore, identification of sets of minimal sets of variables on which such
functions depend (known as determining sets) may lead to simplification of
circuits that implement these functions. We investigated the identification of
determining sets for index functions in a previous contribution and proposed
an Apriori-like algorithm [17].

Let S be a finite set and let P(S) be the collection of its subsets. A
partition of S is a collection π of pairwise disjoint, non-empty subsets of S,
{B1, . . . , Bm} such that

⋃m
i=1Bi = S. The sets B1, . . . , Bm are the blocks

of π. The set of partitions of S is denoted by PART(S).
A partial order relation is introduced on PART(S). For π, σ ∈ PART(S)

we write π 6 σ if each block of π is included in a block of σ. It is easy to
see that this is equivalent to asking that each block of σ is a union of blocks
of π. The largest partition in PART(S) is the one-block partition ωS = {S};
the smallest partition is αS = {{x} | x ∈ S} that consists of singletons.

If π, σ ∈ PART(S), the partition π∧σ is the partition of S that consists
of sets of the form Bi ∩Cj , where Bi ∈ π, Cj ∈ σ, and Bi ∩Cj 6= ∅. Clearly,
we have π ∧ σ 6 π, and π ∧ σ 6 σ. Also, ρ 6 π and ρ 6 σ if and only if
ρ 6 π ∧ σ.

For U, V ∈ P(S) denote by U⊕V the symmetric difference of the sets U
and V . We have

|U ⊕ V | = |U |+ |V | − 2|U ∩ V |.

The mapping d : P(S)2 −→ R>0 defined as d(U, V) = |U ⊕ V | is a metric on
P(S). In other words, we have d(U, V) = d(V,U), d(U, V) = 0 if and only if
U = V , and d(U, V) 6 d(U,W) + d(W,V) for every U, V,W ∈ P(S).

The paper is structured as follows. In Section 2 we discuss the metric
space of partitions of finite sets. Then, in Section 3 we establish a link
between the Vapnik-Chervonenkis dimension of collections of sets and the
size of determining sets for index function. An algorithm for data compression
based on the Gini index is presented in Section 4. Finally, we present our
conclusions in Section 5.

2 The Metric Space of Set Partitions

For a partition π ∈ PART(S) let Pπ be the equivalence relation defined
by π that consists of all pairs (x, y) ∈ S × S such that x and y belong to
the same block Bi of π. In other words, for π = {Bi | i ∈ I} we have
Pπ =

⋃
i∈I(Bi ×Bi).

On Partition Metric Space, Index Function, and
Data Compression 143

For π, σ ∈ PART(S) it is clear that π = σ if and only if Pπ = Pσ. For a
finite set S we define a metric on PART(S) as

δ(π, σ) =
1

|S|2
|Pπ ⊕ Pσ| =

1

n2
(|Pπ|+ |Pσ| − 2|Pπ ∩ Pσ|) ,

where “⊕” denotes the symmetric difference of two sets and n = |S|.
The Gini index of the partition π = {B1, . . . , Bm} is the number

gini(π) = 1− |Pπ|
n2

= 1−
m∑
i=1

|Bi|2

n2
,

that is, the relative number of pairs that do not inhabit the same block of
the partition π.

The largest value of gini(π) for a partition in PART(S) that has m
blocks is obtained when all blocks have equal sizes and equals 1− 1

m (when
n = |S| is a multiple of m). The least value is obtained when π consists of
m− 1 blocks of size 1 and one block of size n−m+ 1 and equals

1− m− 1

n2
− (n−m+ 1)2

n2
=

(m− 1)(2n−m)

n2
.

Let now π = {B1, . . . , Bm}, σ = {C1, . . . , Cp} be two partitions of a
set S and let π∧σ be the partition of S whose blocks are the non-empty inter-
section Bi∩Cj of blocks of π and σ. We have Pπ∧σ = Pπ∩Pσ. Denote a block
Bi ∩ Cj by Dij . If dij = |Dij | we have |Bi| =

∑
j |Dij | and |Cj | =

∑
i |Dij |.

Therefore, |Pπ∧σ| =
∑m

i=1

∑p
j=1 |Dij |2, |Pπ| =

∑m
i=1

(∑p
j=1 |Dij |

)2
, and

|Pσ| =
∑p

j=1 (
∑m

i=1 |Dij |)2. This allows us to write

δ(π, σ)

=
1

n2
d(Pπ, Pσ) =

1

n2
(|Pπ|+ |Pσ| − 2|Pπ ∩ Pσ|)

=
1

n2

 m∑
i=1

 p∑
j=1

|Dij |

2

+

p∑
j=1

(
m∑
i=1

|Dij |

)2

− 2

m∑
i=1

p∑
j=1

|Dij |2
 .

144 D.A. Simovici, R. Sizov

In terms of the gini function δ(π, σ) can be written as

δ(π, σ) = 1− gini(π) + 1− gini(σ)− 2(1− gini(π ∧ σ))

= 2gini(π ∧ σ)− gini(π)− gini(σ).

Furthermore, we have

gini(π) = δ(π, ωS) = 1− 1

n
− δ(π, αS).

Example 2.1 In the case of two-block partitions of a set T with |T | = n the
distance has a very simple form. Suppose that π = {B0, B1}, σ = {C0, C1}
and π ∧ σ = {D00, D01, D10, D11}. Let D be the matrix

D =

(
d00 d01
d10 d11

)
,

where dij = |Dij | for i, j = 0, 1. The distance δ(π, σ) is

δ(π, σ) =
1

n2
(
(d00 + d01)

2 + (d10 + d11)
2

+(d00 + d10)
2 + (d01 + d11)

2

−2(d200 + d201 + d210 + d211)
)

=
2

n2
(d00d01 + d11d01 + d00d10 + d11d10)

=
2

n2
(d00 + d11)(d01 + d10). (1)

3 Determining Sets for Index Functions

Let X = {x1, . . . , xm} be a finite set of symbols called attributes. A set
Dom(xi) referred to as the domain of xi is attached to each attribute xi,
and a table having the heading X is defined as a pair T = (X,R), where R,
the content of the table is a relation on

∏m
i=1 Dom(xi). The members of R

are the tuples or the rows of the table. The weight of T is the number of
tuples, w(T) = |R|. Note that the tables defined as above do not contain
duplicate rows.

We adopt the relational database theory notation, where subsets of
table headings are denoted as strings.

On Partition Metric Space, Index Function, and
Data Compression 145

Table 1: Tabular Representation of a Partial Function
x1 x2 x3 x4 x5 x6 x7 y
0 0 1 0 0 1 1 1
1 0 0 0 1 0 1 2
1 0 1 1 0 0 1 3
0 0 1 1 1 1 0 4
1 1 0 0 1 1 0 5
0 1 1 0 1 0 1 6
1 1 0 1 0 1 1 7
0 0 0 1 1 0 0 8
0 1 1 1 0 1 1 9

If t = (a1, . . . , am) is a tuple in T , the restriction of t that consists of
components that correspond to the attributes Y = xi1 · · ·xik is denoted by
t[Y] = (ai1 , . . . , aik) and is referred to as the projection of t on Y .

Let k be the finite set {0, 1, . . . , k − 1}. The number k is referred to as
the radix of the set k. A k-table is a table T = (X,R) with Domxi = k for
1 6 i 6 m.

Consider a set of n different binary vectors of m bits referred to as
registered vectors. An index generation function or, more briefly, an index
function assigns to every registered vector a unique integer from 1 to n.
A circuit implementing the index function produces a value k if its input
matches the kth registered vector, and 0 otherwise. The number n is the
weight of the index generation function. Thus, an index generation function
represents a mapping: f ; {0, 1}m −→ {0, 1, . . . , n}.

An index table is a table that describes an index function and is defined
as a pair T = (x1 · · ·xmy,R), where Dom(xi) = 2 and Dom(y) = {1, . . . , n},
where n = w(T). Thus, an index table is a table whose attributes are binary
with the exception of the index attribute y that is an n-ary attribute, where
n = w(T).

Example 3.1 In Table 1 we show an (2,9)-index table that contains nine
tuples in 27 × 9:

For instance, t5 = (0, 1, 1, 0, 1, 0, 1, 6).

If the index table T has the heading x1 . . . xny, then T defines a collection
CT of subsets of the set X = x1 . . . xn by interpreting the rows of T as
characteristic vectors of these subsets.

146 D.A. Simovici, R. Sizov

Example 3.2 For the table T given in Example 3.1 the collection CT consists
of the following sets:

C0 = {x3, x6, x7}, C1 = {x1, x5, x7},
C2 = {x1, x3, x4, x7}, C3 = {x3, x4, x5, x6}
C4 = {x1, x2, x5, x6}, C5 = {x2, x3, x5, x7},
C6 = {x1, x2, x4, x6, x7}, C7 = {x4, x5},
C8 = {x2, x3, x4, x6, x7}.

We use next the Vapnik-Chervonenkis dimension of a collection of sets.
This characteristic property of collection of sets is of fundamental importance
for machine learning and data mining [13]. A collection C of subsets of a set
X shatters a subset U of X if

P(U) = {C ∩ U | C ∈ C}.

The family of sets shattered by C is denoted by SH(C). The size of the largest
set in SH(C) is the Vapnik-Chervonenkis dimension VC(C) of the collection
C.

For k,m ∈ N and k 6 m let φ(m, k) =
∑k

i=0

(
m
i

)
. If |X| = m, there are

φ(m, k) subsets of a set X that contain at most k elements.
The Sauer-Shelah theorem [11, 14] stipulates that if C is a collection

of subsets of X such that |C| > φ(m, k − 1) =
∑k−1

i=0

(
m
i

)
, then X contains

a set U with |U | > k that is shattered by C. In other words, for such a
collection VC(C) > k.

Note that in order to shatter a d-element set U a collection C must
contain at least 2d sets. Therefore, VC(C) = d implies 2d 6 |C|.

If VC(C) = d, no set with more than d elements is shattered by C.
Therefore, if Pd(X) is the family of subsets of X that contain d or fewer
elements, SH(C) ⊆ Pd(X), hence

2d 6 |C| 6
d∑
i=0

(
m

i

)
. (2)

Theorem 3.3 If C is a collection of subsets of set X with |X| = m and
there exist k, ` ∈ N such that φ(m, k − 1) < |C| < 2`, then k 6 VC(C) < `.

Proof: Suppose that C is a collection of subsets of a set X with |X|=m
such that

φ(m, k − 1) < |C| < 2`, (3)

On Partition Metric Space, Index Function, and
Data Compression 147

where ` = dlog2(|C| + 1)e. The first inequality implies VC(C) > k by the
Sauer-Shelah theorem. The second inequality yields VC(C) < ` because C

must contain at least 2` sets in order to shatter a set of size `. Thus,
Inequalities (3) imply k 6 VC(C) < `. 2

Example 3.4 Let X = {x1, x2, x3} and let T1, T2 be the tables shown
below:

T1
x1 x2 x3
1 0 0
0 1 0
1 1 0
1 0 1

T2
x1 x2 x3
1 0 0
0 1 0
0 0 1
1 1 0

Let CT1 ,CT2 be the collections of sets defined by these tables. We have
|CT1 | = |CT2 | = 4 and, therefore,

φ(3, 1) = 4 = |C| < φ(3, 2) = 7.

We have VC(CT1) = 1 because CT1 shatters all one-element subsets but does
not shatter any larger sets, and VC(CT2) = 2 because CT2 shatters the set
{x1, x2}.

Example 3.5 The table T from Example 3.1 contains 9 tuples, so we have
m = 7 and |CT | = 9. Since

φ(7, 1) 6 9 < 24,

by Theorem 3.3, we may conclude that VC(C) ∈ {2, 3}. An inspection of the
table shows that there exists a set of three attributes that is shattered by C.
For example, one such set is {x2, x3, x4}, hence VC(C) = 3.

Suppose that all tuples of a (2,n)-table T are distinct. This allows us
to define a multi-valued partial injective function fT : 2m −→ {0, . . . , n− 1}
with binary inputs and multivalued output. The set of all such partial
functions is denoted by PF(2m,n).

The registered vectors of an index table T whose heading is {x1,. . . , xm,
y} can be regarded as the characteristic vectors of certain subsets of the set
X = {x1, . . . , xm} as shown next. Namely, if t = (a1, . . . , am, b) is a tuple,
its corresponding subset is Cb = {xi | ai = 1 for 1 6 i 6 m}.

148 D.A. Simovici, R. Sizov

If a subset U of the heading X with |U | = k is shattered by CT , then
T [U] contains all binary equivalents of numbers between 0 and 2k − 1 (and
some values may be repeated).

Definition 3.6 Let f : 2m −→ n be an index function described by the
index table Tf = (X,R), where X = x1 · · ·xmy. A set of variables V =
{xi1 , . . . , xip} is a determining set for f if |CV | = |CTf |.

In other words, if V = {xi1 , . . . , xip} is a determining set for the index
function f , then the projection Tf [xi1 · · ·xipy] is also an index table.

Theorem 3.7 A minimal determining set for an index function f contains
a maximal set of attributes that is shattered by CTf .

Proof: Let V be a minimal determining set for the index function f .
Note that V does not contain an attribute x who has constant values (1
or 0) in Tf for, otherwise, we would be able to drop x and the set V − {x}
would still be a determining set.

Thus, if x ∈ V , both 0 and 1 are present under x and the set {x} is
shattered by CTf . This shows that V contains sets that are shattered by CTf .
Since P(V) is finite, it is immediate that there are maximal subsets of V
that are shattered by CTf . 2

Observe that the projection of the table Tf on W need not contain
distinct values, so gini(πW) < 1− 1

w(T) . By systematically expanding a set W
that is shattered, that is, by adding to W subsets L of X −W it is possible
to reach a determining set V = WL. Thus, the maximum size of a shattered
set by C offers a lower bound for the size of determining sets and allows
avoiding a search of the entire collection of subsets of X.

These considerations suggest the Algorithm 3.1 for identifying deter-
mining sets.

Example 3.8 In Example 3.5 we have shown that the Vapnik-Chervonenkis
dimension of the collection of sets introduced in Example 3.1 is 3. Therefore
any determining set for the index function specified must include at least 3
variables. The computation of the Gini index for three-variable subsets shown
below indicates that none of these sets has the Gini index of 0.8889 ≈ 1− 1

9 ,
but there are several such sets (shown in bold characters) that have a
maximum value of 0.8642.

On Partition Metric Space, Index Function, and
Data Compression 149

Algorithm 3.1: Identification of Determining Sets

Input : Index table T = (X,R)
Output : Collection of Determining Sets DS(f) for the Index

Function Represented by T
1 begin
2 set m = |X|;
3 set DS(f) = ∅, d1 = 0, d2 = 0;

4 while not (|C| >
∑d1

i=0

(
m
i

)
) do

5 d1 + +;
6 end

7 while not (|C| < 2d2) do
8 d2 + +;
9 end

10 foreach W ∈ P(X) with d1 ≤ |W | ≤ d2 and maximal Gini index
do

11 if W is shattered by C then
12 foreach L ∈ P(X −W) do
13 if gini(πW∪L) ≥ 1− 1

m then
14 add W ∪ L to DS(f)
15 end

16 end

17 end

18 end

19 end

x1x2x3 : 0.8148 x1x2x4 : 0.8642 x1x2x5 : 0.8642 x1x2x6 : 0.8148
x1x2x7 : 0.8148 x1x3x4 : 0.8148 x1x3x5 : 0.8148 x1x3x6 : 0.7901
x1x3x7 : 0.7901 x1x4x5 : 0.8148 x1x4x6 : 0.8642 x1x4x7 : 0.8148
x1x5x6 : 0.8395 x1x5x7 : 0.8148 x1x6x7 : 0.8395 x2x3x4 : 0.8642
x2x3x5 : 0.8395 x2x3x6 : 0.8148 x2x3x7 : 0.8395 x2x4x5 : 0.8148
x2x4x6 : 0.8395 x2x4x7 : 0.8148 x2x5x6 : 0.8395 x2x5x7 : 0.8148
x2x6x7 : 0.8395 x3x4x5 : 0.8395 x3x4x6 : 0.8642 x3x4x7 : 0.8395
x3x5x6 : 0.8395 x3x5x7 : 0.7901 x3x6x7 : 0.8395 x4x5x6 : 0.8395
x4x5x7 : 0.7654 x4x6x7 : 0.8395 x5x6x7 : 0.7654

These sets can be extended to a determining set. In the next table, the
extensions of the sets of size 3 that are determining sets are shown in bold
characters:

150 D.A. Simovici, R. Sizov

x1x2x3x4 : 0.8889 x1x2x3x5 : 0.8889 x1x2x3x6 : 0.8395 x1x2x3x7 : 0.8642
x1x2x4x5 : 0.8642 x1x2x4x6 : 0.8889 x1x2x4x7 : 0.8642 x1x2x5x6 : 0.8889
x1x2x5x7 : 0.8642 x1x2x6x7 : 0.8642 x1x3x4x5 : 0.8642 x1x3x4x6 : 0.8642
x1x3x4x7 : 0.8642 ;x1x3x5x6 : 0.8642 x1x3x5x7 : 0.8642 x1x3x6x7 : 0.8642
x1x4x5x6 : 0.8889 x1x4x5x7 : 0.8395 x1x4x6x7 : 0.8889 x1x5x6x7 : 0.8642
x2x3x4x5 : 0.8889 x2x3x4x6 : 0.8889 x2x3x4x7 : 0.8889 x2x3x5x6 : 0.8642
x2x3x5x7 : 0.8642 x2x3x6x7 : 0.8642 x2x4x5x6 : 0.8642 x2x4x5x7 : 0.8395
x2x4x6x7 : 0.8642 x2x5x6x7 : 0.8642 x3x4x5x6 : 0.8889 x3x4x5x7 : 0.8642
x3x4x6x7 : 0.8889 x3x5x6x7 : 0.8642 x4x5x6x7 : 0.8395

4 The Gini-based metric and data compression

A set of attributes U of a table T = (X,R) generates a partition πU of the
set of rows R whose blocks consists of tuples that have the same projection
on U .

Example 4.1 For the table introduced in Example 3.1 the partition of R
induced by x1x2 is πx1x2 = {{t0, t3, t7}, {t1, t2}, {t4, t6}, {t5, t8}}.

This allows us to identify sets of attributes whose partitions are close in the
sense of this distance. Formula (1) from Example 2.1 suggests that when
δ(πx, πx′) is small the columns corresponding to x and x′ are rather similar.
This allows encoding values that occur in the projection T [xx′] using a single
value that belongs to a higher radix.

A hierarchical clustering algorithm produces a hierarchical system of
clusters (also known as a dendrogram) as a tree. Cutting this tree at a
certain height generates a clustering that groups together attributes that
may be encoded together.

Example 4.2 For the table given in Example 3.1 the mutual distances
between attributes are given in the following table:

x1 x2 x3 x4 x5 x6 x7
x1 0.0000 0.4938 0.3457 0.4938 0.4938 0.4938 0.4938
x2 0.4938 0.0000 0.4938 0.4938 0.4938 0.4444 0.4938
x3 0.3457 0.4938 0.0000 0.4938 0.4444 0.4938 0.4444
x4 0.4938 0.4938 0.4938 0.0000 0.4444 0.4938 0.4938
x5 0.4938 0.4938 0.4444 0.4444 0.0000 0.4444 0.3457
x6 0.4938 0.4444 0.4938 0.4938 0.4444 0.0000 0.4938
x7 0.4938 0.4938 0.4444 0.4938 0.3457 0.4938 0.0000

On Partition Metric Space, Index Function, and
Data Compression 151

Applying a single-link hierarchical clustering produces the dendrogram
shown in Figure 1.

x5 x7 x1 x3 x4 x2 x6

C1C2 C3

C4

C5

C6

0

1

2

3

4

5

6

7

{{x5, x7}, {x1, x3}, {x4}, {x2, x6}}

{{x5, x7, x1, x3}, {x4}, {x2, x6}}

{{x5, x7, x1, x3, x4}, {x2, x6}}

{{x5, x7, x1, x3, x4, x2, x6}}

Clusterings obtaining at various cuts

Figure 1: Dendrogram of Single-Link Clustering

Algorithm 4.1 takes a dataset and a cutting height as an input and
produces a compressed dataset together with a mapping file.

The algorithm creates a matrix of Gini-based distances between the
attributes of the dataset. The distance matrix is used to run single-linkage
clustering algorithm. This hierarchy is at the provided cutting height and
values of the attributes in each cluster are encoded into a new column with
the name of the cluster.

This joining is based on the assumption that we have small number of
unique projections of dataset transactions on a set of attributes in the same
cluster. This is done by running a group by query on the dataset projected
on the set of attributes and enumerating the results of the query. This
enumeration and a mapping of sets of attributes to respective cluster names
are saved in the mapping file of the output. The new clustered columns and
the columns for unclustered attributes form the compressed dataset.

Our experiments involved the mushroom data set [12] in a binarized
form. For every original column we have created as many binary columns as
the number of unique values in the column. So, for instance, if column c1
has had 3 values a, b, c, then 3 binary columns have been created c1 a,c1 b
and c1 c. Whenever c1 has value a, the column c1 a has value 1 and 0
otherwise, etc. The resulting dataset had 126 attributes, and after removing

152 D.A. Simovici, R. Sizov

Algorithm 4.1: Compression Algorithm

Input : Dataset T = (X,R) and cutting height r
Output : Compressed Dataset T ′, Mapping File M

1 begin
2 Let distanceMatrix[|R|][|R|] be a matrix of distances between

attributes;
3 foreach pair of attributes (xk, x`) do
4 Calculate distance

d(xk, x`) = 2 gini(πxk , πx`)− gini(πxk)− gini(πx`);
5 Set distanceMatrix[k][`] = d;
6 Set distanceMatrix[`][k] = d;

7 end
8 Run Single Linkage Clustering Algorithm for the set of attributes

X with the distance matrix distanceMatrix[|R|][|R|];
9 foreach cluster with height ≤ r that is strictly not included in

any other cluster with height ≤ r do
10 Join all the items from the cluster into a new column named

as the cluster;
11 Run group by query on the dataset T for the attributes in

the cluster;
12 Enumerate rows in the query result;
13 Save the new column in the output dataset T ′ where the value

for each row is based on the enumeration from the query;
14 Save all the mappings to the file M ;

15 end
16 Save all the columns which attributes are not included in the

clusters into the output dataset T ′ without change;

17 end

On Partition Metric Space, Index Function, and
Data Compression 153

any column that had either all zeros or all ones the new dataset had 116
attributes left. The resulting file had size of 1, 851 KB.

The original dataset had 22 attributes and 1 attribute for the class
(poisonous/edible) and 8124 transactions. The class column was excluded.

We ran Algorithm 4.1 for several different cutting height values r. The
dependency of sizes of the compressed files on the cutting height value r is
shown in Figure 2. It can be readily seen that the best compression happens
when the cutting height value is about 0.35.

0

200

400

600

800

1000

1200

1400

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Fi
le

 S
iz

e,
 K

B

Cutting Height

Compressed File Sizes vs Cutting Height

Base File, KB Mapping File, KB Total,KB

Figure 2: Compressed File Sizes vs Cutting Height

154 D.A. Simovici, R. Sizov

5 Conclusions

The Gini index that was developed for statistical purposes is a member of
a broader family of diversity measures known as generalized entropies. We
applied this index in conjunction with the Vapnik-Chervonenks dimension of
collections of sets to develop an algorithm that seeks to identify determining
sets for index function and provides a lower limit to the size of such sets.
The relationship between determining sets and the Vapnik-Chervonenks
dimension of the collection of sets defined by an index function suggests
that this dimension is a good proxy for the complexity of index function, a
further research goal to be explored.

The metric space generated by the Gini index on the set of partitions
was used to develop a data compression algorithm starting from a clustering
algorithm applied to table attributes. This compression is achieved by
grouping together attributes that have similar value distributions.

It would be interesting to examine the use of other types of entropies
(e.g. Shannon’s entropy) for solving these problems.

References

[1] C. Gini. Sulla Misura della Concentrazione e della Variabilita dei
Caratteri. Transactions of the Real Istituto Veneto di Scienze, Lettere
ed Arti, LIII:1203, 1914. doi:10.1007/bf02858128.

[2] C. Gini. Measurement of Inequality of Incomes. The Economic Journal,
31(121):124–126, 1921. doi:10.2307/2223319.

[3] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic
Publishers, 1999. doi:10.1007/978-1-4615-5139-3.

[4] T. Sasao. On the Number of Dependent Variables for Incompletely Spec-
ified Multiple-Valued Functions. In Proceedings of the 30th International
Symposium on Multiple-Valued Logic, pages 91–97, Los Alamitos, CA,
2000. Computer Society Press. doi:10.1109/ismvl.2000.848605.

[5] T. Sasao. Proceedings of the 35th International Symposium for Multiple-
Valued Logic. In Radix Converters: Complexity and Implementation
by LUT Cascades, pages 256–263, Los Alamitos, CA, 2005. Computer
Society Press. doi:10.1109/ismvl.2005.50.

http://dx.doi.org/10.1007/bf02858128
http://dx.doi.org/10.2307/2223319
http://dx.doi.org/10.1007/978-1-4615-5139-3
http://dx.doi.org/10.1109/ismvl.2000.848605
http://dx.doi.org/10.1109/ismvl.2005.50

On Partition Metric Space, Index Function, and
Data Compression 155

[6] T. Sasao. A Design Method of Address Generators Using Hash Memories.
In International Workshop on Logic and Synthesis, pages 102–109, 2006.

[7] T. Sasao. On the Number of Variables to Represent Sparse Logic
Functions. In 17th International Workshop on Logic and Synthesis
(IWLS-2008), pages 233–239, Lake Tahoe, California, USA, 2008. IEEE-
CS.

[8] T. Sasao. On the Number of Variables to Represent Sparse Logic
Functions. In 2008 IEEE/ACM International Conference on Computer
Aided Design, pages 45–51, Los Alamitos, CA, 2008. Computer Society
Press. doi:10.1109/iccad.2008.4681550.

[9] T. Sasao. A Fast Updatable Implementation of Index Generation
Functions Using Multiple IGUs. IEICE Transactions, 100-D(8):1574–
1582, 2017. doi:10.1587/transinf.2016lop0001.

[10] T. Sasao. A Linear Decomposition of Index Generation Functions:
Optimization Using Autocorrelation Functions. Multiple-Valued Logic
and Soft Computing, 28(1):105–127, 2017.

[11] N. Sauer. On the Density of Families of Sets. Journal of Combinatorial
Theory (A), 13:145–147, 1972. doi:10.1016/0097-3165(72)90019-2.

[12] J. S. Schlimmer. UCI Machine Learning Repository, 2013.

[13] D. A. Simovici and C. Djeraba. Mathematical Tools for Data Mining –
Set Theory, Partial Orders, Combinatorics. Springer-Verlag, London,
second edition, 2008.

[14] S. Shelah. A Combinatorial Problem; Stability and Order for Models
and Theories in Infinitary Languages. Pacific Journal of Mathematics,
41:247–261, 1972. doi:10.2140/pjm.1972.41.247.

[15] T. Sasao and M. Matsuura. An Implementation of an Address Generator
Using Hash Memories. In 10th EUROMICRO Conference on Digital
System Design, Architectures, Methods and Tools, DSD-2007, pages
69–76, Los Alamitos, CA, 2007. Computer Society Press. doi:10.1109/
dsd.2007.4341452.

[16] T. Sasao, T. Nakamura, and M. Matsuura. Representation of Incom-
pletely Specified Index Generation Functions Using Minimal Num-
ber of Compound Variables. In 12th EUROMICRO Conference

http://dx.doi.org/10.1109/iccad.2008.4681550
http://dx.doi.org/10.1587/transinf.2016lop0001
http://dx.doi.org/10.1016/0097-3165(72)90019-2
http://dx.doi.org/10.2140/pjm.1972.41.247
http://dx.doi.org/10.1109/dsd.2007.4341452
http://dx.doi.org/10.1109/dsd.2007.4341452

156 D.A. Simovici, R. Sizov

on Digital System Design, Architectures, Methods and Tools, DSD-
2009, pages 765–772, Patras, Greece, 2009. Computer Society Press.
doi:10.1109/DSD.2009.214.

[17] D. A. Simovici, D. Pletea, and R. Vetro. Information-Theoretical Mining
of Determining Sets for Partially Defined Functions. In Proceedings
of ISMVL, pages 294–299, Barcelona, 2010. IEEE Computer Society.
doi:10.1109/ismvl.2010.61.

© Scientific Annals of Computer Science 2018

http://dx.doi.org/10.1109/DSD.2009.214
http://dx.doi.org/10.1109/ismvl.2010.61

	Introduction
	The Metric Space of Set Partitions
	Determining Sets for Index Functions
	The Gini-based metric and data compression
	Conclusions

