
Scientific Annals of Computer Science vol. 26 (2), 2016, pp. 157–186

doi: 10.7561/SACS.2016.2.157

RDA

A Coq Library to Reason about
Randomised Distributed Algorithms

in the Message Passing Model

Allyx FONTAINE1, Akka ZEMMARI2

Abstract

Distributed algorithms have received considerable attention and
were studied intensively in the past few decades. Under some hypotheses
on the distributed system, there is no deterministic solution to certain
classical problems. Randomised solutions are then needed to solve those
problems. Probabilistic algorithms are generally simple to formulate.
However, their analysis can become very complex, especially in the
field of distributed computing.

In this paper, we formally model in Coq a class of randomised distri-
buted algorithms. We develop some tools to help proving impossibility
results about classical problems and analysing this class of algorithms.
As case studies, we examine the handshake and maximal matching
problems. We show how to use our tools to formally prove properties
about algorithms solving those problems.

Keywords: Distributed Algorithm, Randomised Algorithm, Analyses,
Formal Proof, Proof Assistant.

1Université de Guyane, UMR Espace-Dev, France,
E-mail: allyx.fontaine@univ-guyane.fr

2Université de Bordeaux, LaBRI UMR CNRS 5800, France,
E-mail: akka.zemmari@labri.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201536047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

158 A. Fontaine, A. Zemmari

1 Introduction

Distributed problems have received considerable attention and were studied
intensively in the past few decades. Many works were conducted to study
their computation power and/or to design efficient solutions using distributed
algorithms. Several problems are such that deterministic solution does not
exist in distributed systems. The use of randomisation makes it possible
to address those problems. Generally, randomised distributed algorithms
are defined in a concise way. However, their analysis remains delicate
and complex, which makes their proof difficult. Model checkers give an
automatic way to check whether the results of the algorithms verify a certain
specification, however it proceeds exhaustively, leading to an explosion of
space complexity. An alternative is to use proof assistants. They assist the
user to prove properties and certify the proof at its end. The proof assistant
Coq [20] is powerful to model and prove properties or impossibility results
thanks to its higher order logic.

We have developed a Coq library that provides tools to reason about
(randomised) distributed algorithms in anonymous networks. To illustrate
how this library works, we use as case studies simple solutions (not optimal)
of two problems: the handshake and maximal matching problems. The
handshake problem is a building block for many distributed algorithms
especially in synchronous message passing where the sender and the receiver
must both be ready to communicate. A communication takes place only if
the participant processors are waiting for the communication: this is termed
handshake. A solution of the handshake problem gives a matching of the
graph. A matching is a subset M of the set of edges of the graph such that
no two edges of M have a common vertex. A matching M is said to be
maximal if any edge of the graph is in M or has an extremity linked to an
edge in M .

1.1 The Theoretical Model

There exists various models for distributed systems depending on the features
we allow: message passing model, shared memory model, mobile agents
model, communication protocol models, etc. We restrict our study to the
standard message passing model for distributed computing in an anonymous
network. In this section, we define theoretically the model we would like to
implement in Coq .

The communication model consists of a point-to-point communication
network described by a connected graph G = (V, E), where the vertices V

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 159

represent network processes and the edges E represent bidirectional commu-
nication channels. Processes communicate by message passing : a process
sends a message to another by depositing the message in the corresponding
channel.

We assume the system is fully synchronous, namely, all processes
start at the same time and time proceeds in synchronised rounds. A round
of each process is composed of the following three steps. Firstly, it sends
messages to its neighbours ; secondly, it receives messages from its neighbours
; thirdly, it performs some local computations. Note that we consider only
reliable systems: no fault can occur on processes or communication links.
This hypothesis is strong but it allows to analyse complexities that give a
lower bound for systems based on weaker assumptions (and therefore more
realistic).

The network G = (V, E) is anonymous: unique identities are not avai-
lable to distinguish the processes. We do not assume any global knowledge of
the network, not even its size or an upper bound on its size. The processes do
not require any position or distance information. The anonymity hypothesis
is often seen for privacy reasons. In addition, each process can be integrated
in a large-scale network making it difficult or impossible to guarantee the
uniqueness of identifiers.

Each process knows from which channel it receives or to which it sends
a message, thus one supposes that the network is represented by a connected
graph with a port numbering function defined as follows (where NG(u)
denotes the set of vertices of G adjacent to u and dG(u) its cardinality):
given a graph G = (V, E), a port numbering function φ is a set of local
functions {φu | u ∈ V} such that for each vertex u ∈ V, φu is a bijection
between NG(u) and the set of natural numbers between 1 and dG(u).

A probabilistic algorithm is an algorithm which makes some random
choices based on some given probability distributions. A distributed pro-
babilistic algorithm is a collection of local probabilistic algorithms. Since
the network is anonymous, nodes having the same degrees have the same al-
gorithms. We assume that choices of vertices are independent. A Las Vegas
algorithm is a probabilistic algorithm which terminates with a positive
probability (in general 1) and always produces a correct result.

1.2 Related Works

Proof assistants are interesting tools to certify correctness because of their
flexibility. Particularly, the proof assistant Coq , thanks to its higher order

160 A. Fontaine, A. Zemmari

logic, enables to prove impossibility results. For instance, Auger et al. [2]
certify impossibility results on the mobile robot protocol with Coq . This
work is followed by the framework designed by Courtieu et al. [5] to express
mobile robots models, protocols, and proofs. They also certify positive
results on protocol for oblivious mobile robots.

Distributed algorithms. The model we study in this paper is the message
passing setting. A first step to formally prove correctness of distributed
algorithm in this model is to express them in a formal language. Küfner
et al. [13] develop a methodology based on transition rules to mechanically
check proofs of correctness of fault-tolerant distributed algorithms in the
asynchronous message passing model. They use the proof assistant Isabelle
[17] to formally prove positive results of Consensus algorithms.

Transition systems were also used by Chou [4] who uses the HOL proof
assistant. He shows the correctness of distributed algorithms, modelised by
labelled transition systems where specifications are expressed in terms of
temporal logic.

Local computations, represented by relabelling systems, are certified in
Loco framework by Castéran and Filou [3]. It consists in a set of libraries on
labelled graphs and graph relabelling systems. It allows the user to specify
tasks, and to prove the correctness of relabelling systems with reference to
these tasks and also impossibility results.

Proofs by refinement of distributed algorithms are developed by Tounsi
et al.. They derive local computation systems from their formal specification
by successive refinement steps within the Event-B formalism [6]. Their
framework enable simulation by automatically translating the algorithm
from Event-B to a code that can be executed into the visualisation tool
Visidia [19].

Randomised distributed algorithms. Besides the distributive aspect,
we are interested in randomised algorithms. Several approaches take into
account the dual paradigm of randomised distributed systems: probabilistic
aspect and non-determinism due to the response time that changes from one
processor to another. They require models with non-deterministic choice
between several probability distributions. These choices can be made by
a scheduler or an opponent. Equivalent models are following this idea:
probabilistic automata [18], decision making processes of Markov [7]. To
specify properties of randomised distributed algorithms, one can use the

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 161

temporal logic with probabilistic operators and a threshold.

The Model Checking is a tool used to ensure system correction. However,
used with probabilities, it leads to an explosion of space complexity. There
are methods for reducing the explosion. A qualitative analysis of randomised
distributed algorithms is feasible thanks to the model checker PRISM [14].
M. Kwiatkowska et al. [15] use PRISM model checker and Cadence proof
assistant, to obtain automated proofs. Consensus protocol is proved for
its non-probabilistic part with Cadence and for its probabilistic part with
PRISM.

J. Hurd et al. [10] formalise in higher order logic the language pGCL
used to reason on probabilistic choices or choices made by an adversary.
They prove the mutual exclusion algorithm of Rabin: consider N proces-
ses, sometimes some of them need to access a critical zone; the algorithm
consists in electing one of them. However they do not model the processor
concurrently but use an interpretation consisting in reducing the number of
processes to 1.

In our model, we consider that the algorithm operates in rounds, ap-
plying a local algorithm to each vertex. This removes the non-determinism
due to the asynchrony. Up to our knowledge, our work is the first to certify
impossibility results on distributed problems as well as positive results on
randomised algorithms in the distributed message passing setting.

1.3 Our Contribution
We are interested in obtaining formal proofs of distributed algorithms, inclu-
ding randomised algorithms. To do so, we use the Coq proof assistant, library
Alea [1] and plugin ssreflect [9]. We first define, in Section 3, the algorithm
class of anonymous distributed algorithms according to the model previously
described. We explain why our definitions are valid. Our main contribution
is the tools we developed to enable the user to analyse anonymous distributed
algorithms described in Section 4.

Section 5.2 illustrates how to use those tools by analysing solutions for
problems. First, we show that randomisation may be required to solve
distributed problems in particular the handshake problem. Hence, we
formally prove an impossibility result which is: “there is no deterministic
algorithm in this class that solves the handshake problem”. This also proves
that there is no deterministic algorithm that solves the (maximal) matching
problem. Then we implement a solution of the handshake problem and we
prove that this solution is correct. Then, we analyse the handshake and the
maximal matching problems by proving some probabilistic properties.

162 A. Fontaine, A. Zemmari

We believe this is the first work that deals with the formal modelling and
proof of anonymous synchronous randomised distributed message passing
algorithms. The layer of distributive and randomised aspect is managed by
the library. The only thing the user has to do is to define the local algorithm
he/she wants to study. Furthermore, proofs for the analysis of algorithms on
this class can be lighten thanks to the general tools available in the library.

Examples such as algorithms that solve the handshake problem and the
maximal matching problem are certified. Lemmas and theorems, presented
in frame in our paper, are denoted by their name in the Coq development
available at [8].

2 Preliminaries

Different evaluations of the same probabilistic expression lead to different
values. Hence, the probabilistic expression e represents a set of values. To
reason about such expressions in a functional language, a solution consists
in studying the distribution of this expression rather than its result.

In Alea, a probabilistic expression (e : τ) is interpreted as a distribution
whose type is (τ → [0, 1]) → [0, 1]. This monadic type is denoted distr

τ . We will use the notation (µ e) to represent the associated measure of
expression e. Let Q be a property and let 1Q be its characteristic function.
The probability that the result of the expression e satisfies Q is represented
by (µ e) 1Q.

To construct monadic expressions, Alea provides the following functions:

• Munit a: returns the Dirac distribution at point a;

• Mlet x = d1 in d2: evaluates d1, links the result to x and then evaluate
d2 where d1 and d2 are random expressions (not necessarily of the same
type);

• Random n: from a natural number n, this function returns a number
between 0 and n with a uniform probability 1/(n+ 1).

Most of the proofs presented in this paper are based under both trans-
formations:

Lemma Munit simpl [1]:

∀ (P: τ) (f: τ → [0, 1]), (µ (Munit P)) f = (f P).

Lemma Mlet simpl [1]:

∀ (P: distr τ) (Q: τ → distr τ ′) (f: τ ′ → [0, 1]),
(µ (Mlet x = P in (Q x))) f = (µ P) (fun x ⇒ (µ (Q x)) f).

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 163

3 Our Formal Model

Our aim is to give to the user the possibility to define his/her own anonymous
randomised distributed algorithms. First, we define the distributed systems
that can be studied with our library. Then, we give the syntax that can
be used to define randomised distributed algorithms. Once the algorithms
are defined, the user can do tests by evaluating them, prove correctness
and analyse them. We define semantics and several functions to express the
algorithms in order to ensure that they belong to the class we described.

3.1 Formal Distributed Systems

As stated in the introduction, synchronous anonymous message passing
model can be represented by a connected graph G = (V, E) with a port
numbering function φ. To encode the graph in Coq , we use an adjacency
function Adj that, given two vertices, returns a boolean saying either they
are connected or not. In the latter, we mainly reason on graphs denoted
G = (V, Adj). The edge that links two adjacent vertices v and w is denoted
by {v, w}.

We model the port numbering function φ : V 7→ (seq V) as the
ordered sequence of the neighbours of a vertex. For all v, φ(v) = [v1, v2]
means that v has two neighbours: the first one is v1 and the second one is
v2. Two axioms (stated as hypotheses each port numbering function has to
ensure) are required: the function φ only links adjacent vertices and does
not contain duplicated vertices:

Hypothesis Hφ1 : ∀ v w, Adj v w = v ∈ (φ w).

Hypothesis Hφ2 : ∀ v, uniq (φ v).

Each process sends a message to its neighbour by putting it in the
corresponding link. A port, pair of vertices, represents the link whereby a
vertex put its message. We define P as the set of ports. Thus, if v sends a
message to its ith neighbour, it sends its message by the port (v, w) where
w is the ith element of the sequence (φ v).

We model the exchange of messages, in a global way, by a port label-
ling function over the graph G. The set of labels over ports is denoted
Ψ. A port labelling function ψ : P 7→ Ψ maps a port to its associated label.
The state of each process is represented by a label (λ v) associated to the
corresponding vertex v ∈ V. Hence, each vertex has a status represented by
a vertex labelling function λ : V 7→ Λ where Λ is the set of labels over

164 A. Fontaine, A. Zemmari

the vertices.

Consider σ = (λ, ψ) the pair of labelling functions which maps a vertex
(resp. a port) to its state. The type of such a pair, the global state of the
graph, will be denoted by State.

For instance, see Figure 1, v2 only distinguishes its four neighbours but
it knows nothing about its identity or the identities of its neighbours. We
can see, with a global view, that v5 is the fourth neighbour of v2 according
to φ; the fact that v2 sends a message m to its fourth neighbour consists in
replacing the label m4 in Figure 2 of the port (v2, v5) by m.

v1

v2

v3

v4

v5

1
1

3

1

2
2

2
1

4 1

Figure 1: Graph supplied with a port numbering φ such that (φ v1) = [v2],
(φ v2) = [v1, v3, v4, v5], (φ v3) = [v2, v4], (φ v4) = [v2, v3], (φ v5) = [v2].

`1

`2

`3

`4

`5

m1

i1

m
2

k1

j1

k2

m
3

j
2

m4 l1

Figure 2: Graph supplied with a vertex labelling function λ and a port
labelling function ψ such that (λ v1) = `1, (λ v2) = `2, (λ v3) = `3, (λ v4) =
`4, (λ v5) = `5 and (ψ (v2, v1)) = m1, (ψ (v2, v4)) = m2, (ψ (v2, v3)) = m3,
(ψ (v2, v4)) = m4, (ψ (v1, v2)) = i1, (ψ (v3, v4)) = j1, (ψ (v3, v2)) = j2,
(ψ (v4, v2)) = k1, (ψ (v4, v3)) = k2, (ψ (v5, v2)) = l1.

A processor sends (write a message on the corresponding port) and
receives (reads the corresponding port) messages. We define the writing
(resp. reading) area of a vertex v as the set of port labels it is able to update
(resp. to read), that is labels associated to ports of the form (v, w) (resp.
(w, v)) where w is a neighbour of v. We define the local view of a vertex v as
the triple composed by its local state, the sequence of local states of the port
in its writing and in its reading area given with the order of φ. The local

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 165

view of a vertex corresponds to the local information it owns. We define two
local functions for a vertex to model received message from all neighbours
(read) and sent messages to all neighbours (write):

• read:State × V → Λ × (seq Ψ) × (seq Ψ): consider σ and v, (read σ v)

returns the local view of v, i.e., the local state of v, the local state of
its reading area, and the local state of its writing area, each extracted
from σ.

• write:State×V×Λ × (seq Ψ) → State: consider σ, v, λ, ψ, (write σ v λ

ψ) returns the new global state obtained from the old one σ such that
the local state of v is updated by λ and the one of its writing area by
the sequence ψ.

For example, according to Figures 1 and 2, read applied to vertex v2
returns (`2, [i1, j2, k1, l1], [m1,m3,m2,m4]) and write applied to the triplet
(v2, `, [m1,m,m2,m4]) updates the graph by changing the label `2 into ` and
the label m3 into m.

3.2 Syntax and Semantics

Randomisation appears in local computations of type (Λ× (seq Ψ)) made by
a vertex. Local computations of all vertices of the graph create altogether
a random global state of type State. We define the inductive type for
randomisation FR, that will be used to construct random local computations
of type FR (Λ× (seq Ψ)) and global random states of type FR State. In Haskell
[11], monads are structures that represent computations and the way they
can be combined. To express randomisation in Coq in a monadic form, we
state three functions Freturn, Fbind, and Frandom.

Inductive FR (B:Type): Type :=

| Freturn (b:B)

| Fbind {A :Type}(a:FR A)(f : A → FR B)

| Frandom (n:nat)(f : nat → FR B).

To improve the readability of the code, we define the following abbrevi-
ations. Let stmts be a statement block, n be an integer, and f a function:

Fbind x (fun v⇒{<stmts>}) ↔ Flet v = x in {<stmts>}.
Frandom n f ↔ Flet x = (random n) in f.

Once one has set out a randomised algorithm thanks to our syntax, one
would like to simulate, to prove the correctness or to analyse this algorithm.

166 A. Fontaine, A. Zemmari

For those purposes, we define three semantics that interpret their input,
a monad of type FR, in an operational, set, or distributional way. The
operational semantics Opsem, that takes as a parameter a random number
generator, is used to evaluate computations. The set monad Setsem is used
to handle the set of transitional and final results of a randomised algorithm.
We can then prove properties of correctness by reasoning on this set. The
distributional monad Distsem is used to reason about distribution. We define
it according to the monad of Alea by using the operators Munit, Mlet, and
Random [1].

3.2.1 Operational Semantics

We define an operational monad Op to evaluate computations. It takes as a
parameter a random number generator. The first step consists in defining
the three operators for a monad: the type constructor Op, the return function
Oreturn, and the binding function Obind. We add the random function Orandom

after being ensured that it returns a result lesser than its input.

Definition Op (t:Type) (A:Type) :=

t → (A * t).

Definition Oreturn {t A} (a:A) : Op t A :=

fun g ⇒ (a, g).

Definition Obind {t A B} (m:Op t A) (f:A → Op t B) : Op t B :=

fun g ⇒ (f (m g).1) (m g).2.

Class ORandom (t:Type)(get : nat → Op t nat):=

{get ok : forall n x, ((get n x).1 ≤ n)}.

Definition Orandom (n: nat) {t: Type} {get: nat → t → nat * t}
(rand: ORandom t get): Op t nat:=

get n.

We give here the semantic definition where get is a pseudo-random
number generator and rand is the random function.

Variable (rand t: Type) (get: nat → rand t → nat * rand t).

Context (rand : ORandom rand t get).

Fixpoint Opsem {B: Type}(m:FR B) : Op rand t B :=

match m with

|Freturn b ⇒ Oreturn b

|Fbind a f ⇒ Obind (Opsem a) (fun x ⇒ (Opsem (f x)))

|Frandom n f ⇒ Obind (Orandom n rand) (fun x ⇒ Opsem (f x))

end.

To execute our algorithms, we implement a pseudo-random number

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 167

generator using the linear congruential method of Lehmer. The pseudo-
random number sequence is defined as [12]: Xn+1 = (aXn+ c) mod m where
m is the modulo, a the multiplier, c the increment and X0 the seed. We
choose standard values: m = 255, a = 137 and c = 187. The seed is a
parameter of the generator.

3.2.2 Set Semantics

We define the set monad to handle the set of transitional and final results
of a randomised algorithm. We can then prove properties of correctness by
reasoning on this set. Here is the semantics:

Fixpoint Setsem {B: Type}(m :FR B) : Ensemble B :=

match m with

|Freturn b ⇒ fun x ⇒ x = b

|Fbind A a f ⇒ fun x ⇒ exists y, Setsem a y ∧ Setsem (f y) x

|Frandom n f ⇒ fun x ⇒ exists i, (i ≤ n) ∧ Setsem (f i) x

end.

3.2.3 Distributional Semantics

We define the distributional monad according to the monad of Alea. For
this, we use the operator Munit, Mlet, and Random [1].

Fixpoint Distsem {B: Type}(m :FR B) : distr B :=

match m with

|Freturn b ⇒ Munit b

|Fbind a f ⇒ Mlet (Distsem a) (fun x ⇒ (Distsem (f x)))

|Frandom n f ⇒ Mlet (Random n) (fun k ⇒ (Distsem (f k)))

end.

3.3 Randomised Distributed Algorithms

We model a distributed algorithm by local algorithms executed by each
processes during a round. We represent local algorithms by rewriting rules.
From the knowledge of its local view, a vertex v can rewrite its own state
and its writing area by applying a local computation of type FLocT. A round,
FRound, is the state obtained from the application of a local computation to all
vertices. Note that the updating of the global state is not made concurrently
but sequentially. We justify, in Section 4.1, this choice.

Let LCs be a sequence of local computations, then a step, FStep, corre-
sponds to the application of rounds taking successively as input the local

168 A. Fontaine, A. Zemmari

computations of LCs. The execution of a distributed algorithm with a maxi-
mum of n steps is modelled by the function (FMC n LCs s init) where s is an
enumeration of V and init is the initial global state.

Definition FLocT := Λ → (seq Ψ) → (seq Ψ) → FR(Λ*seq Ψ).

Fixpoint FRound (s:seq V)(res: State)(LCs:FLocT):FR State:=

match s with |nil ⇒ Freturn res

|v::t ⇒Flet s=(FRound t res LCs) in Flet p=(LCs (read res v)) in

Freturn (write s v p)

end.

Fixpoint FStep (LCs:seq FLocT)(s:seq V)(res:State):FR State:=

match LCs with | nil ⇒ Freturn res

|a1::a2 ⇒ Flet y = (FRound s res a1) in (FStep a2 s y)

end.

Fixpoint FMC(n:nat) (LCs:seq FLocT) (s:seq V)(init:State):FR State:=

match n with |O ⇒ Freturn init

| S m ⇒ Flet y = (FStep LCs s init) in (FMC m LCs s y)

end.

According to the semantics, the result of the distributed algorithm (of
type FR State) is either a possible global state that can be obtained from
the algorithm with a random number generator (operational semantics); the
set of all global states that the algorithm can produce (set semantics); or
the distribution of global states resulting from the algorithm (distributional
semantics).

To define an algorithm, the user has to write the local algorithm of type
FLocT and use the functions FRound, FStep or FMC. According to what he/she
wants to study, the user chooses the appropriate semantics.

4 General Results

In this section, we only use the distributional semantics. To ensure readability,
let E: FR B be a randomised expression of type B, then instead of writing
(Distsem (Freturn E)), we write Dreturn E ((Dreturn E) is a simplification of
(Distsem (Freturn E))). Similarly, we introduce new functions beginning with
D (instead of F) as distributional: Dlet, DRound, etc. First, we show why
our model is valid. Then we described the following proof techniques:
permutability, composition, non-null probability and termination. Let LC be
a local computation and LCs be a sequence of local computations.

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 169

4.1 Validity of Our Model

We have seen that the sending of messages is implemented by updating the
state σ a vertex after another. The function read applied to a vertex v only
gives the information about the reading area of v. The function write applied
to a vertex v updates the global state by only rewriting the writing area of
v. They are both deterministic. As the writing areas are pairwise disjoint
(relabellings do not overlap), two calls of write, each applied to a different
vertex, permute. It is equivalent to apply this function first to a vertex v
and then to a vertex w or vice-versa.

Lemma write comm: ∀ v w, v 6= w →
(write (write σ w c2) v c1) = (write (write σ v c1) w c2).

As our system is distributed, several vertices can relabel their writing
area at the same time. However, it is simpler to reason on such algorithm if
they are sequential. That is why we have implemented the global function
with parameter the sequence of vertices (enum V). It describes sequentially
the application of the local function that would be applied simultaneously
on all the vertices. We then have to show that the results obtained from
the application of the local algorithm on vertices in a sequential way do not
depend on the order of the vertices on which it is applied. This property is
ensured thanks to the permutability of function write. We have ensured that
the result will be the same than the one obtained if vertices would execute
this algorithm at the same time by proving the lemma DRoundCommute3.

Lemma DRoundCommute3: Let σ be a global state of G and LC be a discrete local
computation (i.e, rewritable into a sum). Let lv be a sequence of vertices of G. Let
lv′ be a permutation of lv, then:

DRound lv σ LC = DRound lv’ σ LC.

4.2 Permutability

We have proved (see Lemma DRoundCommute3) that for all sequences s1 and
s2 such that s2 is a permutation of s1, (DRound s1) has the same output as
(DRound s2). Therefore, if we consider the labelling σ and the sequence (v :: s)
where v is a vertex and s is a sequence of vertices where v does not appear, it
is the same to include the result of the local function applied to v in (DRound

s σ) than to include the result of (DRound s σ) into the result of the local

170 A. Fontaine, A. Zemmari

function applied to v. Formally:

Lemma DRoundcons2: ∀ s σ, (∀ w, is discrete (LC (read σ w))) →
DRound s σ LC =

if (null s) then σ else Dlet c = LC (read σ (head s)) in

write (DRound (tail s) σ LC) (head s) c

The proof of this lemma is based on the discretisation of the measure
of the local computation LC, that is its rewriting into a finite sum.

4.3 Composition

A way to prove properties on function DRound is to proceed by induction on
the sequence of vertices. For example, we have proved that the function
terminates with probability one, assuming that LC terminates:

Lemma DRound total: ∀ σ s, (∀ v, Term (LC (read v))) →
(µ (DRound s σ LC)) I = 1.

Proof: By induction on s. Assume that the property is checked for s′,
we show that it is verified for s = (v :: s′), that is:
∀ σ s′ v, (µ (DRound v :: s′ σ)) I = 1.

Using the definition of DRound, this expression becomes:
∀ σ s′ v, (µ (Dlet r = DRound s’ σ in

Dlet c = LR (read σ v) in write r v c)) I = 1.

Transformations of Lemmas Munit simpl and Mlet simpl give:
∀ σ s′ v, (µ (DRound s’ σ)) (fun r ⇒ (µ (LR (read σ v))) I) = 1.

We assumed that LC terminates, then as the definition of the charac-
teristic function 1 is (fun x ⇒ 1), from the following equation, yields the
result:

∀ σ v, (µ DRound s′ σ) I = 1.

2

A general technique appeared in this proof. The expression can be
decomposed into the measure of one vertex and the measure for the remaining.
Therefore, if we want to prove a property about a vertex v, we can use this
technique.

4.4 Non-null Probability

The probability that an event occurs in a randomised algorithm is not null if
there is a possible execution of the algorithm whereby this event is verified.

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 171

Therefore, to show that a probability is non-null, it suffices to highlight a
witness.

Lemma proba not null: Let A be a randomised algorithm and E an event. Let t be
a witness, if (µ A) 1.=t > 0 and (E t) > 0 then (µ A) 1(E t) > 0.

4.5 Termination

A randomised distributed algorithm repeats a step until a certain property
is verified by the labelling graph. In general, this property is that all the
vertices stop to interact with others, i.e. until all vertices are inactive. That
leads us to consider the algorithm with a property of termination TermB.

Fix DLV (sV: seq V)(σ: State) (LCs: seq DLocT) (TermB: State → bool) :

distr (State) := if (TermB σ) then Dreturn σ
else Dlet r = (DStep LCs sV σ) in DLV sV r LCs TermB

In Coq we need to highlight a variant which decrements at each round in
order to prove the termination. However there exists some algorithms which
terminate with probability 1 but in which some executions could possibly
be infinite. To deal with this kind of programs, there is, in Alea, a tool to
handle limits of sequences of distributions. Hence, when a recursive function
is introduced, we interpret it as a fix point and then compute the least upper
bound of the sequence.

Lemma termglobal: For all randomised updating of a global state to another
rd : State → distr State, for all global state σ, for all ended property TermB,
for all variant (cardTermB: State → nat), for all real c between 0 and 1 and for all
state property (PR:State→bool), if:

1. ∀ s, Term (rd s)

2. ∀ s, cardTermB s = 0 → TermB s = true

3. 0 < c

4. ∀ s, 0<cardTermB s → PR s → c≤ µ (rd s) I(cardTermB .<cardTermB s)

5. ∀ s, PR s → µ (rd s) I(cardTermB s<cardTermB .) = 0

6. ∀ s f, PR s → µ (rd s) IPR. ∧ f. = µ (rd s) If

7. PR σ
then: Term (fglobal rd TermB σ).

From this lemma, we obtain the Lemma DPLV total saying that the
function DLV terminates by taking as input for the state transformation (rd)
the function (DStep LCs (enum V)). Thus, to prove that a Las Vegas algorithm
terminates with probability 1, it suffices to show that the probability for
a certain variant (such that, if it is null, it implies the termination) to

172 A. Fontaine, A. Zemmari

decrement is non-null and to increase is null after a step (DStep LCs (enum

V)). The property PR specify the global states with a property always true:
the two last hypotheses mean that it has no impact on the probability
computations and that it is verified by the initial state.

5 Applications

As a case study, we focus on the Handshake problem. We first prove an
impossibility result that implies randomisation is required. We define a
randomised solution and we prove its correctness. Then, we analyse this
solution. As a generalisation of this problem, we analyse a solution to the
maximal matching problem.

5.1 Correctness of an Handshake Solution

5.1.1 Handshake Specification

In this subsection, we specify the handshake problem by defining what
specifications an algorithm (structure hsAlgo) solving this problem has to
ensure. We assume important hypotheses on the graph: it must contain at
least an edge (otherwise no handshake can occur) and the graph is uniform.
We define an algorithm that solves the handshake problem as a structure
containing:

• HsR: a sequence of local computations (that each node executes in
successive rounds);

• HsP: a local handshake function (from a local view of the vertex, this
function returns the port which the vertex is in handshake with or None

if it is not in handshake);

• HsI: an initial state for the graph.

Hypotheses on the above components are the following:

• HsI1: the initial state is consistent, i.e., for each v, if v is in handshake
with one of its neighbours (say w), then w is also in handshake with v;

• HsI2 : the initial state is uniform, i.e. each vertex has the same label
and each port also;

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 173

• HsP1 : the global handshake function (obtained from HsP) applied to a
vertex v returns numbers lesser than the degree of v;

• HsRind: consistency is preserved by a step of the algorithm.

Record hsAlgo Λ Ψ :={ (** Local rules *) HsR:seq (FLocT Λ Ψ);

(** Handshake function *)

HsP:Λ→ seq Ψ→ seq Ψ→ option nat;

(** Initial state *)

HsI:∀ V Adj G, State Adj;

(** Hypotheses *)

HsI1:∀ V Adj G δ (Hδ1:∀ v w, Adj v w = w ∈(δ v)) (Hδ2:∀ v, uniq(δ v)),

consistent δ HsP (HsI G);

HsI2:∀ V Adj G, Uniform (HsI G);

HsP1:∀ V Adj G δ (Hδ1:∀ v w, Adj v w=w ∈(δ v) (Hδ2:∀ v, uniq(δ v)) σ v i,

(hsPortR δ HsP σ v) = Some i→ i < (deg G v);

HsRind:∀ V Adj G δ (Hδ1:∀ v w,Adj v w = w ∈(δ v)) (Hδ2:∀ v,uniq(δ v)),

Stable (fun σ ⇒ consistent δ HsP σ) (nextState HsR δ).

}.

We define a handshake between two vertices via the property hsBetween.
The existence of such a handshake is defined in hsExists. The property
hsEventually specifies whether a handshake occurs or not from the initial
state. The aim of this algorithm is to realise handshakes (hsRealisation:Λ

Ψ (A: hsAlgo Λ Ψ)), i.e., for any graph, there is an execution in which one
reachable state contains a handshake.

Let s be the handshake function (function that maps each vertex v to
None to specify that the vertex is not in handshake and Some w to specify
that there is a handshake between v and w).

Definition hsBetween s v w:= (Adj v w)&&(s v==Some w)&&(s w==Some v).

Definition hsExists s := ∃ v w, hsBetween s v w.

Definition hsEventually LR δ hsPort initState:=

∃ σ, reachFrom (nextState LR δ) initState σ ∧
hsExists(assNeigh hsPort δ σ).

Definition hsRealisation Λ Ψ (A: hsAlgo Λ Ψ) :=

∀ V Adj G δ (Hδ1:∀ v w, Adj v w = w ∈ (δ v)) (Hδ2:∀ v, uniq(δ v)),

hsEventually (HsR A) δ (HsP A) (HsI A G).

174 A. Fontaine, A. Zemmari

5.1.2 Impossibility Result

We have seen that the difference between deterministic algorithms and
randomised algorithms is the use of random. We show in this section the
interest of randomised algorithms by proving that there is no deterministic
algorithm that solves the handshake problem. The property Deterministic

{B:Type}(e : FR B) is defined as below. The algorithms are expressed via
computational rules, so we defined a property Adet (l:seq FLocT) verifying
that all the computational rules are deterministic.

Fixpoint Deterministic {B:Type}(e : FR B):Prop :=

match e with

| Freturn b ⇒ True

| Fbind A a f ⇒ Deterministic a ∧ ∀ b, Deterministic (f b)

| ⇒ False

end.

Fixpoint Adet (l:seq FLocT) :=

match l with

|nil ⇒ True

|t::q ⇒ ∀ lv lp1 lp2, Deterministic(t lv lp1 lp2) ∧ (Adet q)

end.

We have proven the following lemma: in our model, there is no deter-
ministic distributed algorithm that solves the handshake problem for any
graph G.

Lemma NotReal: ∀ Λ Ψ(A: hsAlgo Λ Ψ),

Adet(HsR A) → ∼(hsRealisation A).

The proof is based on the stability of the uniform view in the graph. Let
G = (V, Adj) be a simple undirected graph supplied with a port numbering
function φ (verifying the two hypotheses Hφ1 and Hφ2). We define a uniform
view as follow: for each pair of vertices with the same degree, their reading
areas are equal.

Definition UniformView V Adj G δ Hδ1 Hδ2 σ :=

∀ v w, |δ v| = |δ w| → read σ v = read σ w.

We now detail the relevant steps of the proof of Lemma NotReal.

Lemma 1 In our model, there is no deterministic distributed algorithm
that solves the handshake problem for any graph G supplied with the port
numbering φ.

The development based on the same name used in the proof is available
on the web page of the library RDA [8].

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 175

Proof: We want to prove that, regardless of the graph and its supplied port
numbering, there is no deterministic distributed algorithm that solves the
handshake problem. In this purpose, we proceed by contradiction assuming
that there exists such an algorithm.

Let A be an algorithm that solves the handshake problem irrespective
of the graph and the port numbering. We then prove that there exists a
labelled graph G and a port numbering φ such that this algorithm does not
produce a handshake, which is a contradiction. For this, we consider the
graph described in Figure 3(a). We show that whatever is the reached state,
no handshake can occur.

v0 v1

v2

1 2
2

1
1

2

(a) (V,E, φ)

λu λu

λu

ρu ρu
ρu ρu

ρu
ρu

(b) Init Global State

Figure 3: Witness for the impossibility proof

• Initialisation. By hypothesis, the initial state is uniform and consistent.

• Stability. We prove (Lemma UniformViewStablehs) that the uniform
view is preserved by a step of the algorithm. Hence we obtain an
invariant.

• Induction. Let σ be a state such that it has a uniform view and it is
consistent. We prove that (Lemma NoHs) for every local view of each
vertex, hsPort is equal to None. The proof is based on the fact that if
a vertex v makes a handshake with another one, saying the first, then
this first has to be synchronised with v. The port numbering does not
allow this configuration.

• Conclusion. In summary, we know that the uniform view and the
consistency are invariant. We have proved that for an arbitrary state
σ which is consistent and uniform, there is no handshake. We can
deduce from Lemma reachInd that no handshake can be done during
a round and then by the execution of this class of algorithms.

2

176 A. Fontaine, A. Zemmari

5.1.3 The Randomised Algorithm

The algorithm randHSLoc is defined as follows: each vertex v chooses uniformly
at random one of its neighbours c(v), sends 1 to c(v) and 0 to the others.
There is a handshake between v and c(v) if v receives 1 from c(v). Vertex
labels are of type option nat and those for ports are of type bool. We consider
a graph G = (V, Adj) supplied with a port numbering φ (verifying the two
hypotheses Hφ1 and Hφ2 in Section 3.3). We denote by State the type of the
global state of the graph (given by the two labelling functions).

To define the local algorithm, we use the function (randSendChosen n l)

that returns a boolean sequence of size the size of l where each component
takes the value 0 except the nth that takes value 1. Vertex labels do
not interfere. The simulation of this algorithm is given in the following
subsection.

Definition randHSLoc (λ:Λ) (ψout ψin:seq Ψ) : FR (Λ× seq Ψ) :=

match |ψin| with |O ⇒ Freturn (None, nil) (*isolated vertex*)

|S n ⇒ Flet k=(random n) in Freturn(None,randSendChosen(k+1) ψin)

end.

We define a round for the handshake as:

Definition randHSRound (σ: State):=

FRound δ σ randHSLoc.

5.1.4 Simulation of the Randomised Algorithm

Thanks to the operational semantics, we simulate the algorithm randHSLoc.
The simulation is launched for the graph of Figure 4. Figure 4 precises the
port numbering and Figure 5 the local states of the ports. We simulate
the algorithm with a seed equal to 6. The obtained result (see Figure 6)
corresponds to what we expect. We can see that there is a handshake
between v1 and v2.

v0 v1

v2v3

0 0

1

2

1

0

2

0

21

Figure 4: Port numbering.

None None

NoneNone

0 0

0

0

0

0

0

0

00

Figure 5: Initial state.

None None

NoneNone

1 0

0

0

1

1

0

0

01

Figure 6: Result state.

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 177

5.1.5 Correctness of the Randomised Algorithm

Formal Definition of the Randomised Algorithm. To define formally
our algorithm, we first define the components (randHsR, randHsP, randHsI). The
rule sequence randHsR corresponds to a single local rule randHSLoc. The
function randHsP returns None if the vertex is not in a handshake or Some i if
the vertex is in handshake with its ith neighbour. For this, we define the
function agreed that returns true if the rank of label 1 in the writing area
corresponds to the rank of label 1 in the reading area (i.e., if there exists an
edge labelled on those two ports with 1). The initial state randHsI is the one
where all labels are valued at None and all the labels of the ports at 0.

Definition randHsR : FLocT Λ Ψ := (randHSLoc::nil).

Definition randHsP λ ψout ψin : option nat :=

if (agreed ψout ψin) then Some (index true ψout)

else None.

Definition randHsI V Adj : State Adj:=

([ffun v⇒None],[ffun p⇒false]).

We prove the properties that every handshake algorithm must satisfy:
consistency of the initial state (randHSI1), uniformity of the initial state
(randHsI2), domain of the handshake function (randHsP1) and stability of
consistency by a computation step (randHsRind).

Lemma rda.handshake rand.randHsI1 V Adj G δ
(Hδ1: ∀ v w,Adj v w=w ∈(δ v)) (Hδ2: ∀ v,uniq(δ v)) p0:

consistent randHsP (randHsI G) δ.

Lemma rda.handshake rand.randHsI2 V Adj G:
Uniform (randHsI G).

Lemma rda.handshake rand.randHsP1 V Adj G δ
(Hδ1: ∀ v w,Adj v w=w ∈(δ v)) (Hδ2: ∀ v,uniq(δ v)) p0 σ v:

hsPortR randHsP σ v = Some i → i < deg G v.

Lemma rda.handshake rand.randHsRind V Adj G δ
(Hδ1:∀ v w,Adj v w=w ∈(δ v)) (Hδ2:∀ v,uniq(δ v)) p0:

Stable (fun σ ⇒ (consistent randHsP σ δ)) (nextState randHsR δ).

We then build the algorithm:

Definition randhs: (hsAlgo Λ Ψ) :=

(Build hsAlgo randHsI1 randHsI2 randHsP1randHsRind).

Finally, we prove that the only hypothesis that differs is the determinism:

Lemma NonADet: ∼ Adet (HsR randhs).

178 A. Fontaine, A. Zemmari

Matching Invariant. A solution of the handshake problem gives a mat-
ching of the graph. Matching comprised two aspect: adjacency and symmetry.
Let G = (V, Adj) be a simple undirected graph. Let s be a function of type
V → seq V that maps each vertex v to None to specify that the vertex is not
in handshake and Some w to specify that there is a handshake between v and
w. A matching is defined as follow:

Definition synchAdj s := ∀ v,

match (s v) with

|Some w ⇒ Adj v w

| ⇒ true

end.

Definition synchSym s := ∀ v,

match (s v) with

|Some w ⇒ (s w) == Some v

| ⇒ true

end.

Definition matching s := (synchAdj s) ∧ (synchSym s).

We prove in Lemma randHsInvariant matching that randhs always produ-
ces a matching. This property is easily deduced from the consistency of the
algorithm.

Lemma randHsInvariant matching:

Invariant (fun σ ⇒ matching

(fun v ⇒ assNeigh(HsP randhs)

v σ δ))
(nextState (HsR randhs) δ)
(HsI randhs G).

Handshake occurring. We prove (Lemma Real) that there exists at least
an execution of the algorithm that realises a handshake.

Lemma Real : hsRealisation randhs.

To prove this lemma, as there exists an edge {u, v} in the graph, we
consider the labelling such that the two ports of this edge are labelled 1 and
the other port of u and v are labelled 0. For the other vertices, by default
the first port is labelled 1 and the other 0. We show that this labelling can
be obtained from an execution of the algorithm randhs and that this labelling
contains a handshake (on the edge {u, v}).

Handshake Analyse. We prove (Lemma rand hsexists) that the probabi-
lity (measure µ on distributional semantics) to obtain at least one handshake

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 179

(event hsExists) is greater than the constant 1− e−1/2. We make a deeper
study in the next section.

Lemma rand hsexists: ∀ σ,
1− e−1/2 ≤ µ (Distsem (randHSRound σ))

(fun s⇒hsExists(assNeigh randHsP δ s)).

5.2 The Handshake Algorithm in Coq

The local computation we consider here (DHSLoc) is similar to randHSLoc except
that we applied it only on active vertices, that is on the active subgraph.

Definition DHSLoc (λ:Λ) (ψoutψin: seq Ψ): dist (Λ*seq Ψ) :=

if (active λ) then

match (numberActive ψin) with

|O ⇒ Dreturn (Some |ψout|,nseq |ψout|) false)

|S n ⇒ Dlet k = (Random n) in

Dreturn (λ,sendChosen k.+1 ψin)

end

else Dreturn (λ,ψout).

Definition DHSRound (sV: seq V)(σ:State) := DRound sV σ DHSLoc.

The local computation of the handshake for a vertex v consists in
choosing a number k between 0 and d(v)− 1 via the function random and
in labelling 1 the port linked to the chosen neighbour and in labelling 0
the other ports. Thus, the generated state is obtained from a State σ by
changing the value of the ports linked to v by 0, except the port (v, w) put
at 1 where w is the kth port of v. Active vertices are required to construct
the maximal matching of the next section. We denote by DHS the global
algorithm based on the local algorithm DHSLoc.

In the following sections, we prove specific results about the algorithm
DHSLoc. The proofs are facilitated thanks to the general results stated in
Section 4.

5.2.1 Permutability

Lemma DRoundcons2 directly implies permutability. Indeed, the hypothesis of
this lemma is based on the discretisation of the measure of the local function,
that is its rewriting into a finite sum. The measure of our local function is
discretisable since it is directly defined from random whose distribution is a
finite sum.

180 A. Fontaine, A. Zemmari

5.2.2 Composition

From the general Lemma DRound total, we have seen that if we want to prove
a property about a vertex v, an expression can be decomposed into the
measure of one vertex and the measure for the remaining. To illustrate
this fact, we prove Lemma DHS degv global. Let P (v, w) be the property “v
chooses w”. We denote by sV the sequence of vertices in the graph.

Lemma DHS degv global: ∀ G σ {v, w}, (µ (DHS sV σ)) IP (v,w) = 1/d(v).

As the order is irrelevant, sV can be rewrited into v :: (sV \v), we can apply
the composition technique.

5.2.3 Analysis of the success

Let HS(e) denote the event ”there is a handshake on the edge e”. We define
H(e) as the characteristic function of HS(e), i.e., a boolean set to 1 if there
is a handshake on e and to 0 otherwise.

The goal of our establishment of a model is to write the formal proof of
results from [16]. Mainly, we prove formally this main theorem:

Theorem DHS deg: ∀ sV σ, µ (DHS (enum V) σ) (∃ e, H(e)) ≥ 1− e−1/2.

We now detail the relevant steps of the proof of Theorem DHS deg. Thanks
to the formal proof in Coq, we realised that a proof obligation that did not
appear in the original proof was required: the probability that no handshake
occur in any edges is not null. To prove it, we use the general result of Lemma
proba not null, the witness is a spanning tree in a connected component of
the graph. In the sequel, we will use the symbol P as an abbreviation of the
distribution µ(DHS (enum V) σ). Theorem DHS deg becomes:

Theorem 1 ”The probability P(∃ e ∈ E, H(e)) to have at least one hands-
hake after the execution of DHS is greater or equal than the constant 1−e−1/2.”

Proof: From one hand:

P(∃ e ∈ E, H(e)) = 1−P(
∏m
j=1 H(ej)).

On the other hand:
P(

∏m
j=1 H(ej)) =

∏m
i=1(1−P(H(ei)|

∏i−1
j=1H(ej)))

≤
∏m
i=1(1−P(H(ei)))
(cf. Lemma 2)

≤
∏m
i=1(1−

∑m

j=1
P(H(ej))

m)

≤ (1−
1
2
m)m (*)

≤ e−
1
2 .

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 181

Remark 1 (*) This step consists in proving:
∑m
j=1P(H(ej)) ≤ 1

2 .

And
∑m
j=1P(H(ej)) =

∑m
j=1

1
d(e1j)∗d(e

2
j)

where

ej = (e1j , e
2
j).

The well-known result
∑m
j=1

1
d(e1j)∗d(e

2
j)
≥ 1

2 leads us to conclude.

2

The following lemma (Lemma 2) is the proof of the second step described
above.

Lemma 2 (prelude.my alea.Mcond prodConjBound).
Let δ(e, e′) be the boolean whose value is 1 if the edges e and e′ are not
adjacent and 0 otherwise.
If the following hypotheses hold

1. ∀i ∈ 1..m, P(
∏m
j=i+1H(ej)) 6= 0

2. ∀i ∈ 1..m, HS(ei) and
∧m
j=i+1|δ(ei,ej)HS(ej)

are independent

3. ∀i ∈ 1..m,H(ei) ∗
∏m
j=i+1|δ(ei,ej)(H(ej)) = H(ei)

then for any i in 1..m and any edge e,

P(H(e)) ≤ P(H(e)|
∏m
j=i+1H(ej)).

Proof: The proof of this lemma is based on a partition of E: edges which
are adjacent to e and those which are not:
let A =

∏m
j=i+1|δ(ei,ej)H(ej) and B =

∏m
j=i+1|∼δ(ei,ej)H(ej).

We can write, thanks to hypothesis 1., the expression: P(B)
P(A∗B) . Then,

we have proved that:

1 ≤ P(B)

P(A ∗B)
.

Hypothesis 2. leads us to:

P(H(e)) ≤ P(H(e) ∗B)

P(A ∗B)
.

Finally, hypothesis 3. gives us the result:

P(H(e)) ≤ P(H(e) ∗A ∗B)

P(A ∗B)
.

182 A. Fontaine, A. Zemmari

2

In Lemma 2, a non-null probability is required as an hypothesis to
achieve the proof (hypothesis 1). Lemma 3 is a proof that this hypothesis is
checked. From the general Lemma proba not null, it appears that we only
need to highlight a witness that satisfies the expression.

Lemma 3 (rda.handshake.hs1).
For any subset S = {ei+1, . . . , em} of edges, the probability that no handshake
occurs in S is not null, that is:

∀i ∈ 1..m, P(
m∏

j=i+1

H(ej)) 6= 0.

Proof: Consider the set of edges E = e1, . . . , em.

To show that this probability is not null, we highlight a witness which
is a possible execution of the algorithm and in which there is no handshake
on the edges ei+1, . . . , em (Lemma proba not null) where i ∈ 1..m.

We proved that it is always possible to construct a parent function
representing a rooted tree of any connected graph G = (V,E) such that the
root is an extremity of the edge e1. From this parent function we make a
total function where the root is mapped to the other extremity of the edge
e1. This labelling can be obtained by our algorithm. Moreover, it ensures
that there will be no handshake in the graph except maybe in e1 which is
not a problem because we only consider edges ei+1, .., em for i ∈ 1..m. That
is why we need in hypothesis to have at least one edge. 2

5.3 The Maximal Matching Algorithm

Here is the definition of the maximal matching algorithm. We show that this
algorithm terminates with probability 1. This algorithm consists in iterating
the handshake algorithm (DMMLoc2) only by considering the active vertices
where vertices in handshake becomes inactive (DMMLoc1). At the beginning,
every vertex is active. At the end, every vertex is inactive (termB).

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 183

Definition DMMLoc1 (λ:Λ) (ψout ψin:seq Ψ) : FR (Λ× seq Ψ) :=

if (active λ) then

if (agreed ψout ψin) then

Dreturn (Some (index true ψout) , ψout)

else Dreturn (None, map (fun x ⇒ true) ψout)

else Dreturn (λ, ψout).

Definition DMMLoc2 (λ:Λ) (ψout ψin:seq Ψ) : FR (Λ× seq Ψ) :=

DHSLoc λ ψout ψin.

Definition termB (f: State) : bool :=

[∀ v, active (f.1 v)].

Definition DMMLV (sV: seq V) (σ: State) :=

DLV sV σ (DMMLoc1::DMMLoc2::nil) termB.

The general lemma DPLV total (see Lemma termglobal) implies the spe-
cific results: this algorithm terminates with probability 1.

Theorem DMMLV term: ∀ σ, µ (DMMLV (enum V) σ) I = 1.

Proof: To prove this lemma, we used the general result termglobal. We
first show that the probability to have a handshake during a round is strictly
positive which means that the number of active decrements with a non null
probability. Hence as a variant we take the number of active vertices. The
property always true PR in our labelling is that every active vertex sends 1
to all of its neighbours and every inactive vertex sends 0. We only have to
prove the 7 hypotheses of Lemma termglobal. 2

6 Conclusion

We develop on this paper tools to reason about (randomised) distributed
algorithms in anonymous networks. We prove negative results but also we
prove properties over randomised algorithms which solve handshake and
maximal matching problems. More particularly, for the handshake problem,
we analyse the probability of at least a handshake in a round. We then
iterate this algorithm to construct a maximal matching. We prove that this
algorithm terminates with probability 1. Many of the techniques used in
this paper can be applied to analyse solutions for other similar problems
like symmetry break, local election algorithms and distributed computing
of maximal independent sets. One of the future works consists in proving
properties about time complexity by providing tools to handle the number
of rounds.

184 A. Fontaine, A. Zemmari

Acknowledgement

The authors are grateful to P. Castéran who follows this work all along. We
thank him for his first proof in Coq of the impossibility result stated in
Section 5.1.1 and for the development of the semantics that is the base of
their development. They also thank C. Paulin-Mohring and A. Mahboubi
for their help using Alea and ssreflect respectively.

References

[1] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms
in Coq. Science of Computer Programming, 74(8):568–589, 2009. doi:
10.1016/j.scico.2007.09.002.

[2] C. Auger, Z. Bouzid, P. Courtieu, S. Tixeuil, and X. Urbain. Certified
impossibility results for byzantine-tolerant mobile robots. In Stabiliza-
tion, Safety, and Security of Distributed Systems - 15th International
Symposium, SSS 2013, Osaka, Japan, November 13-16, 2013, pages
178–190, 2013. doi:10.1007/978-3-319-03089-0_13.

[3] P. Castéran and V. Filou. Tasks, types and tactics for local computation
systems. Studia Informatica Universalis, Hermann, 9(1):39–86, 2011.

[4] C.-T. Chou. Mechanical verification of distributed algorithms in higher-
order logic. The Computer Journal, 38:158–176, 1995. doi:10.1007/
3-540-58450-1_41.

[5] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal

gathering in R2 for oblivious mobile robots. In Distributed Computing -
30th International Symposium, DISC 2016, Paris, France, September 27-
29, 2016, pages 187–200, 2016. doi:10.1007/978-3-662-53426-7_14.

[6] Deploy European Community Project, www.event-b.org. Event-B and
the Rodin Platform.

[7] C. Derman. Finite state Markovian decision processes. Mathematics in
science and engineering. Academic Press, Orlando, FL, USA, 1970.

[8] A. Fontaine and A. Zemmari. Rda: A Coq Library on Randomised
Distributed Algorithms. www.allyxfontaine.com/rda.

http://dx.doi.org/10.1016/j.scico.2007.09.002
http://dx.doi.org/10.1016/j.scico.2007.09.002
http://dx.doi.org/10.1007/978-3-319-03089-0_13
http://dx.doi.org/10.1007/3-540-58450-1_41
http://dx.doi.org/10.1007/3-540-58450-1_41
http://dx.doi.org/10.1007/978-3-662-53426-7_14

RDA: A Coq Library to Reason about Randomised Distributed
Algorithms in the Message Passing Model 185

[9] G. Gonthier and A. Mahboubi. An introduction to small scale reflection
in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010. doi:

10.6092/issn.1972-5787/1979.

[10] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands
mechanized in HOL. Electronic Notes in Theoretical Computer Science,
112:95–111, 2005. doi:10.1016/j.entcs.2004.01.021.

[11] Monads in Haskell. http://www.haskell.org/haskellwiki/monad.

[12] D. E. Knuth. The art of computer programming, volume 2: seminume-
rical algorithms. Addison-Wesley, Boston, MA, USA, 1981.

[13] P. Küfner, U. Nestmann, and C. Rickmann. Formal verification of distri-
buted algorithms - from pseudo code to checked proofs. In Theoretical
Computer Science - 7th IFIP TC 1/WG 2.2 International Conference,
TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012, pages
209–224, 2012. doi:10.1007/978-3-642-33475-7_15.

[14] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilis-
tic symbolic model checker. In Computer Performance Evaluation /
TOOLS, pages 200–204, 2002. doi:10.1007/3-540-46029-2_13.

[15] M. Z. Kwiatkowska, G. Norman, and R. Segala. Automated verification
of a randomized distributed consensus protocol using Cadence SMV
and PRISM. In Computer Aided Verification (CAV’01), pages 194–206,
2001. doi:10.1007/3-540-44585-4_17.

[16] Y. Métivier, N. Saheb, and A. Zemmari. Analysis of a randomized
rendez-vous algorithm. Information and Computation, 184(1):109–128,
2003. doi:10.1016/S0890-5401(03)00054-3.

[17] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002. doi:10.1007/3-540-45949-9.

[18] A. Pogosyants and R. Segala. Formal verification of timed properties
for randomized distributed algorithms. In Proceedings of the four-
teenth annual ACM symposium on Principles of distributed computing
(PODC’95), pages 174–183, 1995. doi:10.1145/224964.224984.

[19] DAMPAS Project. Visidia. http://visidia.labri.fr.

http://dx.doi.org/10.6092/issn.1972-5787/1979
http://dx.doi.org/10.6092/issn.1972-5787/1979
http://dx.doi.org/10.1016/j.entcs.2004.01.021
http://dx.doi.org/10.1007/978-3-642-33475-7_15
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/3-540-44585-4_17
http://dx.doi.org/10.1016/S0890-5401(03)00054-3
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1145/224964.224984

186 A. Fontaine, A. Zemmari

[20] Coq Development Team. The Coq Proof Assistant Reference Manual.
coq.inria.fr.

c© Scientific Annals of Computer Science 2016

	Introduction
	The Theoretical Model
	Related Works
	Our Contribution

	Preliminaries
	Our Formal Model
	Formal Distributed Systems
	Syntax and Semantics
	Operational Semantics
	Set Semantics
	Distributional Semantics

	Randomised Distributed Algorithms

	General Results
	Validity of Our Model
	Permutability
	Composition
	Non-null Probability
	Termination

	Applications
	Correctness of an Handshake Solution
	Handshake Specification
	Impossibility Result
	The Randomised Algorithm
	Simulation of the Randomised Algorithm
	Correctness of the Randomised Algorithm

	The Handshake Algorithm in Coq
	Permutability
	Composition
	Analysis of the success

	The Maximal Matching Algorithm

	Conclusion
	Bibliography

