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Abstract

In this paper, the notion of aspect-oriented modular reconfigurable
computing (AOMRC) is introduced, CSP-based behaviors of AOMRC
are approached by developing a model of AOMRC and constructing a
Hoare model of deterministic reconfiguration processes. Then, under
the theory of coalgebras, we build a homomorphism between AOMRC
and a Hoare model of deterministic reconfiguration processes. In other
words, since AOMRC and the Hoare model of deterministic recon-
figuration processes are seen as coalgebras, their homomorphic rela-
tionship results in the behavioral equivalence between AOMRC being
carried out by a transformations-based aspect and a Hoare model of
deterministic reconfiguration processes.

1 Introduction

Reconfigurable computing is computer processing with highly flexible com-
puting components. Such an effective powerful paradigm joins together the
flexible nature of software with hardware design and the high performance
nature of hardware with software programming. This is an emerging ap-
proach in computing. The topic has seen a number of developments through
various research investigations including computational models, languages,
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and formalisms with the aim of providing high-level descriptions of reconfig-
urable computing systems [7–14,22–28]. However, devising a good program-
ming technique, for ensuring that high flexibility of reconfigurable comput-
ing systems, is properly carried out is far from being obvious.

Apparently emerging as an orthogonal approach to modular program-
ming methods, the programming technique based on cross-cutting, also re-
ferred to as aspect orientation [17], is seen to be a good potential practical
paradigm for aspect-oriented modular reconfigurable computing as shown
in [28], where we presented an approach to combining aspect-orientation
and reconfigurable computing in a modular manner. Expanding on the
approach in this paper, under the theory of coalgebras and communicat-
ing sequential processes (CSP) [15], we will examine CSP-based behaviors
of aspect-oriented modular reconfigurable computing as a further develop-
ment to our recent research [22–28] to embed the cross-cutting technique in
modular reconfigurable computing systems.

In modular reconfigurable computing systems, an aspect is determined
as transformations of configuration. Based on this aspect, a model of aspect-
oriented modular reconfigurable computing (AOMRC) is developed and a
Hoare model of deterministic reconfiguration processes is constructed. By
this way, a homomorphism between AOMRC and a Hoare model of deter-
ministic reconfiguration processes is investigated in detail under the theory
of coalgebras to establish a behavioral equivalence between AOMRC and
a Hoare model of deterministic reconfiguration processes. As a result, the
homomorphism between AOMRC and a Hoare model of deterministic re-
configuration processes blurs the distinction between concepts of a configu-
ration and process. A descriptive view of this behavioral equivalence is as
follows:
Homomorphism: (AOMRC) −→ (Hoare model of deterministic reconfigu-
ration processes)

2 Outline

The paper is organized as follows: In section 3, we consider some related
principal work and preliminary concepts. In section 4, we introduce the
notion of aspect-oriented modular reconfigurable computing (AOMRC), in-
cluding reconfiguration and its coalgebraic representations, transformations
of configuration, transformation-based aspect in reconfigurable computing
and inheritance property of aspect. A homomorphic relationship between
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AOMRC and a Hoare model of deterministic reconfiguration processes is
investigated in detail under the theory of coalgebras and CSP in section 5.
A plan for future work is suggested in section 6. Finally, a short summary
is given in section 7.

3 Related Major Work and Existing Basic Con-
cepts

3.1 Related major work

Most notions and investigations of this paper are instances of a theory called
universal coalgebra [16, 21], where some recent developments in coalgebra
are presented such that

• Bisimulation is a categorical notion that applies to many different in-
stances of infinite data structures, various other types of automata,
and dynamic systems [16, 20, 21]. In theoretical computer science,
a bisimulation is an equivalence relation between abstract machines,
also called the abstract computers or state transition systems (i.e., a
theoretical model of a computer hardware or software system) used in
the study of computing. Abstraction of computing is usually consid-
ered as discrete time processes. Two computing systems are bisimular
if, regarding their behaviors, each of the systems “simulates” the other
and vice-versa. In other words, each of the systems cannot be distin-
guished from the other by the observation.

• Homomorphism is one of the fundamental concepts in categorical al-
gebra [1, 2, 4, 18], which scrutinizes the sets of algebraic objects, rela-
tions of those algebraic objects, and functions from one set of algebraic
objects to another. A function that preserves the relations of the al-
gebraic objects is known as a homomorphism. In other words, if the
source set of algebraic objects includes several relations, then all its
relations must be preserved in the target set for the function to be a
homomorphism between two sets of algebraic objects.

Moreover, in the considered context, we also apply the therory of CSP,
which is a formal language for specifying interaction behaviors in reconfig-
urable computing systems. CSP was first described in a 1978 paper by C.
A. R. Hoare [15], but has since grown substantially to become the mod-
ern process algebraic form. It is a member of the family of mathematical
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theories of concurrency known as process algebras, or process calculi. CSP
spreads its influence over the development of both software/hardware in
traditional computing systems and flowware/configware in modern recon-
figurable computing systems. The theory of CSP itself is still the subject
of active research, including work to increase its range of practical applica-
bility.

3.2 The notions of reconfigurable computing, configware and
flowware

A definition of reconfigurable computing, sometimes known as configurable
computing, is given by DeHon and Wawrzynek as:

“computing via a post-fabrication and spatially programmed

connection of processing elements” [6].

This definition is concerned with two major factors of reconfigurable com-
puting:

• The post-fabrication property allows adjustment of the architecture
for flexibility between applications due to varying data input flows
and operation conditions.

• The spatial paradigm of computation, also called configware, contrasts
with the temporal paradigm of computation using traditional micro-
processors, called by the familiar name of software.

The implementation of reconfigurable computing has become realistic with
the availability of Field-Programmable Gate Array (FPGA) technology [19].
A specific type of FPGA, which can be programmed on-the-fly during sys-
tem operation, is dynamically reconfigurable FPGA, also known as a Dy-
namically Programmable Gate Array (DPGA) technology [5].

The above-mentioned definition of reconfigurable computing refers to
the notion of R. Hartenstein’s configware engineering [13], including con-
figware and flowware, in which both configware and flowware codes are
created by compiling inputs of a high-level programming language. Specif-
ically, configware codes are produced for determining configuration before
runtime, and flowware codes execute data input flows at runtime on an
existing configuration [7–12,14].

Configware means structural programming, or programming in space
as presented in Figure 1(a). That is, configware executes computation in
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space. Figure 1(a) illustrates the configware approach, in which a sequence
of operations is mapped from time to space and executed per C-step (also
called a control step) in parallel on a DPGA-based platform; its intermediate
results are stored in buffers for another sequence of operations in the next
C-step.

Flowware means data-flow programming that schedules the data flow
for output from or input to the configware using one or several data counters.
Flowware determines which data item has to be connected with which port
of which configuration at which time (see Figure 1(b)). The configware is
vital for the flowware-based paradigm. This architecture allows the multiple
data flows clocked into and out of such a pipelined network, in a similar
manner to the heart and the blood streams.

Flowware may also be described by higher level flowware languages,
which are similar to high level software languages like C [13]. These lan-
guages include control structures such as jumping and (nested) looping.
The principal differences between software and flowware are that (sequen-
tial) software makes reference to only a single program counter, whereas
flowware refers to several data counters. As a result, flowware also includes
parallel looping as an important control structure, which is not supported
by sequential software.

Both flowware and configware are two different complementary ap-
proaches that can be combined in programming for reconfigurable comput-
ing systems. Figure 1(c) describes a process of configware/flowware synthe-
sis, generating both configware and flowware from a high level programming
language source, in which configware is produced for establishing the con-
figuration before runtime and flowware is used to execute data flows at
runtime.

3.3 Some categorical and coalgebraic terms

In this section, we recall some concepts from the category theory [1,2,4,18]
and theory of coalgebras [16,21] used in this paper.

A category C can be viewed as a graph (Obj(C), Arc(C), s, t), where

• Obj(C) is the set of nodes we call objects,

• Arc(C) is the set of edges we call morphisms and
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• s, t : Arc(C) −→ Obj(C) are two maps called source and target,
respectively.

We write f : X −→ Y when f is in Arc(C) and s(f) = X and t(f) = Y.

Associated with each object X in Obj(C), there is a morphism 1X =
X −→ X , called the identity morphism on X , and to each pair of mor-
phisms f : X −→ Y and g : Y −→ Z, there is an associated morphism
f ; g : X −→ Z, called the composition of f with g.

X

1X

��
X

f //
HI JK

f ;g
OOY

g //Z (1)

The following equations must hold for all objects X , Y and Z and morphisms
f : X −→ Y, g : Y −→ Z and h : Z −→ T :

Associativity : (f ; g); h = f ; (g; h) (2)

X
f //

HI JK

f ;g
OOY

g //Z
h //T = X

f //Y
g //

HI JK

g;h
OOZ

h //T

Identity : 1X ; f = f = f ; 1Y (3)

X1X ::
f //Y = X

f //Y = X
f //Y 1Ydd

A morphism f : X −→ Y in the category C is an isomorphism if there
exists a morphism g : Y −→ X in that category such that f ; g = 1X and
g; f = 1Y .

X
f //

HI JK

f ;g=1X

OOY
g //X and Y

g //
HI JK

g;f=1Y

OOX
f //Y (4)

That is, if the following diagram commutes.

X1X ::

f

99Y

g

yy
1Ydd (5)
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For any set A, x ∈ A iff 1
x //A (or x : 1 // A) where 1 denotes a single-

ton set. Hence, we can write 1
1 //N (or 1 : 1 // N) for 1 ∈ N, 1

i //N

(or i : 1 // N) for i ∈ N and so on

Functor is a special type of mapping between categories. Functor from
a category to itself is called an endofunctor. Note that, in this paper, when
the notion of endofunctor dominates throughout in use, then we can name
them as the functor, for short, without any confusion. The functors are also
viewed as morphisms in a category, whose objects are smaller categories.
There are two kinds of functors distinguished by the way they treat mor-
phisms to be covariant and contravariant. A functor T is covariant if for

each source morphism X
f
−→ Y the target morphism has the form T X

T f
−→

T Y. A functor T is contravariant if for each source morphism X
f
−→ Y the

target morphism has the form T X
T f
←− T Y.

Let C be a category and T : C −→ C an endofunctor. A T-coalgebra
is a pair 〈C, f〉, where C is an object in C and f : C −→ T C a morphism in
C. C is called a carrier of the coalgebra and T an interface of the coalgebra.

Let C and C′ be two objects in the category C. T-homomorphism between

two T-coalgebras 〈C, f〉 and 〈C′, g〉 is a mapping C
h
−→ C′ such that the

following equation holds
f ; T h = h; g (6)

It is equivalent to saying that the following diagram commutes

C
f //

h

��

T C

T h

��
C′

g //T C′

(7)

Let C be a category and T : C −→ C an endofunctor. A final T-coalgebra is
simply a final object in the associated category CoAlg(T) of T-coalgebras.
Thus, it is a coalgebra 〈Z, fi : Z −→ T Z〉 such that for any coalgebra
〈X , f : X −→ T X〉 there is a unique homomorphism h : X −→ Z of
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coalgebras, as in:

X
f //

h

���
�

�

�

�

�

�

T X

T h

���
�

�

�

�

�

�

Z
fi //T Z

(8)

The dashed notation in the diagram (8) is used for uniqueness.

Let C and C′ be two categories. Consider a parallel pair

C

T //

T
′

//C
′ (9)

of functors of the same variance. Two functors of T and T
′ are naturally

equivalent (also called naturally isomorphic) if there is an inverse pair of
natural isomorphisms between them. In other words, the inverse pair of
natural isomorphisms between T and T

′ is a pair

T

η //
T
′

ζ
oo (10)

such that for each object X in C the morphisms

T X

ηX //
T
′ X

ζX

oo (11)

are an inverse pair of isomorphisms in C′.

4 Aspect-Oriented Modular Reconfiguration Com-
puting (AOMRC)

4.1 Reconfiguration and its coalgebraic representations

AOMRC we want to model is intuitionally multiple partial function appli-
cations, such as

c
t[1]
−→ (o[1], c[1])

t[2]
−→ (o[2], c[2])

t[3]
−→ (o[3], c[3]) . . . (12)
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where

• All indexes i ∈ N in square brackets refer to control steps,

• c is a configuration of AOMRC in the set, denoted by C, of configura-
tions. c[i] is the configuration c at the control step i,

• o is a value in the set, denoted by O, of observable output values. o[i]
is the output o at the control step i, and

• t is a transformation in the set, denoted by T , of transformations. t[i]
is the transformation t at the control step i.

The notation c
t[1]
−→ (o[1], c[1]) is viewed as, at the first control step, the

initial configuration c is changed to the configuration c[1] and the output o[1]

is produced by the transformation t[1]. In general, c[i]
t[i+1]
−→ (o[i+1], c[i+1])

states that the transformation t[i+1] changes the configuration c[i] to c[i+1]
and issues the output o[i + 1] at the control step i + 1.

The diagram (12) means that reconfiguration with the set T of trans-
formations is a pair 〈C, 〈oC , eC〉〉 consisting of the set C of configurations, an
output function oC : C −→ OT and an evolution function eC : C −→ CT ,
where OT and CT are read as the sets of partial functions {f : T −→p O}
and {g : T −→p C}, respectively. oC assigns, to a configuration c, a function
oC(c) : T −→p O, which specifies the value oC(c)(t) that is reached after a
transformation t has been executed. Similarly, eC assigns, to a configuration
c, a function eC(c) : T −→p C, which specifies the configuration eC(c)(t) that

is reached after a transformation t has been executed. Sometimes c
t
−→ c′

is used to denote eC(c)(t) = c′. Generally, both the set C of configurations
and the set T of transformations may be infinite. If both C and T are fi-
nite, then we have a finite reconfiguration, otherwise we have an infinite
reconfiguration.

We define a bisimulation between two reconfigurations 〈C, 〈oC , eC〉〉 and
〈C′, 〈oC′ , eC′〉〉 to be a relation R ⊆ C × C′ with, for all c in C, c′ in C′ and
t in T

if c R c′ then

{

oC(c)(t) = oC′(c′)(t) and
eC(c)(t) R eC′(c′)(t).

(13)

In other words,

if 〈c, c′〉 ∈ R then

{

oC(c)(t) = oC′(c′)(t) and
〈eC(c)(t), eC′(c′)(t)〉 ∈ R.

(14)
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This bisimulation relation is read as: two reconfigurations 〈C, 〈oC , eC〉〉 and
〈C′, 〈oC′ , eC′〉〉 issue the same observations in O, and then the same trans-
formation t is carried out on both configurations c in C and c′ in C′ that
will lead to two new configurations eC(c)(t) in C and eC′(c′)(t) in C′ that are
observationally indistinguishable again. Bisimulation between 〈C, 〈oC , eC〉〉
and itself is called a bisimulation on 〈C, 〈oC , eC〉〉. We write c ∼ c′ whenever
there exists a bisimulation R with c R c′.

For the reconfiguration 〈C, 〈oC , eC〉〉, the output function oC : C −→
OT and evolution function eC : C −→ CT can be now combined into a
reconfiguration function 〈oC , eC〉 : C −→ (O × C)T , which maps c in C into
the pair 〈oC(c), eC(c)〉. Thus the reconfiguration 〈C, 〈oC , eC〉〉 is considered
as the structure observed through the following interface.

⊙a⊙ ( ) = (O × )T (15)

because applying this interface to the observable set C of configurations, we
have

⊙a⊙ (C) = (O × C)T (16)

This interface of ⊙a⊙ ( ) can be regarded as a mapping to decompose the
observable set C of configurations into an observation context (O × )T of
C.

Let ⊙a⊙ ( ) : C −→ C be a functor on the category C of sets. A
⊙a⊙ ( )-coalgebra is defined by a pair 〈C, 〈oC , eC〉〉 consisting of the set C of
configurations and the reconfiguration function 〈oC , eC〉 : C −→ ⊙a⊙ (C). In
this way, the reconfiguration 〈C, 〈oC , eC〉〉 is represented as a coalgebra of the
functor ⊙a⊙( ), which is defined on the category C by ⊙a⊙(C) = (O×C)T .
Through this coalgebraic representation of reconfiguration, there exist a
number of notions and results on coalgebras in general, which can be applied
to reconfiguration.

As a result, a reconfiguration process is defined by the reconfiguration
function 〈oC , eC〉 such that

〈oC , eC〉 : C −→ (O × C)T (17)

Thus, the set C of configurations equipped by the structure (17) defines a
category Conf(⊙a⊙ ( )), whose objects are configurations of the set C and
morphisms can be explicitly drawn as follows: For each c ∈ C,

c
〈oC ,eC〉// ⊙a⊙ (c)

⊙a⊙(〈oC ,eC〉) // ⊙a⊙2 (c)
⊙a⊙2(〈oC ,eC〉)// ⊙a⊙3 (c)

⊙a⊙3(〈oC ,eC〉)// . . .

(18)
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The reconfiguration function 〈oC , eC〉 in (17) can be represented in the fol-
lowing different way

〈oC , eC〉• : C −→ ((T ×O) −→p C) (19)

Similarly, with this result, the set C equipped by the structure (19) defines
a category Conf(⊙( )), whose objects are configurations of the set C. Let

⊙( ) = (T ×O) −→p (20)

then morphisms of the category Conf(⊙( )) can be explicitly viewed as

c
〈oC ,eC〉•// ⊙ (c)

⊙(〈oC ,eC〉•) // ⊙2 (c)
⊙2(〈oC ,eC〉•) // ⊙3 (c)

⊙3(〈oC ,eC〉•) // . . . (21)

for each c ∈ C.
A bijective relationship between the representation (17) and (19) of the

reconfiguration function is justified by proving that there exists a natural
equivalence (also called natural isomorphism) between two functors ⊙( ) =
(O × )T and ⊙a⊙ ( ) = ((T ×O) −→p ). In fact,

Proposition 1. Consider a parallel pair

C

⊙a⊙( ) //

⊙( )
//C (22)

of two functors of ⊙a⊙ ( ) and ⊙( ). ⊙a⊙ ( ) and ⊙( ) are naturally
equivalent.

Proof. For morphisms 1
⊙a⊙(C) // ⊙a⊙ (C) and 1

⊙(C) // ⊙ (C), there

exists a unique morphism ⊙a⊙ (C)
ηC // ⊙ (C) such that the equa-

tion ⊙a⊙ (C); ηC = ⊙(C) holds. Inversely, there exists a unique morphism

⊙ (C)
ζC // ⊙a⊙ (C) such that the equation ⊙(C); ζC = ⊙a⊙(C) holds.

This is described by the following commutative diagram.

1
⊙a⊙(C) //

⊙(C)

��@
@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@
⊙a⊙ (C)

ηC

��
⊙ (C)

ζC

WW (23)
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By (23), for each c in C, the following diagram (constructed by (18) and (21))
commutes.

c
〈oc,ec〉//

1c

��

⊙a⊙ (c)
⊙a⊙(〈oc,ec〉) //

ηc

��

⊙a⊙2 (c)
⊙a⊙2(〈oc,ec〉) //

ηc

��

⊙a⊙3 (c)
⊙a⊙3(〈oc,ec〉) //

ηc

��

. . .

c
〈oc,ec〉• //

1c

SS

⊙ (c)
⊙(〈oc,ec〉•) //

ζc

SS

⊙2 (c)
⊙2(〈oc,ec〉•) //

ζc

SS

⊙3 (c)
⊙3(〈oc,ec〉•) //

ζc

SS

. . .

With this result, ηC and ζC are an inverse pair of natural isomorphisms in
C between two functors of ⊙a⊙ ( ) and ⊙( ). Hence, ⊙a⊙ ( ) and ⊙( ) are
naturally equivalent.

Note that using either of the above-mentioned representations (17)
and (19) is completely dependent on aspect that we want to treat. Thus,
for a closely structural relationship between AOMRC and CSP, in the re-
mainder of the paper, the representation of reconfiguration function in (19)
is chosen to investigate and analyze CSP-based behaviors of AOMRC. In
section 5, we will justify that (19) and CSP deterministic process match
well each other on their structural representations.

4.2 Transformations of configuration

For reconfigurable computing, in [22] we have shown that the set of trans-
formations T = {R,V,Up,Down,Left,Right} is sufficient to change con-
figurations as modules in a 2D affine space where the elements of T are
understood as follows (see Figure 2): R rotates a configuration c ∈ C by
900 clockwise. V vertically flips a configuration c ∈ C. Up moves a config-
uration vertically up. Down moves a configuration vertically down. Left

moves a configuration horizontally in the left direction. Right moves a
configuration horizontally in the right direction. Moreover, in a specific
way [22], we have considered the output set O as 2 = {0, 1}, where output
is 1 when a change of module c ∈ C is successfully executed and 0 otherwise.

As a reasoning in section 4.1, we choose the model of reconfiguration
such that

〈oC , eC〉• : C −→ ((T × 2) −→p C) (24)

in which the set T of transformations is extended to (T × 2) that consists
of twelve transformations (see an illustration in Figure 3).

125



(a) Current configurations
c1 − c5

(b) Changed configurations

Figure 2: Changing configurations by transformations in T

Each extended transformation in (T×2) is a unary operation. Formally,
each (t, o) ∈ (T × 2) is recognized as an operation

(t, o) : C −→p C (25)

taking a configuration input of type C and producing a configuration output
of type C. Moreover, these transformations are defined such that

(t, o)(c) =

{

∗ when o = 0 and
(t, 1)(c) otherwise

(26)

where {∗} is an extra configuration in C, in this case no successor configu-
ration in C is produced. In other words, it corresponds to stop of reconfig-
uration.

4.3 A transformations-based aspect in reconfigurable com-
puting

At a control step i ∈ N, a modular reconfigurable computing system M is
composed by n configuration modules denoted by ci

♦ ∈ C,∀♦ ∈ {1, . . . , n},
whose subscript and superscript relate to module number and control step
number, respectively.

We see that aspect-oriented development of the modular system M is
really a refactoring process (or decomposing process) to discover so-called
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(a) Configuration c (b) c1 = (V, 1)(c)

(c) c2 = (Right, 1)(c1) (d) c3 = (Right, 0)(c2)

Figure 3: Changing configuration by transformations in (T × 2)

common factors of M. Those common factors are called aspects [17]. In
fact, for ti♦ ∈ T and oi

♦ ∈ 2, an aspect A = 〈(ti1, o
i
1), (t

i
2, o

i
2), . . . , (t

i
n, oi

n)〉 is
viewed as a transformation on the modular reconfigurable computing system
M = 〈ci−1

1 , ci−1
2 , . . . , ci−1

n 〉 including n configuration modules ci−1
♦ ,∀♦ ∈

{1, . . . , n}.
We define an application of A toM (denoted by A(M)) to determine

the modular resulting reconfigurable computing systemM′ = 〈ci
1, c

i
2, . . . , c

i
n〉

= 〈(ti1, o
i
1)(c

i−1
1 ), (ti2, o

i
2)(c

i−1
2 ), . . . , (tin, oi

n)(ci−1
n )〉. That is,

A(M) =M′ = 〈(ti1, o
i
1)(c

i−1
1 ), (ti2, o

i
2)(c

i−1
2 ), . . . , (tin, oi

n)(ci−1
n )〉
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=

{

⋆ when ∃oi
♦ = 0 for ♦ ∈ {1, . . . , n} and

(ti1, 1)(ci−1
1 ), (ti2, 1)(ci−1

2 ), . . . , (tin, 1)(ci−1
n ) otherwise

where {⋆} is an extra reconfigurable computing system, in this context no
next reconfigurable computing system is produced and the reconfiguration
process of whole system stops.

4.3.1 An example of aspect and its applications

From now on, we omit the superscripts (relating to control step num-
ber) in all notations for short, as the example is considered at an arbi-
trary control step. Let M be a modular reconfigurable computing system
consisting of two modules of configuration c1 ∈ C and c2 ∈ C as in Fig-
ure 4(a). From the transformations in (T × 2) considered in subsection 4.2,
we construct the aspect A = 〈(t1, o1), (t2, o2)〉, where ∀(t1, o1), (t2, o2) ∈
(T × 2), to be applied on M = 〈c1, c2〉. In this case, the application
of A = 〈(t1, o1), (t2, o2)〉 to M is written as 〈(t1, o1), (t2, o2)〉(〈c1, c2〉) =
〈(t1, o1)(c1), (t2, o2)(c2)〉. As an exemplification, here we illustrate only
six instances of the modular resulting system as in Figure 4. Specifi-
cally, 〈(R, 1)(c1), (V, 1)(c2)〉 produces the resulting system in Figure 4(b),
〈(Up, 1)(c1), (R, 1)(c2)〉 in Figure 4(c), 〈(R, 1)(c1), (Down, 1)(c2)〉 in Fig-
ure 4(d), 〈(Left, 1)(c1), (Right, 1)(c2)〉 in Figure 4(e), 〈(Up, 0)(c1), (Down,

1)(c2)〉 and 〈(Left, 0)(c1), (Right, 1)(c2)〉 in Figure 4(f).
Note that, in Figure 4, the notation ⊢A denotes a transition when

applying the aspect A on a modular system. In this way, when we write
M ⊢AM1, for example, which means that a change fromM toM1 occurs
after applying the aspect A onM. Moreover, when we writeM ⊢AM1 ⊢A
M2 ⊢AM3 ⊢AM4 ⊢A STOP that is understood as an application process
of the aspect A by which the change happens.

4.3.2 Bisimulation between two modular reconfigurable comput-

ing systems as inheritance property of aspect

A bisimulation between two modular reconfigurable computing systems
M = 〈c1, c2, . . . , cn〉 and M′ = 〈c′1, c

′
2, . . . , c

′
n〉 is a relation L ⊆ M×M′

with, for all 〈c1, c2, . . . , cn〉 inM, 〈c′1, c
′
2, . . . , c

′
n〉 inM′ and 〈(t1, o1), (t2, o2),

. . . , (tn, on)〉 in A.

If 〈c1, c2, . . . , cn〉 L 〈c′1, c
′
2, . . . , c

′
n〉 then c♦

(t♦ ,o♦)
∼ c′♦,∀ ♦ ∈ {1, . . . , n}.

We write c♦

(t♦ ,o♦)
∼ c′♦ when c♦ ∼ c′♦ under transformations (t♦, o♦) ∈ (T×2).
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(a) A modular system
(M = 〈c1, c2〉)

(b) M ⊢A M1 =
〈(R, 1), (V, 1)〉(M)

(c) M1 ⊢A M2 =
〈(Up, 1), (R, 1)〉(M1)

(d) M2 ⊢A M3 =
〈(R, 1), (Down, 1)〉(M2)

(e) M3 ⊢A M4 =
〈(Left, 1), (Right, 1)〉(M3)

(f) M4 ⊢A STOP

Figure 4: An application process of aspect A on the modular systems
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In other words, If 〈〈c1, c2, . . . , cn〉, 〈c
′
1, c

′
2, . . . , c

′
n〉〉 ∈ L then 〈c♦, c′♦〉(t♦ ,o♦) ∈

R, where 〈c♦, c′♦〉(t♦ ,o♦) in R denotes 〈c♦, c′♦〉 in R under transformations
(t♦, o♦) in (T × 2).

We also write M ∼ M′ whenever there exists a bisimulation L with
〈c1, c2, . . . , cn〉 L 〈c′1, c

′
2, . . . , c

′
n〉.

Note that the superscripts (relating to control step number) in all no-
tations can be omitted for short, as the considered context is at an arbitrary
control step.

Two modular reconfigurable computing systems M and M′ that are
related by a bisimulation relation are observationally indistinguishable in
that:

• Each member module in M and its partner module in M′ cause the
same observations, and

• Applying the same aspect to both systems will lead to two resulting
systems that are indistinguishable again.

For further well-founded investigation, we justify some following statements.

Proposition 2. Let M′ and M′′ be applications of aspect A(M). If M∼
M′ and M′ ∼ M′′ then (M ∼M′) ◦ (M′ ∼ M′′) =M ∼M′′, where the
symbol ◦ denotes a relational composition. For more descriptive notation,
we can write this in the form

M∼M′,M′ ∼M′′

(M∼M′) ◦ (M′ ∼M′′) =M∼M′′
(27)

and conversely, if M ∼ M′′ then there exists M′ such that M ∼ M′ and
M′ ∼M′′. This can be written as

M∼M′′

∃M′ :M∼M′ and M′ ∼M′′
(28)

Proof. Proving (27) originates as the result of the truth that the relational
composition of two bisimulations L1 ⊆ M×M

′ and L2 ⊆ M
′×M′′ is a

bisimulation obtained by L1 ◦L2 = {〈x, y〉 | x L1 z and z L2 y for some z ∈
M′}, where x = 〈c1, c2, . . . , cn〉 ∈ M, z = 〈c′1, c

′
2, . . . , c

′
n〉 ∈ M

′ and y =
〈c′′1, c

′′
2, . . . , c

′′
n〉 ∈ M

′′.
Proving (28) comes from the fact that there are always M′ = M or

M′ =M′′ as simply as they can. Hence, (28) is always true in general.
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Proposition 3. Let Mi,∀i ∈ N, be applications of aspect A(M) and
⋃

i∈N

be union of a family of sets. Then

M∼Mi with i ∈ N
⋃

i∈N
(M∼Mi) =M∼

⋃

i∈N
Mi

(29)

and conversely,
M∼

⋃

i∈N
Mi

∃i ∈ N :M∼Mi
(30)

Proof. Proving (29) stems straightforwardly from the fact that M bisimu-
lates Mi (i.e.,M∼Mi) then, M bisimulates each system in

⋃

i∈N
Mi.

Conversely, proving (30) develops as the result of the fact that for
each 〈x, y〉 ∈

⋃

i∈N
(M × Mi), there exists i ∈ N such that 〈x, y〉 ∈

M × Mi. In other words, it is formally denoted by
⋃

i∈N
(M ×Mi) =

{〈x, y〉 | ∃i ∈ N : x ∈ M and y ∈ Mi}, where x = 〈c1, c2, . . . , cn〉 and
y = 〈c′1, c

′
2, . . . , c

′
n〉.

The union of all bisimulations between M and applications of aspect
A(M) (i.e.,

⋃

(M ∼ A(M)) ) is the greatest bisimulation. The greatest
bisimulation is called the bisimulation equivalence or bisimilarity [16, 21]
(again denoted by the notation ∼).

Proposition 4. The bisimilarity ∼ on
⋃

(M ∼ A(M)) is an equivalence
relation.

Proof. In fact, a bisimilarity ∼ on
⋃

(M ∼ A(M)) is a binary relation ∼
on

⋃

(M ∼ A(M)), which is reflexive, symmetric and transitive. In other
words, the following properties hold for ∼

• Reflexivity:
∀(a ∼ b) ∈

⋃

(M∼ A(M))

(a ∼ b) ∼ (a ∼ b)

• Symmetry:

∀(a ∼ b), (c ∼ d) ∈
⋃

(M∼ A(M)),

(a ∼ b) ∼ (c ∼ d)

(c ∼ d) ∼ (a ∼ b)

• Transitivity:

∀(a ∼ b), (c ∼ d), (e ∼ f) ∈
⋃

(M∼ A(M)),

((a ∼ b) ∼ (c ∼ d))
∧

((c ∼ d) ∼ (e ∼ f))

(a ∼ b) ∼ (e ∼ f)
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to be an equivalence relation on
⋃

(M∼ A(M)).

The bisimulation relation between M and A(M) is now shown as a
semantic basis of inheritance property of aspect. In other words, for some
condition α, we can formally represent the inheritance property as the fol-
lowing:

M |= α

A(M) |= α

That is, if modular reconfigurable computing system M satisfies condition
α then this constraint is still preserved on an application of aspect A(M).
Thus it is read as M ∼ A(M) in the constraint of α (and denoted by
M∼α A(M)).

5 Homomorphism between AOMRC and Hoare
Model of Deterministic Reconfiguration Processes

5.1 Coalgebraic behaviors of AOMRC

In the coalgebraic approach, the reconfiguration 〈C, 〈oC , eC〉•〉 is considered
as the structure observed through the interface ⊙( ) = (T × 2) −→p
because applying this interface to the observable set C of configurations,
we have ⊙(C) = (T × 2) −→p C. This interface of ⊙( ) can be regarded
as a mapping to decompose the observable set C of configurations into an
observation context (T × 2) −→p of the set C.

Proposition 5. 〈C, 〈oC , eC〉•〉, whose function 〈oC , eC〉• : C −→ ⊙(C) de-
fines a deterministic reconfiguration process, is really an ⊙( )-coalgebra of
a covariant functor ⊙( ).

Proof. In fact, by the definition of coalgebra in subsection 3.3, we only need
to check that the function C −→ ((T × 2) −→p C) extends to a functor
⊙( ) : C −→ C. For this we assign to any mapping h : C −→ C

′

the

mapping ⊙(h) : ((T × 2) −→p C) −→ ((T × 2) −→p C
′

) with ⊙(h)(f)
def
= h; f

for all functions f ∈ ((T × 2) −→p C). This defines a covariant functor
⊙( ) : C −→ C.

An ⊙( )-coalgebra is a pair 〈C, 〈oC , eC〉•〉 consisting of a set C and a
function 〈oC , eC〉• : C −→ ⊙(C). Thus reconfiguration 〈C, 〈oC , eC〉•〉 is a
coalgebra of the functor ⊙( ), which is defined on the category C by ⊙(C) =
(T × 2) −→p C.
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To see what C is, we have to determine the reconfiguration process that
starts with a configuration c ∈ C. That is, we have to analyze step-by-step
which configurations can be reached from c by which transformations. To
this end, we unfold the reconfiguration function 〈oC , eC〉• : C −→ ⊙(C) to
obtain the following sequence:

c
〈oC ,eC〉•// ⊙ (c)

⊙(〈oC ,eC〉•) // ⊙2 (c)
⊙2(〈oC ,eC〉•) // ⊙3 (c)

⊙3(〈oC ,eC〉•) // . . . (31)

where, for any configuration c ∈ C, 〈oC , eC〉• : C −→ ⊙(C) refers to which
configurations can be reached from c in one control step by which transfor-
mation.

⊙i(〈oC , eC〉•) : ⊙i(C) −→ ⊙i+1(C) describes how arbitrary transforma-
tions sequences of length i can be continued according to 〈oC , eC〉• in the
next control step. Starting with a configuration c ∈ C we obtain in such a
way an infinite sequence

reconf process(c)
def
= (c, 〈oC , eC〉

1
•, 〈oC , eC〉

2
•, . . .) (32)

with, for all i ∈ N,

〈oC , eC〉
1
• = 〈oC , eC〉•(c) ∈ ⊙(C)

〈oC , eC〉
2
• = ⊙(〈oC , eC〉•)(〈oC , eC〉•(c)) ∈ ⊙2(C)

. . .

〈oC , eC〉
i+1
• = ⊙i(〈oC , eC〉•)(〈oC , eC〉

i
•) ∈ ⊙

i+1(C) (33)

where 〈oC , eC〉
i
• represents all transformations sequences of length at most i

starting with c. In addition, 〈oC , eC〉
i
• also points out which configurations

are reached by transformations sequences of length exactly i.

5.2 Hoare model of deterministic reconfiguration processes

5.2.1 Deterministic reconfiguration process

Based on the coalgebraic behaviors of AOMRC in subsection 5.1, the func-
tion 〈oC , eC〉• : C −→ ⊙(C) defines a deterministic reconfiguration process.
Formally, the CSP-based definition of deterministic reconfiguration pro-
cesses is regarded as follows:

A trace is a sequence of transformations, separated by commas and
enclosed in angular brackets, recording the events in which a process P

has engaged up to some moment in time. Before the process starts, it is
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not known which of its possible traces will actually be recorded: the choice
will depend on environmental factors beyond the control of the process.
However the complete set of all possible traces of the process P can be
known in advance, and a function traces(P ) is defined to yield that set.

The set (T × 2)∗ is the set of all finite traces (including 〈〉) which are
formed from transformations in the set (T×2), also called an alphabet of the
process. When such traces are restricted to (T×2), they remain unchanged.
This fact permits a simple definition

(T × 2)∗ = {s ∈ traces(P ) | s ↾ (T × 2) = s} (34)

Note that the expression s ↾ (T × 2) denotes the trace s when restricted
to transformations in the alphabet (T × 2); it is formed from s simply by
omitting all transformations outside (T × 2).

A deterministic reconfiguration process P with alphabet (T × 2) is
defined to be a pair

((T × 2), traces(P )) (35)

where traces(P )) ⊆ (T × 2)∗ (read as every event that occurs must be in
the alphabet of the process) which satisfies the two following conditions:

〈〉 ∈ traces(P ) (36)

(read as 〈〉 is a trace of every process up to the moment in which it engages
in its very first event)
and

∀s, t ∈ traces(P ) : s a t ∈ traces(P )⇒ s ∈ traces(P ) (37)

(read as if s a t is a trace of a process up to some moment, then s must
have been a trace of that process up to some earlier moment. The notation
of a is a catenation)

The simplest process which meets this definition is the one that does nothing

STOP(T×2) = ((T × 2), {〈〉}) (38)

At the other extreme there is the process that will do anything at any time

RUN(T×2) = ((T × 2), (T × 2)∗) (39)
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5.2.2 Hoare model of deterministic reconfiguration processes

To see what and why Hoare model of deterministic reconfiguration pro-
cesses is, we consider the basic notion of deterministic reconfiguration pro-
cess based on CSP.

The reconfiguration process which first engages in the transformation
(t, o) ∈ (T × 2) and then behaves exactly as the reconfiguration process P

is specified by the Hoare’s CSP syntax as

(t, o)→ P (40)

Note that the notation of → is a prefix operator that combines a trans-
formation and a reconfiguration process to produce a new reconfiguration
process.

In general, the specification (40) is thought of as every deterministic
reconfiguration process P with alphabet (T×2) can be considered as a func-
tion F with a domain B ⊆ (T × 2), defining the set of transformations in
which the reconfiguration process P is initially prepared to engage; and for
each (t, o) in B, the deterministic reconfiguration process F ((t, o)) defines
the future behavior of the reconfiguration process P if the first transfor-
mation is (t, o). In other words, let DC(T×2) be the set of all deterministic
reconfiguration processes with alphabet (T × 2), every deterministic recon-
figuration process P ∈ DC(T×2) can be uniquely described by a partial
function

F : (T × 2) −→p DC(T×2) (41)

with domain dom(F ) = B.
A model, called Hoare model, of deterministic reconfiguration processes

is built by considering the mathematical model (41) of deterministic recon-
figuration processes represented in (40).

As mentioned above, DC(T×2) stands for the set of all prefix closed subsets
of (T × 2)∗ thus the Hoare model of deterministic reconfiguration processes
with alphabet (T × 2) is given by the following bijective mapping

next(T×2) : DC(T×2) −→ ((T × 2) −→p DC(T×2)) (42)

where ((T × 2) −→p DC(T×2)) denotes the set of all partial functions from
(T × 2) into DC(T×2).
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For instance, STOP(T×2) is the reconfiguration process uniquely deter-
mined by the condition dom(next(T×2)(STOP(T×2))) = ∅. RUN(T×2),
i.e., the deterministic reconfiguration process which at all times can engage
in any transformation of (T × 2), can be described uniquely by the con-
ditions dom(next(T×2)(RUN(T×2))) = (T × 2) and next(T×2)(RUN(T×2))
((t, o)) = RUN(T×2) for all (t, o) ∈ (T × 2).

Moreover, next(T×2) is bijective since we can assign to any partial

function F : (T × 2) −→p DC(T×2) the prefix closed set next−1
(T×2)(F ) =

{〈〉} ∪ {〈(t, o)〉 a (t′, o′)|(t, o) ∈ dom(F ) ∧ (t′, o′) ∈ F ((t, o))}. The do-
main of next(T×2)(P ) is defined by dom(next(T×2)(P )) = {(t, o)|〈(t, o)〉 ∈
P}. For any (t, o) ∈ dom(next(T×2)(P )), next(T×2)(P )((t, o)) is defined by

next(T×2)(P )((t, o)) = {(t′, o′)|〈(t, o)〉 a (t′, o′) ∈ P}.
In the next subsection, we will have an in-depth consideration on be-

haviors of the model (42) that is seen as a final object in the category of all
deterministic reconfigurations with alphabet (T × 2).

5.3 Coalgebraic behaviors of a Hoare model of deterministic
reconfiguration processes

The Hoare model of deterministic reconfiguration processes in (42) is an
⊙( )-coalgebra 〈DC(T×2), next(T×2)〉. In fact, we have

Proposition 6. 〈DC(T×2), next(T×2)〉, whose function next(T×2) : DC(T×2)

−→ ⊙(DC(T×2)) defines the Hoare model of deterministic reconfiguration
process, is really an ⊙( )-coalgebra of a contravariant functor ⊙( ).

Proof. It is similar to the proposition 31, we only need to check that the
function next(T×2) extends to a functor ⊙( ) : C −→ C. For this we

assign to any mapping h : DC(T×2) −→ DC
′

(T×2) the mapping ⊙(h) : ((T ×

2) −→p DC(T×2)) −→ ((T × 2) −→p DC
′

(T×2)) with ⊙(h)(f)
def
= f ; h for all

functions f ∈ ((T × 2) −→p DC(T×2)). This defines a contravariant functor
⊙( ) : C −→ C.

To see what DC(T×2) is, we unfold the function next(T×2) : DC(T×2) −→
⊙(DC(T×2)) to obtain the following sequence, also called ωop-chain.

1X ⊙ (1X)
!oo ⊙2 (1X)

⊙(!)oo ⊙3 (1X)
⊙2(!)oo · · ·

⊙3(!)oo (43)

This diagram means that the ωop-chain is constructed by applying suc-
cessively the functor ⊙( ) = ((T × 2) −→p ) to the unique mapping
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! : ⊙(1X) −→ 1X (note that 1X = {X} is a singleton set including only
a process variable X).

Moreover, for all i ∈ N, ⊙i(1X) can be considered as nested functions
of depth less than or equal to i such that

⊙(1X) = ((T × 2) −→p 1X)

⊙2(1X) = ((T × 2) −→p ((T × 2) −→p 1X))

. . .

⊙i(1X) = ((T × 2) −→p ⊙i−1(1X))

! : ⊙(1X) −→ 1X maps each function in ⊙(1X) = ((T × 2) −→p 1X) to X.
Thus ⊙(!) = ; ! : ((T × 2) −→p ((T × 2) −→p 1X)) −→ ((T × 2) −→p 1X)
maps each g ∈ ((T × 2) −→p ((T × 2) −→p 1X)) to g; ! ∈ ((T × 2) −→p 1X)
with dom(g; !) = dom(g) ⊆ (T × 2) and (g; !)((t, o)) =!(g((t, o))) = X for all
(t, o) ∈ dom(g; !). In general, we have ⊙i(!) : ⊙i+1(1X) −→ ⊙i(1X).

The elements of DC(T×2) are infinite sequences (X, g1, g2, . . .) of nested
functions (i.e., gi ∈ ⊙

i(1X) for all i ∈ N) such that ⊙i(!)(gi+1) = gi. In such
a way (X, g1, g2, . . .) is considered as approximation of a possibly infinite
process. (X, g1, g2, . . .) will become (g1, g2, . . .) to represent a finite process
(i.e., no process variable X in the process expression) if gi = gi+1 for some
i ∈ N and thus gi = gj for all i ≤ j.

A significant property of the ⊙( )-coalgebra 〈DC(T×2), next(T×2)〉 is
that it is a final ⊙( )-coalgebra of the contravariant functor ⊙( ) = ((T ×
2) −→p ). Before proving this, we start with the definition of final coalgebra
in subsection 3.3 to see what a final coalgebra is.

Proposition 7. 〈DC(T×2), next(T×2)〉 is a final coalgebra in the category
CoAlg(⊙( )) of ⊙( )-coalgebras.

Proof. A complete proof of this proposition is the content of subsection 5.4.

5.4 Unique homomorphism between AOMRC and a Hoare
model of deterministic reconfiguration processes

To prove the unique homomorphism between AOMRC and the Hoare model
of deterministic reconfiguration processes in the category CoAlg(⊙( ))
of ⊙( )-coalgebras, we have to justify two themes, namely existence and
uniqueness of a homomorphism h : C −→ 1X . These two themes give us
two following principles:
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• Coinductive definition principle, by which the existence theme tells us
how to obtain the homomorphism h : C −→ 1X .

• Conductive proof principle, by which the uniqueness theme tells us
how to prove that two homomorphisms h, h′ : C −→ 1X are equal.

In other words, we must prove that the following diagram (44) commutes (by
the coinductive definition principle), and then the commutativity is unique
(by the conductive proof principle).

C
〈oC ,eC〉• //

h

���
�

�

�

�

�

�

⊙ (C)
⊙(〈oC ,eC〉•) //

⊙(h)

���
�

�

�

�

�

�

⊙2 (C)
⊙2(〈oC ,eC〉•) //

⊙2(h)

���
�

�

�

�

�

�

· · ·

1X ⊙ (1X)
!oo ⊙2 (1X)

⊙(!)oo ⊙3 (1X) · · ·
⊙2(!)oo

(44)

Note that diagram (44) is composed by two unfolding diagrams of the coal-
gebras 〈C, 〈oC , eC〉•〉〉 (in top line) and 〈DC(T×2), next(T×2)〉 (in bottom line)
under the mappings ⊙i(h) : ⊙i(C) −→ ⊙i(1X) for every i in N0 (= N∪{0}).

To prove the commutativity of diagram (44), we just need to prove
that the following diagram (45) commutes for every i in N0.

· · · ⊙i (C)
⊙i(〈oC ,eC〉•) //

⊙i(h)

���
�

�

�

�

�

�

⊙i+1 (C) · · ·

⊙i+1(h)

���
�

�

�

�

�

�

· · · ⊙i (1X) ⊙i+1 (1X) · · ·
⊙i(!)oo

(45)

By 〈oC , eC〉
i
• ∈ ⊙

i(C) and gi ∈ ⊙
i(1X), diagram (45) can be more specifically

represented by

· · · 〈oC , eC〉
i
• ∈ ⊙

i(C)
⊙i(〈oC ,eC〉•) //

⊙i(h)

���
�

�

�

�

�

�

〈oC , eC〉
i+1
• ∈ ⊙i+1(C) · · ·

⊙i+1(h)

���
�

�

�

�

�

�

· · · gi ∈ ⊙
i(1X) gi+1 ∈ ⊙

i+1(1X) · · ·
⊙i(!)oo

(46)
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For every i ∈ N0 and gi ∈ ⊙
i(1X), we define gi

def
= ⊙i(h)(〈oC , eC〉

i
•). Hence,

gi = ⊙i(!)(gi+1), by (43)

= ⊙i(!)(⊙i+1(h)(〈oC , eC〉
i+1
• )), by the definition of gi

= ⊙i(!)(⊙i+1(h)(⊙i(〈oC , eC〉•)(〈oC , eC〉
i
•))), by (33)

With this result, it yields ⊙i(!)(⊙i+1(h)(⊙i(〈oC , eC〉•)(〈oC , eC〉
i
•))) = ⊙i(h)

(〈oC , eC〉
i
•). Generally, for every i in N0, ⊙

i(〈oC , eC〉•);⊙
i+1(h);⊙i(!) =

⊙i(h). This means that diagram (45) commutes. That is, the mapping
h is an ⊙( )-homomorphism.

The uniqueness of h to be a unique⊙( )-homomorphism stems straight-
forwardly from the coinductive proof principle [16,21]. For validating whether
two ⊙( )-homomorphisms h and h′ are identical, i.e. h = h′, a powerful
method is so-called proof principle of coinduction that states as follows:

h ∼ h′

h = h′
(47)

It means that if a bisimulation ∼ between h and h′ is established then h

and h′ are identical. Hence, in order to prove the identicalness between two
⊙( )-homomorphisms h and h′, it is sufficient to establish the existence of
a bisimulation relation h ∼ h′.

Suppose that there are two homomorphisms h(〈oC , eC〉
i
•) and h′(〈oC , eC〉

i
•).

Let ∼= {〈h(〈oC , eC〉
i
•), h

′(〈oC , eC〉
i
•)〉 | 〈oC , eC〉

i
• is in ⊙i (C)}. We prove that

∼ is a bisimulation on ⊙i(1X). Consider 〈h(〈oC , eC〉
i
•), h

′(〈oC , eC〉
i
•)〉 ∈∼,

then

h(〈oC , eC〉
i
•) and h′(〈oC , eC〉

i
•) are homomorphims =⇒













h(〈oC , eC〉
0
•) = h(c)

=
h′(〈oC , eC〉

0
•) = h′(c)

=
X

















〈h(〈oC , eC〉
i>1
• ), h′(〈oC , eC〉

i>1
• )〉 ∈∼

and
h(〈oC , eC〉

0
•) = h′(〈oC , eC〉

0
•)



 =⇒ ∼ is a bisimulation

Note that, notation =⇒ stands for a logical implication. For each 〈oC , eC〉
i
• in

⊙i(C), if 〈h(〈oC , eC〉
i
•), h

′(〈oC , eC〉
i
•)〉 ∈∼ we can write h(〈oC , eC〉

i
•) ∼ h′(〈oC , eC〉

i
•).

Thus, by the coinductive proof principle in (47) then h = h′.

139



For each c ∈ C, we define a CSP process CSPprocess(c) to be an
infinite sequence

CSPprocess(c)
def
= (X, g1, g2, . . .) (48)

thus, obviously, CSPprocess(c) becomes a process. In other words, it is
an element of DC(T×2). This means that CSPprocess(c) is constructed
as the process starting with configuration c ∈ C. Generally, this provides a
mapping CSPprocess : C −→ DC(T×2). This mapping forms a unique ⊙( )-
homomorphism CSPprocess : 〈C, 〈oC , eC〉•〉〉 −→ 〈DC(T×2), next(T×2)〉.

6 Future Work

The reconfigurations we have studied here are specified by determining their
behaviors. This is done not only by an external input specification, but also
by the internal context in the modular system, to which there is no direct
access in general. Such reconfigurations are inherently dynamic and have
observable behaviors, but their internal configurations remain hidden and
therefore have to be identified if not distinguishable by observation. Our
CSP-based approach of behaviors throughout this paper has aimed at de-
veloping a foundation of aspect-oriented modular reconfigurable computing
that is characterized by:

• Configuration space: In this space, configurations evolve and persist
by adapting to improve suitability over time;

• Interaction: This specifies the exchangeability with the environment
during the reconfiguration process;

• Aspect/Component-Oriented model : In this model, configware is ori-
ented towards “aspect” development and flowware is oriented towards
a “component” approach. Aspect-Oriented Configware relies on “sep-
aration of concerns” in all phases of the configware development life-
cycle, while Component-Oriented Flowware greatly depends on pre-
fabricated “components” for building the data processing needs of
flowware. Incorporating both the emerging programming approaches
based on aspect [17] and component [3] oriented paradigms could unify
the two specialized concepts of “modularity” and “separation of con-
cerns” in the model (see Figure 5).
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Figure 5: A diagrammatic illustration of Aspect/Component-Oriented re-
configurable computing

7 Summary

As an approach to CSP-based behaviors of aspect-oriented modular re-
configurable computing (AOMRC), using categorical and coalgebraic lan-
guages we have firstly introduced the notion of AOMRC and developed
a coalgebraic model 〈C, 〈oC , eC〉•〉 of AOMRC. Secondly, a Hoare model
〈DC(T×2), next(T×2)〉 of deterministic reconfiguration processes ((T × 2),
traces(P )) has been constructed by developing coalgebraic model of a CSP
process, which is proven to be a final coalgebra in the category CoAlg(⊙( ))
of ⊙( )-coalgebras. Thus, we have established a homomorphic relation be-
tween 〈C, 〈oC , eC〉•〉 and 〈DC(T×2), next(T×2)〉 as a unique homomorphism of
coalgebras in CoAlg(⊙( )). In such a way, the approach results in the be-
havioral equivalence between 〈C, 〈oC , eC〉•〉 and 〈DC(T×2), next(T×2)〉. This
behavioral equivalence means that the separation between the concepts of
process in CSP and configuration in AOMRC is completely blurred. In other
words, behaviors of any AOMRC configuration change being performed by
a transformations-based aspect are not distinct from deterministic processes
in Hoare’s CSP.
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