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Abstract: The use of tools from analysis to address problems in graph theory has become
an active area of research, using the construction of analytic limit objects from sequences of
graphs and hypergraphs. We extend these methods to sparse but pseudorandom hypergraphs.
We use this framework to give a proof of hypergraph removal for sub-hypergraphs of sparse
random hypergraphs.
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1 Introduction

In this paper we bring together two recent trends in extremal graph theory: the study of “sparse random”
analogs of theorems about dense graphs, and the use of methods from analysis and logic to handle complex
dependencies of parameters. To illustrate these methods, we will prove a version of the Hypergraph
Removal Lemma for dense sub-hypergraphs of sparse but sufficiently pseudorandom hypergraphs.

1.1 What is Sparse Hypergraph Removal?

The original removal theorem was Rusza and Szemerédi’s Triangle Removal Lemma [50], which states:

Theorem 1.1. For every ε > 0, there is a δ > 0 such that whenever G ⊆
(V

2

)
is a graph with at most

δ |V |3 triangles, there is a set C ⊆ G with |C| ≤ ε|V |2 such that G\C contains no triangles at all.

This result was later extended to graphs other than triangles [23], and ultimately to hypergraphs [25,
30, 48]. All these arguments depend heavily on the celebrated Szemerédi Regularity Lemma [54], and its
generalization, the hypergraph regularity lemma [30, 49]. (Recently, Fox [24] has given a proof of graph
removal without the use of the regularity lemma, which gives better bounds as a result.)
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This statement is only meaningful for dense graphs, when |G| > ε|V |2, since otherwise we could
simply remove all of G. Various generalizations extend this to sparser graphs by considering “relative
graph removal”: we consider the case where G is contained in an ambient graph Γ, where Γ is sparse, and
we measure sizes relative to Γ. To make sense of this for arbitrary ε , we need to consider a sequence of
ambient graphs {Γn}. Relative triangle removal for {Γn} states:

For every ε > 0, there are δ > 0 and N such that whenever n≥ N and G⊆ Γn is such that
|{triangles in G}| < δ |{triangles in Γn}|, there is a set C ⊆ G with |C| ≤ ε|Γn| such that
G\C contains no triangles at all.

Conventional triangle removal is the case where each Γn is the complete graph on n vertices. The main
case that has been studied is when Γn is chosen to be a random graph on n vertices which is “not too
sparse”—in practice, chosen so that it has roughly n2−1/r edges for some r. This generalization was
proven, essentially, by Kohayakawa, Łuczak, and Rödl [41] and stated directly in this form in [44]. Their
proof passes through a pseudorandomnes assumption: they prove triangle removal relative to Γn when
Γn is (p,γ p3n)-bijumbled where p≥ n−1/2, and it is known that when Γn is chosen randomly with n2 p
edges then, with high probability, Γn is (p,γ p3n)-bijumbled.

Various generalizations to other graphs and ultimately to arbitrary hypergraphs have appeared in the
literature [5, 14, 17, 32, 42, 51, 58, 59]. The most general results of this kind have roughly the form:

Theorem 1.2. For every k-uniform hypergraph K with v vertices, there is an r so that, for every every
ε > 0 there is an N and a δ > 0 so that whenever Γ is a random graph on n≥ N vertices chosen so that
each k-tuple is an edge in Γ with probability n−1/r, chosen independently, then with probablity ≥ 1− ε ,
whenever A⊆ Γ with hom(K,A)

|(n
v)|

< δ , there is an L⊆ A with |L| ≤ ε|Γ| so that hom(K,A\L) = 0.

There are also a number of closely related results on sparse sets of integers [33, 58, 59].
Our main result is another proof of this theorem. We have not attempted to extract explicit bounds

(either on the dependence of r on K or the dependence of N,δ on ε); since limiting arguments of the kind
we used here do not lend themselves to extracting optimal bounds, we expect they would be somewhat
worse than those given by the combinatorial proofs cited above.

As we will discuss in more detail below, it is by now well-known that hypergraph removal and
regularity lemmas are closely related to the structure of σ -algebras in the structures obtained by taking
limits of finite hypergraphs. Our main goal in this paper is to extend this relationship to the sparse setting.
Towards this end, our proof uses a new notion of pseudorandomness (“correctly counting copies”) which
is essentially an approximate version of Fubini’s theorem, and precisely guarantees that our limiting
structures satisfy Fubini’s theorem for certain integrals.

1.2 The Analytic Approach

Our arguments in this paper draw on recent developments in analytic approaches to graph theory. Probably
the most widely studied approach is the method of graph limits and graphons introduced by Lovász
and coauthors [7, 46, 47]. Related approaches go back to work on exchangeable sequences of random
variables beginning with Aldous and Hoover [1, 18, 34, 38], and more recently, similar methods have been
studied by Hrushovski, Tao, and others [4, 27, 37]. Analytic proofs of regularity and removal lemmas
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have been given using all these methods [20, 22, 55, 56, 61]. These techniques obtain a correspondence
between a sequence of arbitrarily large finite graphs on the one hand, and some sort of infinitary structure
on the other. Statements about density fit naturally in these frameworks since the normalized counting
measure on large finite graphs corresponds to an ordinary measure on the infinitary structure.

In this paper, we describe a similar correspondence which applies to sub-hypergraphs of sparse, pseu-
dorandom hypergraphs. In the finite setting, the natural replacement for the normalized counting measure
is the counting measure normalized by the ambient hypergraph. This introduces new complications in the
infinitary world: we end up with a natural measure on sets of k-tuples which is not a genuine product
measure. (This perspective on the problem was suggested to us by Hrushovski.) In place of a single
measure, we end up with a family of measures, and the pseudorandomness from the finitary setting is
used to ensure that this family of measures obeys certain compatibility properties.

We use this method to give an analytic proof of sparse hypergraph removal. Our approach to
hypergraph removal depends heavily on the use of the Gowers uniformity (semi)norms [28]. As Conlon
and Gowers point out [12], such an approach cannot hope to give optimal bounds, and, relatedly, depends
on a stronger notion of pseudorandomness than strictly needed. We stick to this method both because we
believe these norms are interesting in their own right, and because we believe it illustrates the analytic
approach to sparse hypergraphs more clearly than an attempt to derive optimal bounds would.

Because of the analytic nature of our proof, the pseudorandomness property we need says that Γ

should have “measure-theoretic” properties which resemble those of the complete hypergraph. Whenever
(V,E) is a small hypergraph, we write ΓV

E = hom((V,E),Γ) for the collection of all homomorphic copies
of (V,E) in Γ. (This and the other notation in this paragraph will be introduced more rigorously in
Sections 2 and 3.) There is a natural way to choose a random element of ΓV

E—uniformly—corresponding
to a natural measure on ΓV

E—the normalized counting measure. However, we often obtain copies of V
by partitioning V = V0 ∪V1, first choosing a copy xV0 ∈ Γ

V0
E , and then later choosing an extension xV

such that xV �V0 = xV0 . It will be convenient to have a notation for this: Γ
V1
E,xV0

is the set of xV1 such that

xV1 ∪xV0 ∈ ΓV
E . This leads to a second approach to choosing random elements of ΓV

E : first choose xV0 ∈ Γ
V0
E

uniformly, then choose xV1 ∈ Γ
V1
E,xV0

uniformly. There is a measure on ΓV
E corresponding to this approach,

and in general, when Γ is sparse, these measures might disagree. (We give an example in Section 6.)
When Γ is sufficiently pseudorandom, however, these measures agree, and this is essentially the

property we need. More precisely, we need to consider choosing hypergraphs by a three step process: that
whenever (V ∪W,E) is a small hypergraph, for most aW (according to the normalized counting measure
on ΓW

E ), all possible partitions V = V0∪V1 induce the same measure on ΓV
E,aW

. Roughly speaking, we
want to say that for almost every aW ∈ ΓW

E , for almost every xV0 ∈ ΓV
E,aW

,

|ΓV1
E,xV0∪aW

| ≈
|ΓV

E,aW
|

|ΓV0
E,aW
|
.

We define this notion, that (G,Γ) δ -consistently counts copies of (U,E), precisely in Section 6.
With this we can state our main theorem:

Theorem 1.3. For every k-uniform hypergraph K on vertices V and every constant ε > 0, there are δ ,ζ

so that whenever Γ is a ζ , |K|22k-ccc k-uniform hypergraph and A ⊆ Γ with hom(K,A)
|ΓV

K |
< δ , there is a

subset L of A with |L| ≤ ε|Γ| such that hom(K,A\L) = 0.
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Together with Theorem 6.6, which states that when Γ will be ζ , |K|22k-ccc with high probability
when chosen randomly and sufficiently densely, these give a proof of Theorem 1.2.

In [27], Isaac Goldbring and the author proposed a general framework for handling analytic arguments
of the sort in this paper, which we called approximate measure logic. In this paper, there is no assumption
that the reader is familiar with that particular framework, but we pass quickly over the logical preliminaries,
and refer the reader to that paper for more detailed exposition.

1.3 Outline and Comparison to On the Triangle Removal Lemma for Subgraphs of Sparse
Pseudorandom Graphs [44]

Section 3 introduces our general notation for families of measures concentrating on configuations that
depend on the ambient graph Γ, since virtually all subsequent work requires being able to discuss these
notions.

Section 4 introduces the σ -algebras BV,I which play a central role in our proof. In the standard proof
of triangle removal in the dense setting, one uses graph regularity to produce a partition into components
which have a certain pseudorandomness property, sometimes called DISC. In our setting, the analog of
hypergraph regularity is the observation that we may decompose a function as

f = E( f |BV,I)+( f −E( f |BV,I)),

and our analog of DISC is the randomness property satisfied by the second term g = f −E( f | BV,I),
that ||E(g |BV,I)||L2(µV

E )
= 0. (See also [62] for more about the connection between these σ -algebras and

hypergraph regularity.)
In Section 5, we carry out the first step of our proof. We will say that a probability measure has

regularity if, roughly speaking, the randomness property DISC implies a somewhat stronger randomness
notion—we refer to this as “having regularity” because it implies that the partition given by the regularity
lemma actually has the properties we expect it to have. The main result of that section, Theorem 5.3, is
closely analogous the counting lemma that appears in most proofs of hypergraph removal, and also to [44,
Lemma 11]. It completes the proof of hypergraph removal subject to the requirement that our measures
have regularity. We conclude the section by noting that the measures needed in the dense setting do have
regularity, giving a proof of hypergraph removal in the dense setting.

We then turn to establishing the infinitary setting needed to complete our proof. In Section 6 we
define the pseudorandomness notion satisfied by our ambient graph Γ and prove that it is satisfied with
high probability by a randomly chosen Γ of sufficient density. In Section 7, we actually construct the
infinitary setting we need and prove the necessary results to transfer results from this setting back to the
finitary world; to the extent possible, all uses of model theory are kept to this section. The reader who
is willing to take for granted that the infinitary setting has the properties we need can ignore these two
sections; the reader who is primarily interested in how we construct an infinitary setting can read just
Section 3 and these two sections.

The proof in [44] considers another pseudorandomness notion, PAIR. In Section 8 we introduce
our analog of PAIR, the generalized Gowers uniformity seminorms [30, 36] || · ||UV,J

∞ (µV
E )

. For technical
reasons, we introduce a smaller family of seminorms in Subsection 8.1 and prove some basic properties,
then introduce the full family in Subsection 8.2.
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It is well-known [9] that PAIR and DISC are equivalent in the dense setting, and the key technical
step of [44] is [44, Lemma 9a], showing that DISC implies PAIR in the sparse setting. In our terminology,
this becomes showing that ||E( f | BV,I)||L2(µV

E )
= 0 implies || f ||

UV,I⊥
∞ (µV

E )
= 0, which we refer to as the

seminorm || · ||
UV,I⊥

∞ (µV
E )

being characteristic. We finally turn to this in Subsection 8.3 and Section 9,

where we prove this for successively more general classes of measures in several steps.
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2 Notation

Throughout this paper we use a slightly unconventional notation for tuples which is particularly conducive
to our arguments. When V is a finite set, a V -tuple from G is a function xV : V → G. If for each v ∈V
we have designated an element xv ∈ G, we write xV for the tuple xV (v) = xv. Conversely, if we have
specified a V -tuple xV , we often write xv for xV (v). When V,W are disjoint sets, we write xV ∪ xW for the
corresponding V ∪W -tuple. (We will always assume V and W are disjoint when discussing V ∪W -tuples.)
When I ⊆V and xV is a given V -tuple, we write xI for the corresponding I-tuple: xI(i) = xV (i) for i ∈ I.
We write 0V for the tuple which is constantly equal to 0. (This is the only constant tuple we will explicitly
refer to.) When B⊆MW∪V , we will write B(aW ) for the slice {xV | aW ∪ xV ∈ B} corresponding to those
coordinates.

3 Families of Measures

To motivate our construction, we first consider the situation in large finite graphs. Suppose we have a
large finite set of vertices G and a sparse random graph Γ on G. There are two natural measures we might
consider on subsets of G2: the usual normalized counting measure

λ (S) =
|S|
|G|2

and the counting measure normalized by Γ:

λ
′(S) =

|S∩Γ|
|Γ|

.

When we consider subsets of G3, we have even more choices; we could normalize with respect to all
possible triangles

λ0(S) =
|S|
|G|3

,
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or only those triangles entirely in Γ

λ1(S) =
|{(x,y,z) ∈ S | (x,y) ∈ Γ,(x,z) ∈ Γ,(y,z) ∈ Γ}|
|{(x,y,z) | (x,y) ∈ Γ,(x,z) ∈ Γ,(y,z) ∈ Γ}|

,

or only those triangles where certain specified edges belong to Γ:

λ2(S) =
|{(x,y,z) ∈ S | (x,y) ∈ Γ,(x,z) ∈ Γ}|
|{(x,y,z) | (x,y) ∈ Γ,(x,z) ∈ Γ}|

.

Indeed, further consideration suggests that we have multiple choices for measures even on subsets of G:
in addition to the normalized counting measure, we could fix any element x ∈ G and define

λx(S) =
|{y ∈ S | (x,y) ∈ Γ}|
|{y | (x,y) ∈ Γ}|

.

When Γ is a k-uniform hypergraph with k > 2, we have yet more possibilities.
We therefore introduce a general notation for referring to all such measures. We first describe this

notation in the setting of a large finite graph, but we will primarily use it in the infinitary setting. We
assume that a value for k and a k-uniform hypergraph Γ on a set of vertices G have been fixed. When V
and W are disjoint sets, xW ∈ GW , and E is a k-uniform hypergraph on V ∪W , we define

Γ
V
E,xW

= {xV ∈ GV | ∀e ∈ E xe ∈ Γ}.

Note the significance of our notation for tuples here: xe is a k-tuple which may consist both of elements
from the fixed set xW and from xV . That is, ΓV

E,xW
is the collection of xV ∈ GV such that map xV∪W :

V ∪W → G is a homomorphism from (V ∪W,E) to Γ. For instance, in the case where k = 2, so Γ is a
graph, Γ

{1,2}
{(1,2)}, /0 = Γ, while Γ

{1,2}
/0, /0 = G2.

We then define

µ
V
E,xW

(S) =


|S∩ΓV

E,xW
|

|ΓV
E,xW
| if |ΓV

E,xW
|> 0

0 if |ΓV
E,xW
|= 0

.

For instance, in the measures above, λ = µ
{1,2}
/0, /0 ,λ ′= µ

{1,2}
{(1,2)}, /0,λ0 = µ

{1,2,3}
/0, /0 ,λ1 = µ

{1,2,3}
{(1,2),(1,3),(2,3)}, /0,λ2 =

µ
{1,2,3}
{(1,2),(1,3)}, /0, and λx = µ

{1}
{(1,2)},x.

In probabilistic terms, µV
E, /0(S) is the probability that, if we choose a homomorphic copy of E in Γ

uniformly at random, we obtain a copy belonging to S. More generally µV
E,xW

(S) is the probability that if
we extend xW uniformly at random to a copy of E in Γ that we obtain a copy belonging to S.

When W and xW are clear from context, we just write µV
E for µV

E,xW
and ΓV

E for ΓV
E,xW

, and call xW the
background parameters of µV

E .
When integrating over µV

E,xW
, we always assume the variable being integrated is xV .

A key feature of this notation is that it makes it easy to specify the Fubini-type properties that we will
eventually arrange for our measures to satisfy. If V =V0∪V1 where V0∩V1 = /0 and E ′ is the restriction
of E to vertices from V0∪W , we intend to have∫

·dµ
V
E,xW

=
∫∫
·dµ

V1
E,xV0∪xW

dµ
V0
E ′,xW

.
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To avoid having to endlessly specify the restriction of E to the appropriate vertices, we will generally
allow E to have extra edges not included in the vertex set V ; for instance, we will not distinguish between
µ

V0
E ′,xW

and µ
V0
E,xW

, and will usually write∫
·dµ

V
E,xW

(xV ) =
∫∫
·dµ

V1
E,xV0∪xW

dµ
V0
E,xW

,

even though E is not a subset of
(V0∪W

k

)
.

4 σ -Algebras

Most of our work will be carried out in the setting of uncountable hypergraphs with probability measures.
We face the following difficulty, even in the graph case: suppose we are working with the graph (M,E)
and have a σ -algebra B1 on M. Then E ⊆M2, but it need not be the case that E is measurable with
respect to the product algebra B1×B1. Since B1×B1 is generated by rectangles, measurability of E
with respect to B1×B1 is actually a strong combinatorial requirement on E—indeed, as we will see
below, or as noted in [27], closely related to the properties of regularity partitions for E.

Our solution draws from Keisler’s notion of a graded probability space [40]: we need to work with
σ -algebras Bn on n-tuples for every n so that Bm×Bn ⊆Bm+n, but we allow Bm+n to contain additional
measurable sets beyond those required by the product. To better match our tuple notation, we will actually
work with σ -algebras on V -tuples for all finite V (though we will ultimately define them to depend only
on |V |, and not on the particular elements of the set V ).

We need certain sub-σ -algebras giving those sets measurable in certain well-defined ways. For
instance, we wish to define generalizations of product algebras like B1×B1.

Definition 4.1. Suppose that for every finite set of indices V we have a Boolean algebra B0
V on subsets

of MV such that:

• /0 ∈B0
V and MV ∈B0

V ,

• B0
V ×B0

W ⊆B0
V∪W ,

• Whenever aW ∈MW and B ∈B0
V∪W , the projection B(aW ) ∈MV .

For I ⊆V , we define B0
V,I to be the Boolean algebra generated by subsets of Mn of the form

{xV ∈MV | xI ∈ B}

where B ∈B0
I .

If I⊆ P(V ) then we write B0
V,I for the Boolean algebra generated by

⋃
I∈IB

0
V,I. When k ≤ |V |, we

define B0
V,k to be the Boolean algebra B0

V,{I⊆V ||I|=k}.
For any I ⊆V , we write <I for the set of proper subsets of I. The principal algebras are those of the

form B0
V,<V =B0

V,|V |−1.
In all cases, we drop the superscript 0 to indicate the σ -algebra generated by the algebra.
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Throughout this paper our primary example of such a system of algebras will be the for B0
V to be the

collection fo sets of V -tuples definable in a model M using parameters.
The algebras B0

V,I are generally uncountable, and so the corresponding σ -algebras BV,I are generally
non-separable. (It is possible to recover separability by allowing only formulas whose parameters come
from an elementary submodel. This causes some additional complications, since the slices of some set
A ⊆M2 are no longer necessarily measurable; rather, the slices are measurable with respect to some
slightly larger σ -algebra which depends on the choice of slice. These complications can be addressed by
a small amount of additional model-theoretic work; this separable approach is used in [27, 61].) These
σ -algebras are closely related to the Szemerédi Regularity Lemma; for instance, in [27] it is shown that
the usual regularity lemma follows almost immediately from the existence of the projection of a set onto
B{1,2},1.

Note that while a σ -algebra is well-defined independently of the choice of a particular measure,
notions like the projection onto a σ -algebra do depend on a particular choice of measure.

The first introduction of these algebras that we know of is in [57], where Tao already notes the
relationship with the Gowers uniformity norms which we will discuss in detail below. The work in this
paper builds on further developments in [55, 63].

There is some flexibility in the choice of the set I; for instance, B{1,2,3},{{1,2}} =B{1,2,3},{{1,2},{1}}
(since {1,2} ∈ I, we already have sets depending only on the coordinate 1, so adding {1} does nothing).
This leads to two canonical choices for I: a minimal choice with only the sets of coordinates absolutely
necessary, or a maximal choice which adds every set of coordinates allowed without changing the meaning.
Depending on the situation, we want one or the other canonical form.

Lemma 4.2. If for every I ∈ I there is an I′ ∈ I′ with I ⊆ I′ then BV,I ⊆BV,I′ .

Proof. It suffices to show that if I ⊆ I′ then B0
V,I ⊆B0

V,I′ . But this is easily seen from the definition, since
if B ∈B0

I , B×MI′\I ∈B0
I′ , and therefore

{xV ∈MV | xI ∈ B}= {xV ∈MV | xI′ ∈ B×MI′\I} ∈B0
V,I′ .

Corollary 4.3. For any V,I, there exist I0,I1 such that:

(1) BV,I =BV,I0 =BV,I1 ,

(2) I0 is downwards closed: if I ∈ I0 and J ⊆ I then J ∈ I0,

(3) If I,J ∈ I1 then J 6⊆ I.

Definition 4.4. Given I,J⊆ P(V ), we define I∧J to consist of those sets K such that there is an I ∈ I

and a J ∈ J such that K ⊆ I∩ J.

We often equate J with {J}, so I∧ J = I∧{J}.
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5 Hypergraph Removal

In this section, we present a proof of the ordinary hypergraph removal theorem, essentially the one given
in [61], which is in turn based on the arguments in [55, 56]. We first state a necessary property on
measures, and prove a lemma reminiscent of the hypergraph counting lemma.

Definition 5.1. Let νV be a probability measure on BV . We say νV has J-regularity for J ⊆V if for any
I⊆ P(V ):

For any { fI}I∈I and g ∈ L∞(BV,J) such that for each I ∈ I, fI ∈ L∞(BV,I),∫
(g−E(g |BV,I∧J))∏

I∈I
fI dν

V = 0.

Note that if there is any I ∈ I with J ⊆ I, so J ∈ I∧ J, then when g ∈ L∞(BV,J), we have g = E(g |
BV,I∧J), and therefore the statement is trivial. So we are usually concerned with the case where J 6⊆ I for
all I ∈ I.

Given a measure νV on BV , for any J ⊆V there is a natural measure νJ on BJ: there is a canonical
embedding of BJ as BV,J , and we take νJ(B) = νV (J×XV\J). A basic property we expect of νV is that
when B ∈BJ and C ∈BV\J then νV (B×C) = νJ(B)νV\J(C). We say νV extends the product νJ×νV\J

in this case.

Lemma 5.2. If νV has J-regularity then νV extends the product νJ×νV\J . When |J|= 1 and νV extends
the product νJ×νV\J , νV has J-regularity.

Proof. Let νV with J-regularity be given. It suffices to show that for any B ∈ BV,J and C ∈ BV,V\J ,
νV (B×C) = ν j(B)νV\J(C). Let I =V \ J, I= {I}, and take any such B and C. Note that BV,I∧J =BV, /0,
which is the trivial σ -algebra. In particular, for any g, E(g | BV, /0) is the function constantly equal to∫

gdνV .
By J-regularity,

0 =
∫
(χB−E(χB |BV,I∧{ j}))χCdν

V

=
∫

χBχCdν
V −

∫
E(χB |BV,I∧{ j})χCdν

V

=
∫

χBχCdν
V −

∫
ν

j(B)χCdν
V

=
∫

χBχCdν
V −ν

j(B)νV\{ j}(C).

Suppose J = { j} and νV extends νJ × νV\J . To show J-regularity, consider some I ⊆ P(V ) so
that for each I ∈ I, I ∩ J ( J—that is, j 6∈ I. If for each I ∈ I we have fI ∈ L∞(BV,I) then we have
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∏I fI ∈ L∞(BV,V\J). Then for any g ∈ L∞(BV,{ j}) we have∫
(g−E(g |BV,I∧J))∏

I∈I
fI dν

V =
∫
(g−E(g |BV,I∧J))dν

j
∫

∏
I∈I

fI dν
V\{ j}

= 0 ·
∫

∏
I∈I

fI dν
V\{ j}

= 0.

The next theorem is an infinitary analog of hypergraph removal.

Theorem 5.3. Suppose νV has J-regularity for all J ⊆ V with |J| ≤ k, that k < |V |, I ⊆
(V

k

)
∪{V},

and for each I ∈ I we have a set AI ∈ BI such that AV ∈ BV,<k. Further, suppose there is a δ > 0
such that whenever BI ∈B0

I , ν I(AI \BI)< δ for all I ∈ I, and BV ∈B0
V,<k,

⋂
I∈I BI is non-empty. Then

νV (
⋂

I∈I AI)> 0.

We usually apply this with V 6∈ I, but have to deal with with a more general term to make the induction
go through.

Proof. We proceed by main induction on k. When k = 1, the claim is simple: if there is any I0 with
ν I0(AI0)< δ , we could take BI0 = /0 and BI = MI for I 6= I0, contradicting the assumption. So νV (

⋂
AI) =

νV (
⋂

AI) = ∏ν I(AI)≥ δ |V |+1 > 0 by the previous lemma.
So we assume that k > 1 and that whenever BI ∈B0

I and ν I(AI \BI)< δ for all I,
⋂

I∈I BI is non-empty.
Throughout this proof, the variables I and I0 range over elements of I. We first show that, without loss of
generality, we may assume each AI belongs to BI,<I , by showing that for each I0 ∈ I\{V}, there is some
set A′I0

∈BI0,<I0 with the property that, if we replace AI0 by A′I0
, the assumptions of the theorem all hold,

and such that if we show the conclusion for the modified family of sets, the conclusion also holds for the
original family.

Claim 1. For any I0, there is an A′I0
∈BI0,<I0 such that:

• whenever BI ∈ B0
I for each I, ν I(AI \BI) < δ for each I 6= I0, and ν I0(A′I0

\BI0) < δ ,
⋂

I∈I BI is
non-empty, and

• if νV (A′I0
∩
⋂

I 6=I0
AI)> 0, νV (

⋂
I∈I AI)> 0.

Proof. Define A′I0
:= {xI0 | E(χAI0

|BI0,<I0)(xI0)> 0}. If νV (A′I0
∩
⋂

I 6=I0
AI)> 0 then we have∫

E(χAI0
|BI0,<I0)∏

I 6=I0

χAI dν
V > 0

and since νV has I0-regularity, this implies that νV (
⋂

AI)> 0.
Suppose that for each I, BI ∈B0

I with ν I(AI \BI)< δ for I 6= I0 and ν I0(A′I0
\BI0)< δ . Since

ν
I0(AI0 \A′I0

) =
∫

χAI0
(1−χA′I0

)dν
I0 =

∫
E(χAI0

|BI0,<I0)(1−χA′I0
)dν

I0 = 0,

we have ν I0(AI0 \BI0)< δ as well, and therefore
⋂

I∈I BI is non-empty. a
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Fix finitely many sets from B0
[1,k],k−1 and let B be the σ -algebra generated by these sets together

with B0
[1,k],k−2. By abuse of notation, we treat B as a sub-σ -algebra of every BI . By choosing enough

sets, we may ensure that for every I, ‖χAI −E(χAI | B)‖L2(ν I) <
√

δ√
2(|I|+2)

for each I. For each I, set

A∗I = {aI | E(χAI |B)(aI)>
|I|
|I|+1}.

Claim 2. For each I, ν I(AI \A∗I )≤ δ/2.

Proof. AI \A∗I is the set of points such that (χAI −E(χAI |B))(~a) ≥ 1
|I|+1 . By Chebyshev’s inequality,

the measure of this set is at most

(|I|+1)2
∫
(χAI −E(χAI |B))2 dν

I = (|I|+1)2‖χAI −E(χAI |B)‖2
L2(ν I) ≤

δ

2
.

a

Claim 3. νV (
⋂

I AI)≥ νV (
⋂

I A∗I )/(|I|+1).

Proof. For each I0,

ν
V ((A∗I0

\AI0)∩
⋂

I 6=I0

A∗I ) =
∫

χA∗I0
(1−χAI0

)∏
I 6=I0

χA∗I dν
V

=
∫

χA∗I0
(1−E(χAI0

|B))∏
I 6=I0

χA∗I dν
V

≤ 1
|I|+2

∫
∏
I∈I

χA∗I dν
V

=
1

|I|+2
ν

V (
⋂
I∈I

A∗I ).

But then

ν
V (
⋂
I∈I

A∗I \ (
⋂
I∈I

AI))≤∑
I0

ν
V ((A∗I0

\AI0)∩
⋂

I 6=I0

A∗I )

≤ |I|
|I|+1

ν
V (
⋂
I∈I

A∗I ).

a

Each A∗I may be written in the form
⋃

i≤rI
A∗I,i where A∗I,i =

⋂
J∈( I

k−1)∪V A∗I,i,J , A∗I,i,J is an element of

B0
V,J , and A∗I,i,V ∈BI,k−2. We may assume that if i 6= i′ then A∗I,i∩A∗I,i′ = /0.

We have
ν

V (
⋂
I

A∗I ) = ν
V (

⋃
~i∈∏I [1,rI ]

⋂
I

⋂
J∈( I

k−1)∪{V}

A∗I,iI ,J).
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For each~i ∈∏I[1,rI], let D~i =
⋂

I
⋂

J∈( I
k−1)∪{V}

A∗I,iI ,J . Each A∗I,iI ,J is an element of BV,J , so we may group
the components and write D~i =

⋂
J∈( V

k−1)∪{V}
D~i,J where D~i,V =

⋂
I A∗I,iI ,V and otherwise D~i,J =

⋂
I⊃J A∗I,iI ,J .

Suppose, for a contradiction, that νV (
⋂

I A∗I )= 0. Then for every~i∈∏I[1,rI], νV (D~i)= νV (
⋂

J D~i,J)=

0. By the contrapositive of the inductive hypothesis, for each γ > 0, there is a collection B~i,J ∈ B0
V,J

and B~i,V ∈ B0
V,k−2 such that νV (D~i,J \ B~i,J) < γ and

⋂
J B~i,J = /0. In particular, this holds with γ =

δ

6(( k
k−1)+1)(∏I rI)(maxI rI)

.

For J 6=V and I ⊃ J, define

B∗I,i,J = A∗I,i,J ∩
⋂

~i,iI=i

[
B~i,J ∪

⋃
I′ 6=I,I′⊃J

A∗I′,iI′ ,J

]
.

For each I, let A0
I,i,V be an element of B0

V,k−2 with ν I(A∗I,i,V 4A0
I,i,V ) <

δ

6(|I|+∏I rI+1) . We analogously
define

B∗∗I,i,V = A0
I,i,V ∩

⋂
~i,iI=i

[
B~i,V ∪

⋃
I′ 6=I

A0
I′,iI′ ,V

]
and then set

B∗I,i,V = {xI | νV\I({xV\I | (xI,xV\I) ∈ B∗∗I,i,V )≥
1

|I|+∏I rI +1
}.

Finally we set
B∗I =

⋃
i≤rI

⋂
J

B∗I,i,J.

Note that B∗I ∈B0
I and B∗V ∈B0

V,<k. Note that B∗∗V,i,V = B∗V,i,V .

Claim 4. ν I0(A∗I0
\B∗I0

)≤ δ/2.

Proof. Let θ = 1
|I|+∏I rI+1 . If S⊆MV , define

πI0,(S) = {xI0 | νV\I0({xV\I0 | xV ∈ S})≥ θ}.

We will show that

A∗I0
\B∗I0

⊆
⋃

~i,J⊂I

(D~i,J \B~i,J)

∪
⋃
I,i

πI0(A
∗
I,i,V 4A0

I,i,V )

∪
⋃
~i

πI0(D~i,V \B~i,V )

which suffices to give the claim.
Observe that if xI0 ∈ A∗I0

\B∗I0
then xI0 ∈

⋂
J A∗I0,i,J for some i. Then there must be some J so xI0 6∈ B∗I,i,J .

If J 6=V then x 6∈ B~i,J and xI0 ∈
⋂

I′⊃J A∗I′,iI′ ,J , so xI0 ∈ D~i,J \B~i,J .
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If J =V , suppose xI0 ∈ A∗I0,i,V \B∗I0,i,V but

xI0 6∈
⋃
I

πI0,δ (A
∗
I,i,V 4A0

I,i,V )∪
⋃
~i

πI0,δ (D~i,V \B~i,V ).

Then there must be some xV\I0 so that xV 6∈ B∗∗I0,i,V ∪
⋃

I,i(A
∗
I,i,V 4A0

I,i,V )∪
⋃
~i(D~i,V \B~i,V ), which is a

contradiction by the same argument as in the J 6=V case. a

Since ν I(AI \A∗I )≤ δ/2, it follows that ν I(AI \B∗I )≤ δ . Therefore
⋂

I B∗I 6= /0.

Claim 5. ⋂
I

B∗I ⊆
⋃
~i

⋂
J

B~i,J.

Proof. Suppose x ∈
⋂

I B∗I . Then for each I, there is an iI so that x ∈
⋂

J B∗I,i,J . Therefore x ∈ A∗I,iI ,J for
J 6=V and x ∈ A0

I,iI ,V . Therefore x ∈ B~i,J for each J.

Since
⋂

I B∗I is non-empty, there is some~i such that
⋂

J B~i,J 6= /0. But this leads to a contradiction, so it
must be that νV (

⋂
I A∗I )> 0, and therefore, as we have shown, νV (

⋂
I∈I AI)≥ 1

|I|+1 νV (
⋂

I∈I A∗I )> 0.

In order to prove the hypergraph removal theorem, we would then hope to argue as follows: the
failure of hypergraph removal implies the existence of a family of counterexamples of unbounded size.
We could then use a bit of model theory—the ultraproduct construction—to obtain an infinite hypergraph
together with some measures in which νV (

⋂
I∈(V

k)
AI) = 0 for a family of sets AI corresponding to the

graph we are trying to remove. By the previous theorem, we would have an arbitrarily small family of
definable sets BI , and we would then argue that that these sets correspond to sets in the finite models
whose removal causes the removal of all copies of the hypergraph. The only remaining difficulty in this
argument is showing that the measure we obtain has J-regularity for all J ⊆V .

In the remainder of this section, we carry out the proof for the dense case of hypergraph removal; this
will necessarily involve some model theory.

Lemma 5.4. Suppose that for each J ⊆V , νJ is a probability measure on BJ such that

• For any B ∈BV , the function xV\J 7→ νJ(B(xV\J)) is measurable with respect to BV\J , and

• For any L∞(νV ) function f ,
∫

f dνV =
∫∫

f dνJdνV\J .

Then νV has J-regularity for every J ⊆V .

Proof. We have ∫
(g−E(g |BV,I∧J))∏

I
fI dν

V

=
∫
(g−E(g |BV,I∧J))∏

I
fI dν

Jdν
V\J.
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For each aV\J , the function ∏I fI(aI\J,xI∩J) is measurable with respect to BV,<J , so we have∫
(g−E(g |BV,I∧J))∏

I
fI dν

J = 0.

Since this holds for every aV\J , the claim follows by integrating over all choices of aV\J .

Definition 5.5. Let K,A be k-uniform hypergraphs on vertex sets V (K),V (A) respectively. π : V (K)→
V (A) is a homomorphism if whenever e ∈ K, π”e ∈ A. (That is, π maps edges to edges.) hom(K,A) is
the number of distinct homomorphisms from K to A. If K,A are k-uniform hypergraphs, we write

d(K,A) =
hom(K,A)
|V (A)||V (K)| .

Theorem 5.6 (Hypergraph Removal). For every k-uniform hypergraph K and constant ε > 0, there is a
δ such that whenever A is a finite k-uniform hypergraph with d(K,A)< δ , there is a subset L of A with
|L| ≤ ε

(|V (A)|
k

)
such that hom(K,A\L) = 0.

Proof. Suppose not. Let K,ε be a counterexample, and since there is no such δ , for each n we may
choose a k-uniform hypergraph An with d(K,An)< 1/n such that there is no such subset L of An. Clearly
|V (An)| → ∞. We view each An as a model, with Mn = V (An) the set of points, An a k-ary relation
on V (An), and predicates making the normalized counting measure νJ

n on V (An)J definable for each
J ⊆ V (K). In particular, this means the counting measure is a uniformly definable Keisler probability
measure.

Let V =V (K). For each I ∈ K, let An
I = {xV | xI ∈ An}. Note that the homomorphisms from K to An

consist exactly of the elements of ⋂
I∈K

An
I ,

and therefore d(K,An) = νV
n (
⋂

I∈K An
I ). In particular, we have νV

n (
⋂

I∈K An
I )→ 0.

Now take an ultraproduct of the models (Mn,An, . . .) to obtain M = (M,A, . . .). (See [26] for the
construction and, in particular, the demonstration that the measures defined by νJ , the ultraproduct of the
νJ

n , extend to probability measures on BJ .) By [39, 40] (or see Section 7), the conditions in the statement
of Lemma 5.4 hold in M, and therefore νV has I-regularity for all I ⊆V . We have νV (

⋂
I∈K AI) = 0, and

therefore by the previous theorem, there are BI ∈B0
V,I such that νV (E \BI)<

ε

|K| and
⋂

I∈K BI = /0. Let

C =
⋃

I(AI \BI), so ν [1,k](L)< ε . L is definable from parameters in M, and therefore⋂
I∈K

(AI \L) = /0

is a formula, which is therefore satisfied by the corresponding set in almost every (Mn,An, . . .). Let Ln be
the set defined in the model (Mn,An, . . .) by the formula defining L. Then there is some sufficiently large
n such that (νn)V (Ln)< ε but

⋂
I∈K(A

n
I \Ln) = /0, contradicting the assumption.

Note that this argument, essentially unchanged, also gives variants like directed removal [2] (note that
we never require the sets AI to be symmetric) or removal of colored graphs [4] (take the AI to be any of
several sets, one corresponding to each color).
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Our goal is to obtain the same result when A is not a dense hypergraph, but rather a dense subset
of a sparse random graph. The main idea is that we will replace νV with a measure concentrating on
the sparse pseudorandom graph; however this will not satisfy the easy Fubini decomposition we used
for the dense case, so we will need to use the pseudorandomness—plus a large amount of additional
machinery—to prove that the resulting measures nonetheless have regularity.

6 Pseudorandomness and the Fubini Property

In this section we examine the Fubini property of measures more carefully as a property of pseudorandom
hypergraphs. The Fubini properties tell us that different methods of counting homomorphic copies of
E give the same values. For instance

∫
f (xV )dµV

E, /0 is the expected value if we choose a copy xV of E at
random and evaluate f (xV ). On the other hand

∫∫
f (xV )dµ

V0
E,xV1

dµ
V1
E, /0 is the expected value of the process

where we first choose a copy of (V1,E � [V1]
k) at random, and then extend this copy to a copy of E at

random and evaluate f on the result.
For a simple example where these processes differ, consider the graph with vertex set G0∪G1 (with

G0∩G1 = /0) where |G0|= 2n, |G1|= n2/3, and take Γ to be the graph whose edges consist of a matching
on G0 (that is, exactly n edges with each vertex in G0 an endpoint of exactly one of them) and all possible
edges on G1. Then when n is large, almost all edges of Γ belong to the complete subgraph G1 while
almost all vertices belong to G0. Let V = {0,1} and E be just the edge connecting 0 to 1. Then µV

E, /0
simply counts edges in Γ, and so

∫
χG0×G0(xV )dµV

E, /0 is the fraction of edges contained in G0—namely,
almost none of them, so

∫
χG0×G0(xV )dµV

E, /0 → 0 as n→ ∞. On the other hand, taking V0 = {0} and
V1 = {1},

∫∫
χG0×G0(xV )dµ

V0
E,xV1

dµ
V1
E, /0 is the average where we first select a vertex xV1—which, with high

probability, belongs to G0—and then choose a second vertex xV0 from among those vertices connected to
xV1 (that is, we only consider those extensions which actually give copies of E); when xV1 ∈ G0, xV0 is,
with high probability, its matched element, so

∫∫
χG0×G0(xV )dµ

V0
E,xV1

dµ
V1
E, /0→ 1.

To avoid examples like this, we need a finitary analog of the Fubini property, which will serve as
the pseudorandomness property we demand that our hypergraphs have. As might be inferred from the
example above, in finite hypergraphs we ask not for exact equality, but for approximate equality.

Definition 6.1. Let (G,Γ) be a k-uniform hypergraph with G finite and let V0,V1,W be disjoint sets and
E ⊆

(V0∪V1∪W
k

)
. We write Eδ

V0,V1,W,E ⊆ ΓW
E, /0 for the set of tuples aW ∈ ΓW

E, /0 such that there is some partition
V =V0∪V1 such that ∫  |ΓV1

E,xV0∪aW
| · |ΓV0

E,aW
|

|ΓV
E,aW
|

−1

2

dµ
V0
E,aW
≥ δ .

We say of (G,Γ) that it δ -consistently counts copies of (U,E) if whenever V0∪V1∪W is a partition of
U , µW

E, /0(E
δ
V0,V1,W,E)< δ . We say of (G,Γ) that it δ ,d-consistently counts copies ((δ ,d)-ccc) if whenever

|U | ≤ kd and |E| ≤ d, Γ δ -consistently counts copies of (U,E).

Note that
|ΓV

E,aW
|

|ΓV0
E,aW
|

is the average number of ways that a copy of V0 can be extended to a copy of V1—that
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is,
∫

Γ
V1
E,xV0∪aW

dµ
V0
E,aW

=
|ΓV

E,aW
|

|ΓV0
E,aW
|
. Then consistently counting copies requires that most xV0 actually have

close to an average number of extensions. The further complication is that we allow an exceptional set of
background parameters, the set Eδ

V0,V1,W,E , so long as this set is small.
In the graph case, this follows from the more familiar notion of bi-jumbled graphs [45] which shows

up in proofs of sparse graph removal [14, 41]. Recall that Γ is (p,β )-bi-jumbled if for any sets of vertices
X ,Y ,

| |(X×Y )∩Γ|− p|X | · |Y | | ≤ β
√
|X | · |Y |.

Lemma 6.2. For every graph (U,E) there is a d such that for each δ there is a γ so that whenever
(G,Γ) is a (p,γ pdn)-bi-jumbled graph with n = |G| and p = |Γ|/n2, (G,Γ) δ -consistently counts copies
of (U,E).

More generally, we wish to verify that (δ ,d)-ccc is a notion of pseudorandomness. To do ths, we
need to verify that when Γ is chosen randomly and not too sparsely then, with high probability, Γ

(δ ,d)-consistently counts copies of (U,E). More precisely, for p ∈ (0,1), fix the distribution Gk(n, p)
on k-uniform hypergraphs with n vertices is given by fixing a set G of vertices with |G|= n and assigning
probability pe(1− p)(

G
k)−e to each hypergraph Γ with e vertices.

Equivalently, Γ is chosen randomly according to Gk(n, p) if each edge belongs to Γ independently
with probability p. With high probability, Γ should have roughly p

(n
k

)
edges. When we say Γ is sparse,

we mean we are considering the case where p→ 0 as n→ ∞. By “not too sparse”, we mean that p is on
the order of n−1/r for some positive natural number r.

The first step is to prove that, when r is large enough, most random graphs have roughly the right
number of small subgraphs. For graphs this is quite standard [6], and the proof readily generalizes to
hypergraphs [19].

Lemma 6.3. For any k-uniform hypergraph (U,E), there is a sufficiently large r so that for any δ ,ε > 0,
for sufficiently large n, whenever |G| = n and Γ ⊆

(G
k

)
is chosen randomly according to Gk(n,n−1/r),

with probability ≥ 1− ε , ∣∣∣|ΓU
E, /0|−n|U |p|E|

∣∣∣< δn|U |p|E|.

Proof. For each xU ∈
(G

U

)
, let IxU be the indicator variable which is equal to 1 exactly when xU ∈ ΓU

E, /0.
For any xU , we have E(IxU ) = p|E|. We have

|ΓU
E, /0|= ∑

xU∈(G
U)

IxU ,

so
∣∣∣E(|ΓU

E, /0|)−n|U |p|E|
∣∣∣< δn|U |p|E|/2.
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Then we have

Var(|ΓU
E, /0|) = Var(∑

xU

IxU )

= ∑
xU ,yU

Cov(IxU , IyU )

= ∑
xU ,yU

(E(IxU IyU )−E(IxU )E(IxV ))

= ∑
xU ,yU

(P(IxU = 1, IyU = 1)− (P(IxU = 1))2)

= ∑
xU ,yU

(P(IxU = 1, IyU = 1)− p2|E|).

P(IxU = 1, IyU = 1) is equal to p2|E|−|E ′| where (U ′,E ′) is the induced sub-hypergraph of (U,E)
isomorphic to the overlap between xU and yU . The terms where |F ′|= 0—that is, where xU and yU are
disjoint (or at least have disjoint edges)—vanish. For each induced sub-hypergraph (U ′,E ′) of (U,E),
there are Θ(n2|U |−|U ′|) pairs xU ,yU whose overlap is (U ′,E ′), so for some C0,C1 depending only on (U,E)
(and independent of r,n,ε,δ )

Var(|ΓU
E, /0|)≤ ∑

(U ′,E ′)⊆(U,E),|E ′|6=0
C0n2|U |−|U ′|(p2|E|−|E ′|− p2|E|)

≤ ∑
(U ′,E ′)⊆(U,E),|E ′|6=0

C1n2|U |−|U ′|p2|E|−|E ′|.

So picking U ′ ⊆U maximizing n2|U |−|U ′|p2|E|−|E ′|, we have

Var(|ΓU
E, /0|)≤C2n2|U |−|U ′|p2|E|−|E ′|

for some C independent of r,n,ε,δ .
In particular, by Chebyshev’s inequality, for ε > 0,

P(
∣∣∣|ΓU

E, /0|−n|U |p|E|
∣∣∣≥ δn|U |p|E|/2)

≤P(
∣∣∣|ΓU

E, /0|−E(n|U |p|E|)
∣∣∣≥ (δ/2)n|U |p|E|)

=P(
∣∣∣|ΓU

E, /0|−E(n|U |p|E|)
∣∣∣≥ (δn|U

′|/2 p|E
′|/2/4C)(Cn|U |−|U

′|/2 p|E|−|E
′|/2))

≤ 4C2

δ 2n|U ′|p|E ′|
.

When r > |E ′|
|U ′| , we have n|U

′|p|E
′| > n|U

′|−|E ′|/r → ∞, so this probability gets small as n→ ∞. So by

choosing n large enough, we can ensure that 4C2

δ 2n|U ′ |p|E′ |
< ε , and so with probability ≥ 1− ε ,∣∣∣|ΓU

E, /0|−n|U |p|E|
∣∣∣< δn|U |p|E|

with high probability.
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Lemma 6.4. For any k-uniform hypergraph (V ∪W,E) there is a sufficiently large r so that for any
δ ,ε > 0 and sufficiently large n, when |G|= n and Γ⊆

(G
k

)
is chosen randomly according to Gk(n,n−1/r),

with probability ≥ 1− ε ,

∫ (
|ΓV

E,xW
|−
|ΓV∪W

E, /0 |
|ΓW

E, /0|

)2

dµ
W
E, /0 < δn2|V |p2(|E|−|E�[W ]2|).

Proof. Let EW = E � [W ]2 and EV = E \EW . We choose r large enough so that we can apply the previous
lemma to several hypergraphs based on (V ∪W,E), to be determined in the course of the proof. We can
then choose δ ′ sufficiently small relative to δ . Then, by the previous lemma, when n is large enough we
have ∣∣∣|ΓW

E, /0|−n|W |p|EW |
∣∣∣< δ

′n|W |p|EW |.

Let IxW (xV ) be the indicator function which is 1 when xV ∈ ΓV
E,xW

, so |ΓV
E,xW
| = ∑xV∈(G

V)
IxW (xV ).

Expanding the integral gives

∫ (
|ΓV

E,xW
|−
|ΓV∪W

E, /0 |
|ΓW

E, /0|

)2

dµ
W
E, /0 =

∫
∑

xV∈(G
V),yV∈(G

V)

IxW (xV )IxW (yV )dµ
W
E, /0−

(
|ΓV∪W

E, /0 |
|ΓW

E, /0|

)2

.

Consider the graph ((V ×{0,1})∪W,E +V ) whose edges have the form

(J∩W )∪{(v,ω(v)) | v ∈ J∩V}

for J ∈ E and ω : J∩V →{0,1}. Then we have∫
∑

xV∈(G
V),yV∈(G

V)

IxW (xV )IxW (yV )dµ
W
E, /0 =

∫
∑

xV∈(G
V),yV∈(G

V),xV∩yV= /0

IxW (xV )IxW (yV )dµ
W
E, /0

+
∫

∑
xV∈(G

V),yV∈(G
V),xV∩yV 6= /0

IxW (xV )IxW (yV )dµ
W
E, /0

=
|Γ((V×{0,1})∪W,E+V )

E+V, /0 |
|ΓW

E, /0|

+
∫

∑
xV∈(G

V),yV∈(G
V),xV∩yV 6= /0

IxW (xV )IxW (yV )dµ
W
E, /0.

When r is sufficiently large (depending only on (V,E)), we have∫
∑

xV∈(G
V),yV∈(G

V),xV∩yV 6= /0

IxW (xV )IxW (yV )dµ
W
E, /0 ≤Cn2|V |−1 < (δ/2)n2|V |p2|EV |

and
∣∣∣|Γ((V×{0,1})∪W,E+V )

E+V, /0 |−n|W |+2|V |p|EW |+2|EV |
∣∣∣< δ ′n|W |+2|V |p|EW |+2|EV | once n is sufficiently large.
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Therefore ∫ (
|ΓV

E,xW
|−
|ΓV∪W

E, /0 |
|ΓW

E, /0|

)2

dµ
W
E, /0 < δn2|V |p2|EV |.

Corollary 6.5. For any k-uniform hypergraph (V ∪W,E) there is a sufficiently large r so that for any
δ ,ε > 0 and sufficiently large n, when |G|= n and Γ⊆

(G
k

)
is chosen randomly according to Gk(n,n−1/r),

with probability ≥ 1− ε , the set of aW such that∣∣∣|ΓV
E,aW
|−n|V |p|E|−|E�[W ]2|

∣∣∣≥ δn|V |p|E|−|E�[W ]2|

has size < εn|W |p|E�[W ]2|.

Proof. By the previous lemma together with Chebyshev’s inequality, we can choose n large enough

that the set of aW such that
∣∣∣∣|ΓV

E,aW
|− |Γ

V∪W
E, /0 |
|ΓW

E, /0|

∣∣∣∣ ≥ (δ/2)n|V |p|E�[W ]2| has size ≤ ε with probability ≥

1− ε/2. Additionally, using Lemma 6.3, we can choose n large enough that with probability ≥ 1− ε/2,∣∣∣∣ |ΓV∪W
E, /0 |
|ΓW

E, /0|
−n|V |p|E|−|E�[W ]2|

∣∣∣∣< (δ/2)n|V |p|E�[W ]2|.

Theorem 6.6. For any k-uniform hypergraph (U,E) there is a sufficiently large r so that for any δ ,ε > 0
and sufficiently large n, when |G|= n and Γ⊆

(G
k

)
is chosen randomly according to Gk(n,n−1/r), with

probability ≥ 1− ε , Γ δ -consistently counts copies of (U,E).

Proof. Consider any partition U = V0 ∪V1 ∪W . Corollary 6.5 allows us to show that Γ
V0∪V1
E,aW

and

Γ
V0∪(V1×{0,1})
E+V1,aW

have close to the right size for most aW . We may repeat the proof of Lemma 6.4 for
each such aW to show that

∫ (
|ΓV0∪W

E,xV0∪aW
|−
|ΓV0∪V1∪W

E,aW
|

|ΓV0∪W
E,aW
|

)2

dµ
W
E,aW

< δn2|V1|p2(|E|−|E�[V0∪W ]2|)

To our knowledge, (δ ,d)-ccc is not quite identical to any other notion of pseudorandomness in the
literature [11, 16]. When thinking in terms of model theory, as we are here, it is natural to consider only
those sets which are definable, and as a result, all the sets we consider have a rate of growth from some
small fixed list—in our case, we only need to worry about the behavior of sets X where |X | is O(np) for
finitely many choices of p. The definition of notions like bi-jumbledness, on the other hand, ranges over
all possible sets. In practice, however, this is no difference; a given proof using a pseudorandomness
assumption only uses the assumption for a fixed list of sets, which have a fixed list of rates of growth. In
particular, we expect that the proofs in [14, 41] go through unchanged if one replaces the assumption
that the ambient graph is (p,β )-bi-jumbled with the assumption that it is (δ ,d)-ccc with an appropriate
choice of parameters.

We observe that δ ,d-ccc implies an approximate version of the Fubini property.
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Lemma 6.7. Suppose aW 6∈ Eδ 2

V,W,E . Then whenever V =V0∪V1 is a non-trivial partition and A⊆ ΓV
E,aW

,

∣∣∣∣µV
E,aW

(A)−
∫

µ
V1
E,xV0∪aW

(A(xV0))dµ
V0
E,aW

∣∣∣∣< δ .

Proof. We have

µ
V
E,aW

(A) =
|A∩ΓV

E,aW
|

|ΓV
E,aW
|

= ∑
xV0∈Γ

V0
E,aW

|A(xV0)∩Γ
V1
E,xV0∪aW

|
|ΓV

E,aW
|

=
∫
|A(xV0)∩Γ

V1
E,xV0∪aW

|
|ΓV0

E,aW
|

|ΓV
E,aW
|
dµ

V0
E,aW

=
∫ |A(xV0)∩Γ

V1
E,xV0∪aW

|

|ΓV1
E,xV0∪aW

|
dµ

V0
E,aW

−
∫ |A(xV0)∩Γ

V1
E,xV0∪aW

|

|ΓV1
E,xV0∪aW

|

 |ΓV0
E,aW
| · |ΓV1

E,xV0∪aW
|

|ΓV
E,aW
|

−1

dµ
V0
E,aW

.

=
∫

µ
V1
E,xV0∪aW

(A(xV0))dµ
V0
E,aW

−
∫

µ
V1
E,xV0∪aW

(A(xV0))

 |ΓV0
E,aW
| · |ΓV1

E,xV0∪aW
|

|ΓV
E,aW
|

−1

dµ
V0
E,aW

.

So it suffices to observe that, since µ
V1
E,xV0∪aW

(A(xV0))≤ 1,

∣∣∣∣∣∣
∫

µ
V1
E,xV0∪aW

(A(xV0))

 |ΓV0
E,aW
| · |ΓV1

E,xV0∪aW
|

|ΓV
E,aW
|

−1

dµ
V0
E,aW

∣∣∣∣∣∣
≤

√√√√√∫ µ
V1
E,xV0∪aW

(A(xV0))
2dµ

V0
E,aW

∫  |ΓV0
E,aW
| · |ΓV1

E,xV0∪aW
|

|ΓV
E,aW
|

−1

2

dµ
V0
E,aW

≤
√

δ 2.

since aW 6∈ Eδ 2

V,W,E .
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7 Models

In this section we deal with the passage from a sequence of finite hypergraphs (for our purposes, a
sequence of hypothetical counterexamples to hypergraph removal) to a single infinitary hypergraph. This
requires the use of some model theory to produce an ultraproduct with suitable properties.

We will refer to our models as M,N, and to the corresponding universes of these models as M,N
respectively. We will refer to formal variables in the language of first-order logic with the letter w,
reserving the letters x,y and so on for elements of models (for instance, when integrating over a model).
We will often refer to fixed elements of a model (used as constants or parameters) with the letters a,b,c.
In keeping with our tuple notation, we will often refer to finite sets of variables as wV ,wW , etc..

Recall that when ϕ is a formula with free variables wV , M is a model of first-order logic, and xV ∈MV ,
we write M � ϕ(xV ) to indicate that the formula holds when we interpret each free variable wv by the
element xv. A set B⊆MV is definable if B = {xV |M � ϕ(xV )} for some formula ϕ . When the model
M is clear from context, we will often equate formulas with the sets they define—for instance, if B
is a definable set, we will also consider B to be the formula defining this set, so by abuse of notation,
B = {xV |M � B(xV )}. We say B is definable from parameters if B =C(aW ) for some definable set C.

Similarly, when f is a simple function built from sets definable from parameters, so f = ∑i≤n αiχCi

where each αi is rational and each Ci is definable from parameters, we some view f as being a “rational
linear combination” of formulas, and refer to the union of the parameters defining all the sets Ci as the
parameters of f .

From here on, for any V , we understand B0
V to be the collection of sets of V -tuples definable (with

parameters) in the model M (which will always be clear from context).
In our infinitary setting, we no longer have the underlying counting measures to refer to, so we will

have to define formally the properties we want a family of measures to have. We will use the meta-variable
µ for a family of probability measures—technically, a function from appropriate finite sets to probability
measures, so when µ is a family of probability measures, µV

E,xW
is an actual probability measure for

suitable values of V , E, xW .

Definition 7.1. Let M be a model. We say µ is a weakly canonical family of probability measures of
degree k and size d if for any finite sets V,W with V ∩W = /0, any k-uniform hypergraph E on V ∪W
with |E| ≤ d, and any xW ∈MW , a probability measure µV

E,xW
on BV such that:

(1) For µW
E, /0-almost-every xW , µV

E,xW
is a definable Keisler probability measure,

(2) If no edges in E contain both w and an element of V then µV
E,xW∪{w}

= µV
E,xW

,

(3) If π : V0 ∪W0 → V1 ∪W1 is a bijection mapping V0 to V1 and W0 to W1 and π(E0) = E1 then
µ

V0
E0,xW0

= µ
V1
E1,xπ(W0)

.

We say µ is a canonical family of probability measures if additionally

(4) When V = V0 ∪V1, V0 ∩V1 = /0, for µW
E, /0-almost every xW these measures satisfy the Fubini

properties ∫
·dµ

V
E,xW

=
∫∫
·dµ

V1
E,xV0∪xW

dµ
V0
E,xW

.
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Weak canonicity merely enforces a certain amount of uniformity on these measures—the second
condition requires that xw only matters if there is an edge connecting w to a vertex in V , and the third
condition says that the measures depend only on the isomorphism class of the hypergraph (V ∪W,E), not
the particular choice of indices to represent it. The Fubini condition is non-trivial, and it is ensuring this
property that requires us to work only with sufficiently pseudorandom sparse hypergraphs.

The Fubini property obviously implies that we can exchange the order of integrals:∫∫
·dµ

V1
E,xV0∪xW

dµ
V0
E,xW

=
∫∫
·dµ

V0
E,xV1∪xW

dµ
V1
E,xW

.

In this form, the property is essentially the measure-invariance property which characterizes graphings,
which are the limits of extremely sparse graphs (usually bounded degree, and therefore much sparser than
the graphs discussed in this paper); see [21].

The natural language to begin with is a language with two k-ary relations, one for the ambient
hypergraph Γ and one for a sub-hypergraph A. We wish to work in models which have two additional
features: first, the model actually includes formulas defining all of the measures in the family µ . Second,
for technical reasons, the model contains extra function symbols max which pick out values maximizing
certain integrals. (The construction of such languages has appeared a few times: see [37, 60], and a
general theory of constructions of this kind is given in [27].)

Definition 7.2. Let L be a language of first-order logic containing a k-ary relation symbol γ , and let d be
given. Lγ,d is the smallest language containing L such that:

• Whenever ϕ(wV ,wW ,wP) is a formula with the displayed free variables, W is a set disjoint from V ,
E is a k-uniform hypergraph on V ∪W with |E| ≤ d, and q ∈ [0,1] is rational, there are formulas

mV
E,wW
≤ q.ϕ

and
mV

E,wW
< q.ϕ

with free variables wW ,wP, and

• Whenever E is a k-uniform hypergraph with ≤ d edges on a vertex set V , V =V0∪V1 is a partition
of V , W and P are finite sets with V,W,P pairwise disjoint, f is a rational linear combination
of formulas with free variables wW ,wV , and ϕ(wW ,wP,wV ) is a formula with the displayed free
variables, for each p ∈ P there is a function symbol maxE,V0, f ,ϕ

p (wW ,wV0).

Note that the formulas mV
E,wW

≤ q.ϕ and mV
E,wW

< q.ϕ bind the variables wV . We will “abbreviate”
these formulas as mV

E,wW
(ϕ) ≤ q and mV

E,wW
(ϕ) < q respectively. We will abbreviate ¬mV

E,wW
(ϕ) ≤ q

by mV
E,wW

(ϕ)> q and ¬mV
E,wW

(ϕ)< q by mV
E,wW

(ϕ)≥ q. We view {maxE,V0, f ,ϕ
p (wW ,wP,wV0)}p∈P as a

tuple maxE,V0, f ,ϕ
P (wW ,wV0) of function symbols.

Definition 7.3. If M is a finite model of L and Γ = γM is the interpretation of γ in this model, we expand
M to a model MΓ,d of Lγ,d by interpreting, for any aW ∈MW ,

MΓ,d � mV
E,aW

(B)≤ q
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to hold iff
µ

V
E,aW

(B)≤ q

whenever B is definable from parameters, and similarly for mV
E,aW

(B)< q.
Suppose we have interpreted the formula ϕ and all the formulas defining the simple function f . Let B

be the set defined by ϕ . For each aW ∈MW ,xV0 ∈MV0 , we choose (maxE,V0, f ,ϕ
P (aW ,xV0))

MΓ,d
to be some

tuple bP maximizing
∣∣∣∫ f χB(aW ,xV0 ,bP) dµ

V1
E,xV0

∣∣∣.
Note that we consistently use m to refer to the formula of first-order logic describing a measure, and

µ to the actual measure corresponding to m. Also, note that in the interpretation of maxE,V0, f ,ϕ
P (aW ,xV0),

B depends on aW ,xV , and bP, while f depends on only aW and xV .
Let L be the language consisting of two k-ary relation symbols, γ and α .

Theorem 7.4. Let ε > 0. Suppose that for each n, Γn is a δn,d-ccc k-uniform hypergraph where δn→ 0,
and let An ⊆ Γn be given with |An| ≥ ε|Γn|. Then each Mn = (Γn,An) is a model of L. Let U be an
ultrafilter on N and let M be the ultraproduct of the models MΓn,d

n . Then M is a model of Lγ,d such that:

(1) M � σ iff for U-almost-every n, MΓn,d
n � σ .

(2) There is a canonical family of probability measures of degree k and size d, µV
E,xW

on the σ -algebra
generated by the definable subsets of MV such that whenever B is definable from parameters,

µ
V
E,aW

(B) = inf{q ∈Q>0 |M � mV
E,aW

(B)< q}.

(3) µ
[1,k]
{[1,k]}(A)≥ ε .

(4) Whenever E is a k-uniform hypergraph with ≤ d edges on a vertex set V ∪W, V = V0 ∪V1 is
a partition of V , W and P are finite sets with V,W,P pairwise disjoint, f is a rational linear
combination of formulas with free variables wW ,wV , and ϕ(wW ,wP,wV ) is a formula with the
displayed free variables, for almost every aW ∈MW ,bP ∈MP,xV0 ∈MV0 ,∣∣∣∣∫ f χ

B(aW ,xV0 ,maxE,V0 , f ,ϕ
P (aW ,xV0 ))

dµ
V1
E,xV0

∣∣∣∣≥ ∣∣∣∣∫ f χB(aW ,xV0 ,bP) dµ
V1
E,xV0

∣∣∣∣ .
Proof. (1) The first part is the standard Łoś Theorem for ultraproducts.

(2) That the measures µV
E,aW

defined as in the statement extend to genuine probability measures on BV is
the standard Loeb measure construction. The measures µV

E,aW
in the finite models are uniformly definable

Keisler measures, and so the measures µV
E,aW

are definable Keisler measures as well (see [27] for details).
This satisfies the first requirement of weak canonicity. The second and third requirements in the definition
of weak canonicity are implied by formulas saying that certain measures are equal—for instance, the
second requirement is implied by formulas of the form

∀xW∀xw∀y(mV
E,xW∪{w}

≤ q.φ(z,xW ,y)↔ mV
E,xW
≤ q.φ(z,xW ,y)).
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These formulas are all satisfied in all the finite models, and so by the first part, are also satisfied in M. It
follows that the family µ is weakly canonical of degree k and size d.

Note that the formulas satisfied by mV
E,aW

in M and the actual measure µV
E,aW

almost line up: when B is
definable from parameters, if µV

E,aW
(B)< q then M � mV

E,aW
(B)< q, but if M � mV

E,aW
(B)< q then we

can only be sure that µV
E,aW

(B)≤ q.

To see that the measures µV
E,aW

are actually canonical, it suffices to show that for each B ∈ B0
V and

µW
E, /0-almost every xW ∈MW ,

µ
V
E,xW

(B(xW )) =
∫

µ
V1
E,xV0∪xW

(B(xW ))dµ
V0
E,xW

.

Suppose not; then for some set B definable from parameters, there is a set of xW of positive measure such
that this equality fails. It follows that for some rational δ > 0 there is a set X0 of xW of positive measure
such that ∣∣∣∣µV

E,xW
(B(xW ))−

∫
µ

V1
E,xV0∪xW

(B(xW ))dµ
V0
E,xW

∣∣∣∣> δ .

We need to approximate the integral in this definition closely enough by a formula to let us define a
set of points where this violation occurs. Consider the function fxW (xV0) = µ

V1
E,xV0∪xW

(B(xW )). We have
0≤ fxW (xV0)≤ 1.

Integrals are not directly definable in our language, and there are many ways a function could have a
given integral—for instance, by having a small number of points where the value is large, or a larger
number of points where the value is smaller. However we will show that there must be a set of positive
measure where the functions fxW not only all have nearly the same integral, but all these integrals can be
finitely approximated using the same level sets. This will allow us to write down a formula defining a set
of points of positive measure, and with the property that every point satisfying this formula belongs to X0.

We may partition the interval [0,1] into finitely many intervals Ii = [δi,δi+1) of size < δ/8 and with
rational endpoints. Let us set Πi(xW ) = {xV0 | fxW (xV0) ∈ Ii} and πi(xW ) = µ

V0
E,xW

(Πi(xW )), so when
xW ∈ X0, ∑i δiπi(xw)≤

∫
fxW dµ

V0
E,xW

< ∑i δiπi(xW )+δ/8.

We choose X1 ⊆ X0 of positive measure and, for each i, an interval Ji = (ηi,η
′
i ) with rational end points

such that πi(xW ) ∈ Ji for each xW ∈ X1 and

∑
i

δi+1η
′
i < ∑

i
δiηi +δ/4.

Choose a rational σ > 0 very small, and let

Π
′
i(xW ) = {xV0 |M � mV1

E,xV0∪xW
(B(xW ))< δi+1

∧ mV1
E,xV0∪xW

(B(xW ))> δi−σ}.

Then Πi(xW ) ⊆ Π′i(xW ) and Π′i(xW ) is definable. Let π ′i (xW ) = µ
V0
E,xW

(Π′i(xW )). By choosing σ small
enough, we may find a set X2 ⊆ X1 of positive measure so that for xW ∈ X2, each π ′i (xW ) ∈ Ji as well.
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Now we may consider the set Θ of xW such that

∀i
(
M � mV0

E,xW
(Π′i(xW ))< η

′
i ∧mV0

E,xW
(Π′i(xW ))> ηi

)
.

Note that Θ is definable from parameters and X2 ⊆Θ.

Consider any xW ∈Θ, not necessarily in X2. Since each µ
V0
E,xW

(Π′i(xW ))≤ η ′i ,∫
µ

V1
E,xV0∪xW

(B(xW ))dµ
V0
E,xW
≤∑

i
δi+1η

′
i < ∑

i
δiηi +δ/4.

On the other hand, since each µ
V0
E,xW

(Π′i(xW ))≥ ηi,∫
µ

V1
E,xV0∪xW

(B(xW ))dµ
V0
E,xW
≥∑

i
(δi−σ)ηi > ∑

i
δiηi−δ/4

(since we chose σ small enough).

So when xW ∈Θ, we have

∑
i
(δi−σ)ηi−δ/4 <

∫
µ

V1
E,xV0∪xW

(B)dµ
V0
E,xW

< ∑
i

δiηi +δ/4.

Therefore when xW ∈ X2⊆ X0∩Θ, we must have either µV
E,xW

(B(xW ))<∑i δiηi−δ/2 or µV
E,xW

(B(xW ))>

∑i δiηi +δ/2, and therefore

M �

(
mV

E,xW
(B(xW ))< ∑

i
δiηi−δ/2

)

∨

(
mV

E,xW
(B(xW ))> ∑

i
δiηi +δ/2

)
.

Let ψ be the conjunction of this formula with the formula defining Θ. Then we have M�ψ(xW ) whenever
xW ∈ X2, and therefore M � mW

E (ψ)> ζ for some ζ > 0. We also have that whenever M � ψ(xW ), it is

actually true that
∣∣∣µV

E,xW
(B(xW ))−

∫
µ

V1
E,xV0∪xW

(B(xW ))dµ
V0
E,xW

∣∣∣> δ .

Since the formula mW
E (ψ)> ζ holds in the ultraproduct, it also holds in infinitely many finite models.

But any finite model where this holds fails to satisfy the conclusion of Lemma 6.7, and therefore fails to
be ζ ,d-ccc. This contradicts the assumption that the finite models are δn,d-ccc with δn→ 0.

(3) The third requirement follows immediately the Łoś Theorem: the formula m[1,k]
{[1,k]}(A)≥ ε holds in

every finite model, and therefore in M as well, and therefore µ
[1,k]
{[1,k]}(A)≥ ε .

(4) Fortunately, the integral in this statement does not cause as much difficulty, since we do not need to
deal with it uniformly in parameters. Let f = ∑αiχCi . Whenever

∣∣∣∫ f χB(aW ,xV0 ,bP) dµ
V1
E,xV0

∣∣∣> ε for some
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ε , there is a formula holding of the parameters aW ,xV0 ,bP which is a conjunction of components of the
form

mV1
E,xV0

(Ci(aW ,xV0)∧B(aW ,bP,xV0))< q

or negations of such components, and which implies that the integral is≥ ε . But then this formula holds in

U-almost every finite model, which means that we must have
∣∣∣∣∫ f χ

B(aW ,xV0 ,maxE,V0 , f ,ϕ
P (aW ,xV0 ))

dµ
V1
E,xV0

∣∣∣∣≥ ε

in U-almost every finite model (where aP, etc., refer to the corresponding parameters in those finite

models). But then this formula also holds in M, so
∣∣∣∣∫ f χ

B(aW ,xV0 ,maxE,V0 , f ,ϕ
P (aW ,xV0 ))

dµ
V1
E,xV0

∣∣∣∣ ≥ ε in M.

Since this holds for every ε <
∣∣∣∫ f χB(aW ,xV0 ,bP) dµ

V1
E,xV0

∣∣∣, it follows that∣∣∣∣∫ f χ
B(aW ,xV0 ,maxE,V0 , f ,ϕ

P (aW ,xV0 ))
dµ

V1
E,xV0

∣∣∣∣≥ ∣∣∣∣∫ f χB(aW ,xV0 ,bP) dµ
V1
E,xV0

∣∣∣∣ .

8 Uniformity Seminorms

We give an outline of the remainder of our proof. We will work in the setting established in the previous
section—an infinite hypergraph together with a family of measures satisfying Fubini’s theorem—and by
our work in Section 5, it will suffice to show that these measures have regularity. In order to do this we
will introduce a family of seminorms, the Gowers uniformity seminorms [29], which will correspond
with the σ -algebras we introduced in Section 4. (The connection between the Gowers seminorms and
hypergraph regularity has been well-studied [3, 30, 31]. Infinitary versions were introduced by Host and
Kra [35], and have also been well-studied [36, 52, 53, 60].)

We want these seminorms to have the property that the seminorm || · ||
UV,I⊥

∞ (µV
E,aP

)
corresponds to the

σ -algebra BV,<V in the sense that

|| f ||
UV,I⊥

∞ (µV
E,aP

)
= 0⇔ ||E( f |BV,I)||L2(µV

E,aP
) = 0.

We develop the seminorms in three stages: we define the principal seminorms, which correspond to the
principal σ -algebras BV,<V ; the simple nonprincipal seminorms, which correspond to the σ -algebras
BV,<J for J ( V ; and the compound nonprincipal seminorms, which correspond to the remaining σ -
algebras. The left to right implication is fairly easy to show (Theorem 8.7 for the principal seminorms
and Theorem 8.18 for nonprincipal seminorms).

We will call UV
∞ (µ

V
E,aP

) characteristic when the right to left implication holds. We will show that when
the right seminorms are characteristic, the measure µV

E,aP
has regularity (Theorem 8.20), and therefore it

will suffice to show that the seminorms are characteristic.
We define a special class of measures generalizing the dense setting—product measures—and the

structure of our argument is as follows (with all theorems assuming we have a canonical family of
measures of sufficient size and degree):
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(1) Principal seminorms over a product measure are characteristic. This argument is essentially
standard; we give it in Theorem 8.9.

(2) Simple nonprincipal seminorms over a product measure are characteristic (Lemma 8.25).

(3) All seminorms over a product measure are characteristic (Theorem 8.26). This step proceeds
inductively, using the inductive hypothesis with Theorem 8.20 to show that the measure has
J-regularity.

(4) Principal seminorms over arbitrary measures are characteristic (Theorem 9.1).

(5) We now repeat (2) and (3) over an arbitrary measure, showing that all seminorms are characteristic.

8.1 Seminorms for Principal Algebras

Fix disjoint sets V,P and a k-uniform hypergraph E ⊆
(V∪P

k

)
; let m = |E ∩

(P
k

)
| and let µ be a canonical

family of measures of degree k and size ∑I∈E 2|I∩V |. Let aP be such that the measure µV
E,aP

, and the
measures we generate from it below, satisfy the appropriate Fubini properties. (We will only work with a
finite family of measures, so the set of such aP has µP

E -measure 1.) To avoid repeating the background
parameters aP over and over, we will write µV

E as an abbreviation for µV
E,aP

and µV
E,xW

as an abbreviation
for µV

E,xW∪aP
.

We wish to introduce the Gowers uniformity seminorms. The basic idea is illustrated by the first
non-trivial case: if f (xv,xw) ∈ µ

{v,w}
/0 then we have

|| f ||4
U{v,w}E

=
∫

f (xv,xw) f (xv,xw′) f (xv′ ,xw) f (xv′ ,xw′)dµ
{v,v′,w,w′}
/0 .

We need to generalize this to the case where f (xv,xw) ∈ µ
{v,w}
{(v,w)}; the correct choice is

|| f ||4
U{v,w}E

=
∫

f (xv,xw) f (xv,xw′) f (xv′ ,xw) f (xv′ ,xw′)dµ
{v,v′,w,w′}
{(v,w),(v,w′),(v′,w),(v′,w′)}.

We first need to define the general operation mapping a measure like µ
{v,w}
{(v,w)} to one like µ

{v,v′,w,w′}
{(v,w),(v,w′),(v′,w),(v′,w′)}.

Definition 8.1. For each I ⊆V , we define µ
V+I
E = µ

(V\I)∪(I×{0,1})
EV+I where EV+I is given as follows: for

each J ∈ E and each ω : J∩ I→{0,1}, there is an edge Jω = (J \ I)∪{(i,ω(i)) | i ∈ J∩ I}.

The graph ((V \ I)∪ (I×{0,1}),EV+I) is the result of replacing the vertices I with two identical
copies of I. In our example above, µ

{v,v′,w,w′}
{(v,w),(v,w′),(v′,w),(v′,w′)} = µ

{v,w}+{v,w}
E (where, for greater generality,

we have renamed v to (v,0), v′ to (v,1), and similarly for w,w′).
Note that µ

V+ /0
E = µV

E . For i ∈ I, b ∈ {0,1}, we write xb
i in place of x(i,b); for instance, we write∫

f (xV\I,x
0
I ,x

1
I )dµ

V+I
E

where the variables being integrated over are exactly the ones displayed. If ω : I→{0,1}, we write xω
I

for the tuple xω
I (i) = xω(i)

i .
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Note that we chose the size of our measure to be ∑I∈E 2|I∩V | because this is precisely the size needed
to ensure Fubini properties for µ

V+V
E .

Definition 8.2. Let f : MV → R be an L∞(µV
E ), BV -measurable function with |V |= n. Define ‖ · ‖UV

∞ (µV
E )

by:

‖ f‖UV
∞ (µV

E )
=

(∫
∏

ω∈{0,1}V
f (xω

V )dµ
V+V
E

)2−n

.

Whenever we refer to the norm ‖ f‖UV
∞ (µV

E )
, we assume that f is L∞(µV

E ) and BV -measurable.
We have to check that the expression under the radical is non-negative. We actually prove the

following stronger lemma, which will be useful later.

Lemma 8.3. If f is an L∞(µV
E ) function and B is BV,I-measurable for some I (V then

0≤
∫

∏
ω∈{0,1}V

f (xω
V )χB(xω

V )dµ
V+V
E ≤

∫
∏

ω∈{0,1}V
f (xω

V )dµ
V+V
E .

Proof. It suffices to show the claim in the case when |I|= |V |−1. Since f = f χB + f χB, we have

∫
∏

ω∈{0,1}V
f (xω

V )dµ
V+V
E =

∫
∏

ω∈{0,1}V
[( f χB)(xω

V )+( f χB)(x
ω
V )] dµ

V+V
E .

Expanding the product gives a sum of 22n
terms of the form∫
∏

ω∈{0,1}V
( f χSω

)(xω
V )dµ

V+V
E

where each Sω is either χB or χB. We will show that each of these terms is non-negative. Since∫
∏ω∈{0,1}V f (xω

V )χB(xω
V )dµ

V+V
E is one of these terms, both inequalities follow.

Note that χSω
(xω

V ) depends only on xω
I . In particular, if there are any ω,ω ′ ∈ {0,1}V such that

ω(i) =ω ′(i) for all i∈ I but Sω 6= Sω ′ , then for any x0
V ∪x1

V , χSω
(xω

V ) = χSω
(xω

I ) = χSω
(xω ′

I ) 6= χS
ω ′ (x

ω ′
I ) =

χS
ω ′ (x

ω ′
V ). In particular, one of these two values must be 0, so the whole product is 0.

So we may restrict to the case where Sω depends only on ω � I. Let v be the unique element in V \ I
and let E ′ = E �

(I
k

)
. Then we have the decomposition

∫
·dµ

V+V
E =

∫∫
·dµ

v+v
E,x0

I∪x1
I
dµ

I+I
E ′ =

∫∫∫
·dµ

v
E,x0

I∪x1
I
dµ

v
E,x0

I∪x1
I
dµ

I+I
E ′ .

The second equality holds because the graph EV+V used to defined the measure µ
V+V
E does not contain
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any edges containing both (v,0) and (v,1). So we have

∫
∏

ω∈{0,1}V
( f χSω

)(xω
V )dµ

V+V
E

=
∫∫

∏
ω∈{0,1}V

( f χSω
)(xω

V )dµ
v
E,x0

I∪x1
I
dµ

v
E,x0

I∪x1
I
dµ

I+I
E ′

=
∫∫

∏
ω∈{0,1}I

f χSω
(xω

I ,x
0
v) ∏

ω∈{0,1}I

f χSω
(xω

I ,x
1
v)dµ

v
E,x0

I∪x1
I
dµ

v
E,x0

I∪x1
I
dµ

I+I
E ′

=
∫ (∫

∏
ω∈{0,1}I

f χSω
(xω

I ,xv)dµ
v
E,x0

I∪x1
I

)2

dµ
I+I
E ′

Since the inside of the integral is always non-negative, this term is non-negative.

In particular, since
∫

∏ω∈{0,1}V f (xω
V )dµ

V+V
E ≥ 0, ‖ f‖UV

∞ (µV
E )

is defined.

Next we want a Cauchy-Schwarz style inequality for these seminorms:

Lemma 8.4 (Gowers-Cauchy-Schwarz). Suppose that for each ω ∈ {0,1}V , fω is an L∞(µV
E ) function.

Then ∣∣∣∣∣
∫

∏
ω∈{0,1}V

fω(xω
V )dµ

V+V
E

∣∣∣∣∣≤ ∏
ω∈{0,1}V

‖ fω‖UV
∞ (µV

E )
.

Proof. Fix some v ∈V , and let I =V \{v}. Note that we have the decomposition

∫
·dµ

V+V
E =

∫∫
·dµ

v+v
E,x0

I∪x1
I
dµ

I+I
E =

∫∫∫
·dµ

v
E,x0

I∪x1
I
dµ

v
E,x0

I∪x1
I
dµ

I+I
E .

As above, the second equality holds because the graph in µ
V+V
E does not contain any edges containing

both (v,0) and (v,1). For ω ∈ {0,1}I and b ∈ {0,1}, let us write ωb for the element of {0,1}V given by
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(ωb)(i) = ω(i) if i ∈ I and (ωb)(i) = b if i = v. Therefore, using Cauchy-Schwarz, we have:∣∣∣∣∣
∫

∏
ω∈{0,1}V

fω(xω
V )dµ

V+V
E

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ (∫

∏
ω∈{0,1}V

fω(xω
I ,x

ω(v)
v )dµ

v+v
E,x0

I∪x1
I

)
dµ

I+I
E

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ (∫

∏
ω∈{0,1}I

fω0(xω
I ,x

0
v)dµ

v
E,x0

I∪x1
I

)(∫
∏

ω∈{0,1}I

fω1(xω
I ,x

1
v)dµ

v
E,x0

I∪x1
I

)
dµ

I+I
E

∣∣∣∣∣
2

≤
∫ (∫

∏
ω∈{0,1}I

fω0(xω
I ,xv)dµ

v
E,x0

I∪x1
I

)2

dµ
I+I
E

∫ (∫
∏

ω∈{0,1}I

fω1(xω
I ,xv)dµ

v
E,x0

I∪x1
I

)2

dµ
I+I
E

≤
∫

∏
ω∈{0,1}V

f(ω�I)0(x
ω
V )dµ

V+V
E

∫
∏

ω∈{0,1}V
f(ω�I)1(x

ω
V )dµ

V+V
E

In particular, applying this repeatedly to each coordinate in V , we have∣∣∣∣∣
∫

∏
ω∈{0,1}V

fω(xω
V )dµ

V+V
E

∣∣∣∣∣
2V

≤ ∏
ω∈{0,1}V

∫
∏

ω ′∈{0,1}V
fω(xω ′

V )dµ
V+V
E

= ∏
ω∈{0,1}V

‖ fω‖2V

UV
∞ (µV

E )
.

Corollary 8.5.
∣∣∫ f dµV

E

∣∣≤ ‖ f‖UV
∞ (µV

E )
.

Proof. In the previous lemma, take f0V = f and fω = 1 for ω 6= 0V .

Lemma 8.6. ‖ · ‖UV
∞ (µV

E )
is a seminorm.

Proof. It is easy to see from the definition that ‖c f‖UV
∞ (µV

E )
= |c| ·‖ f‖UV

∞ (µV
E )

. To see subadditivity, observe

that ‖ f +g‖2|V |
UV

∞ (µV
E )

expands to a sum of 22|V | integrals, each of which, by the previous lemma, is bounded by

‖ f‖m
UV

∞ (µV
E )
‖g‖2|V |−m

UV
∞ (µV

E )
for a suitable m. In particular, this bound is precisely

(
‖ f‖UV

∞ (µV
E )
+‖g‖UV

∞ (µV
E )

)2|V |

as desired.

The work above gives:

Theorem 8.7. If ‖E( f |BV,<V )‖L2(µV
E )

> 0 then ‖ f‖UV
∞ (µV

E )
> 0.
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Proof. If ‖E( f |BV,<V )‖L2(µV
E )

> 0 then we may find, for each I ⊆V with |I|= |V |−1, BI ∈BV,I such
that

0 <

∣∣∣∣∣
∫

f ∏
I

χBI dµ
V
E

∣∣∣∣∣≤ ‖ f ∏
I

χBI‖UV
∞ (µV

E )
.

By repeatedly applying Lemma 8.3, once to each I, we have

0 < ‖ f ∏
I

χBI‖UV
∞ (µV

E )
≤ ‖ f‖UV

∞ (µV
E )
.

We will obtain the converse, which will show that ‖E( f |BV,<V )‖L2(µV
E )

> 0 iff ‖ f‖UV
∞ (µV

E )
> 0, and

in particular will enable us to show that µ has J-regularity.

Definition 8.8. We say µV
E is a product measure if no element of E contains more than one element of V .

(Recall that µV
E abbreviates µV

E,aP
, so there may still be edges in E connecting elements of V to

elements of P.) We call such measures product measures because they are extensions of the ordinary
product measure ∏v∈V µv

E .

Theorem 8.9. If µV
E is a product measure, and ‖E( f |BV,<V )‖L2(µV

E )
= 0 then ‖ f‖UV

∞ (µV
E )

= 0.

Proof. This is essentially identical to the argument we gave for regularity for ordinary measures. Suppose
‖E( f |BV,<V )‖L2(µV ) = 0. We have

‖ f‖UV
∞ (µV

E )
=
∫

f (x0
V ) ∏

ω∈{0,1}V ,ω 6=0V

f (xω
V )dµ

V+V
E

=
∫∫

f (x0
V ) ∏

ω∈{0,1}n,ω 6=0V

f (xω
V )dµ

V
E dµ

V
E

This last equality holds because µV
E is a product measure, and so the inner copy of µV

E does not depend
on the choice of x1

V .
Observe that, for every particular value of x1

V , ∏ω∈{0,1}V ,ω 6=0V f (xω
V ) is BV,<V -measurable, and there-

fore ∫
f (x0

V ) ∏
ω∈{0,1}V ,ω 6=0V

f (xω
V )dµ

V
E = 0.

8.2 Seminorms for Nonprincipal Algebras

We will need a more general family of seminorms corresponding to arbitrary algebras of the form BV,I.
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Definition 8.10. For J ⊆V , define

‖ f‖UV,J
∞ (µV

E )
=

(∫
∏

ω∈{0,1}J

f (xV\J,x
ω
J )dµ

V+J
E

)2−|J|

.

Note that ‖ f‖UV,V
∞ (µV

E )
= ‖ f‖UV

∞ (µV
E )

.

We need to generalize to norms UV,J where J is a set. A natural choice would be to take the product
of UV,J over all J ∈ J, but this is not a seminorm. Instead we need the following form:

Definition 8.11. Let J⊆ P(V ) be a set such that if J,J′ ∈ J are distinct then J 6⊆ J′. Then we define

‖ f‖UV,J
∞ (µV

E )
= inf∑

i≤k

(
∏
J∈J
‖ fi‖2|J|

UV,J
∞ (µV

E )

) 1
∑J∈J 2|J|

where the infimum is taken over all sequences f0, . . . , fk such that f = ∑i≤k fi.

It is not immediately obvious that UV,J
∞ and UV,{J}

∞ calculate the same value, but this will follow once
we show that UV,J

∞ is a seminorm.

Lemma 8.12. If f is an L∞(µV
E ) function then

0≤
∫

∏
ω∈{0,1}J

f (xV\J,x
ω
J )dµ

V+J
E .

Proof. Let V ′ =V \ J. We have∫
∏

ω∈{0,1}J

f (xV ′ ,xω
J )dµ

V+J
E =

∫∫
∏

ω∈{0,1}J

f (xV ′ ,xω
J )dµ

J+J
E,xV ′

dµ
V ′
E

=
∫
‖ f (xV ′ , ·)‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

≥ 0.

Lemma 8.13. |
∫

f dµV
E | ≤ ‖ f‖UV,J

∞ (µV
E )

Proof. First consider the case where J is a singleton {J}. Again, let V ′ =V \ J.∣∣∣∣∫ f dµ
V
E

∣∣∣∣2|J| = ∣∣∣∣∫∫ f dµ
J
E,xV ′

dµ
V ′
E

∣∣∣∣2|J|
≤
∫ ∣∣∣∣∫ f dµ

J
E,xV ′

∣∣∣∣2|J| dµ
V ′
E

≤
∫
‖ f‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

= ‖ f‖2|J|

UV,J
∞ (µV

E )
.
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For the general case, first observe that, setting c = ∑J∈J 2|J|,

∣∣∣∣∫ f dµ
V
E

∣∣∣∣c = ∏
J∈J

∣∣∣∣∫ f dµ
V
E

∣∣∣∣2|J|
≤∏

J∈J
‖ f‖2|J|

UV,J
∞ (µV

E )
.

So if f = ∑i≤k fi we have

∣∣∣∣∫ f dµ
V
E

∣∣∣∣≤∑
i≤k

∣∣∣∣∫ fi dµ
V
E

∣∣∣∣≤∑
i≤k

(
∏
J∈J
‖ fi‖2|J|

UV,J
∞ (µV

E )

) 1
c

.

This holds for any ∑i≤k fi, so
∣∣∫ f dµV

E

∣∣≤ ‖ f‖UV,J
∞ (µV

E )
.

Lemma 8.14. ‖ · ‖UV,J
∞ (µV

E )
is a seminorm.

Proof. Once again positive homogeneity is obvious from the definition, so we need only check that the
triangle inequality holds.

We first consider the case where J is a singleton:

‖ f +g‖2|J|

UV,J
∞ (µV

E )
=
∫
‖ f +g‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

≤
∫ (
‖ f‖UJ

∞(µ
J
E,xV ′

)+‖g‖UJ
∞(µ

J
E,xV ′

)

)2|J|

dµ
V ′
E

=
∫

∑
i≤2|J|

(
2|J|

i

)
‖ f‖i

UJ
∞(µ

J
E,xV ′

)
‖g‖2|J|−i

UJ
∞(µ

J
E,xV ′

)
dµ

V ′
E

= ∑
i≤2|J|

(
2|J|

i

)∫
‖ f‖i

UJ
∞(µ

J
E,xV ′

)
‖g‖2|J|−i

UJ
∞(µ

J
E,xV ′

)
dµ

V ′
E .

Applying Hölder’s inequality with p = 2|J|/i (and therefore q = 1/(1−1/p) = 2|J|/(2|J|− i) gives an
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upper bound of

‖ f +g‖2|J|

UV,J
∞ (µV

E )
≤ ∑

i≤2|J|

(
2|J|

i

)(∫
‖ f‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

)i/2|J|(∫
‖g‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

)(2|J|−i)/2|J|

≤ ∑
i≤2|J|

(
2|J|

i

)(
‖ f‖2|J|

UV,J
∞ (µV

E )

)i/2|J| (
‖g‖2|J|

UV,J
∞ (µV

E )

)(2|J|−i)/2|J|

= ∑
i≤2|J|

(
2|J|

i

)
‖ f‖i

UV,J
∞ (µV

E )
‖g‖2|J|−i

UV,J
∞ (µV

E )

=
(
‖ f‖UV,J

∞ (µV
E )
+‖g‖UV,J

∞ (µV
E )

)2|J|

For |J|> 1, we may use the fact that if f =∑i≤k fi and g=∑ j≤m g j then f +g=∑i≤k fi+∑ j≤m g j.

The main thing that makes the uniformity seminorms useful to us is that they easily pass across
different measures:

Lemma 8.15. Let J ⊆V and V ′ =V \J. If ‖ f‖UJ
∞(µ

J
E )
= 0 then for µV ′

E -almost-every xV ′ , ‖ f‖UJ
∞(µ

J
E,xV ′

) = 0.

Proof.

0 = ‖ f‖2|J|
UJ

∞(µ
J
E )

=
∫

∏
ω∈{0,1}J

f (xω
J )dµ

J
E

=
∫

∏
ω∈{0,1}J

f (xω
J )
∫

1dµ
V ′
E,x0

J∪x1
J
dµ

J+J
E

=
∫

∏
ω∈{0,1}J

f (xω
J )dµ

J+J
E,x′V

dµ
V ′
E

=
∫
‖ f‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E .

Therefore for µV ′
E -almost-every xV ′ , ‖ f‖UJ

∞(µ
J
E,xV ′

) = 0.

In order to associate these more general seminorms with the correct algebras, we introduce the
following definition:

Definition 8.16. If I⊆ P(V ) is non-empty, we define I⊥ to be the set of J ⊆V such that:

(1) There is no I ∈ I with J ⊆ I,

(2) If J′ ( J then there is an I ∈ I with J′ ⊆ I.
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We also set J− = {I ⊆V | J 6⊆ I}.

·⊥ and ·− depend on the choice of the ambient set V . We note some useful properties of these
definitions:

(1) If I= {I ⊆V | |I|= |V |−1} then I⊥ = {V},

(2) (J−)⊥ = {J},

(3) I⊥ always has the property that if J,J′ ∈ I⊥ are distinct then J 6⊆ J′, and

(4) If J has the property that when J,J′ ∈ J are distinct then J 6⊆ J′ and I is the collection of I such that
I ( J for some J ∈ J, then J= I⊥.

These last two properties show that ‖ · ‖UV,J
∞ (µV

E )
is defined exactly when J= I⊥ for some I.

We will eventually show that when µV
E is nice enough, BV,I and

⋂
J∈I⊥BV,J− agree up to µV

E measure
0.

Lemma 8.17. If there is no J ∈ J such that J ⊆ I and B is BV,I-measurable then

‖ f χB‖UV,J
∞ (µV

E )
≤ ‖ f‖UV,J

∞ (µV
E )
.

Proof. It suffices to show this for J a singleton {J}. Write V ′ =V \ J. Observe that for any fixed xV ′ , the
function χB(xV ′ , ·) is a BJ,J∩I-measurable function, where J∩ I must be a proper subset of J. So we have:

‖ f χB‖2|J|

UV,J
∞ (µV

E )
=
∫
‖ f χB‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

≤
∫
‖ f‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E

= ‖ f‖2|J|

UV,J
∞ (µV

E )
.

Theorem 8.18. If ‖E( f |BV,I)‖L2(µV
E )

> 0 then ‖ f‖
UV,I⊥

∞ (µV
E )

> 0.

Proof. If ‖E( f |BV,I)‖L2(µV
E )

> 0 then we may find, for each I ∈ I, a set BI ∈BV,I , such that

0 <

∣∣∣∣∣
∫

f ∏
I

χBI dµ
V
E

∣∣∣∣∣≤ ‖ f ∏
I

χBI‖UV,I⊥
∞ (µV

E )
.

Observe that for each I ∈ I we may apply the previous lemma, so we have

0 < ‖ f ∏
I

χBI‖UV,I⊥
∞ (µV

E )
≤ ‖ f‖

UV,I⊥
∞ (µV

E )
.
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8.3 Characteristic Seminorms

Definition 8.19. Let µ be a canonical family of measures of degree k and size ∑I∈E 2|I∩V |. For some
I⊆ P(V ), we say UV,I⊥

∞ (µV
E ) is characteristic if for each f ∈ L∞(BV ), ‖ f‖

UV,I⊥
∞ (µV

E )
> 0 implies ‖E( f |

BV,I)‖L2(µV
E )

> 0.

Theorem 8.20. Suppose that J ⊆V and that whenever I⊆P(J) is such that for distinct J′,J′′ ∈ I, J′ 6⊆ J′′,
UJ,I

∞ (µJ
E) is characteristic. Then µV

E has J-regularity.

Proof. Let J ( V and I ⊆ P(V ) be given, and let g and fI be as in the definition of regularity. Let
h= g−E(g |BV,I∧J) = g−E(g |BJ,I∧J) (viewing g as a function on BJ). Since ‖E(h |BJ,I∧J)‖L2(µJ

E )
= 0,

by assumption we have ‖h‖UJ,I∧J
∞ (µJ

E )
= 0. Then we also have ‖h‖UJ,I∧J

∞ (µJ
E,xV\J

)
= 0 for µ

V\J
E -almost-every

xV\J . (The exact choice of which set of measure 1 this holds on depends on the choice of representative
of h.)

Including xV\J as part of the background parameters, Theorem 8.18 implies that ‖E(h |BJ,I∧J)‖L2(µJ
E,xV\J

)=

0, and so ∫
h∏

I
fI dµ

V
E =

∫
h∏

I
fI dµ

J
E,xV\J

dµ
V\J
E = 0

since for every fixed xV\J , ∏I fI is BJ,I∧J-measurable.

Our goal in the remainder of this subsection is to reduce the problem of showing that the uniformity
norms are characteristic to showing that the principal uniformity norms are characteristic. We only need
this for the case of a product measure, but we include the general argument for completeness.

Lemma 8.21. Let I be given and let J ⊆V . If µV
E has J-regularity, g ∈ L2(BV,J), and E(g |BV,I∧J) = 0

then E(g |BV,I) = 0.

Proof. Let such a g be given, and for each I ∈ I, let fI be BV,I-measurable, so ∏I fI is BV,I-measurable.
Since g = g−E(g |BV,I∧J) and µV

E has J-regularity,∫
g∏

I
fI dµ

V
E = 0,

and since this holds for any choice of fI , E(g |BV,I) = 0.

Lemma 8.22. Let I be given and let J ⊆ V . If µV
E has J-regularity then BV,I∧J = BV,I ∩BV,J up to

µV
E -measure 0.

Proof. By definition, we have BV,I∧J ⊆BV,I∩BV,J .
For the converse, suppose B ∈ BV,I∩BV,J . Let g = χB−E(χB | BV,I∧J); since both χB and E(χB |

BV,I∧J) are each both BV,J-measurable and BI-measurable, g is as well. Since by definition E(g |BI∧J) =
0, by the previous lemma, E(g | BV,I) = 0. Since g is BV,I-measurable, g = E(g | BV,I) = 0 (as L2

functions, of course). Therefore χB = E(χB |BV,I∧J) (again, as L2 functions), and so B is within measure
0 of being BV,I∩BV,J-measurable.
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Lemma 8.23. For any I,J⊆ P(V ), if µV
E has J-regularity for every J ∈ J then BV,I∧J is BV,I∩BV,J up

to µV
E -measure 0.

Proof. The direction BV,I∧J ⊆BV,I∩BV,J is immediate from the definition.
For the converse, we may assume J= {J1, . . . ,Jn} where i 6= j implies Ji 6⊆ J j, and we proceed by

induction on n. When n = 1 this is just the previous lemma. Suppose the claim holds for J and we wish
to show it for J∪{J}. Note that

BI∧(J∪{J}) =B(I∧J)∪(I∧J) =BI∧J]BI∧J.

It suffices to show that whenever f is BV,I-measurable then E( f |BV,J∪{J}) is BV,I∧(J∪{J})-measurable.
For any f , we have

E( f |BV,J∪{J}) = E( f |BV,J]BJ)

= E( f |BV,J)+E( f |BJ)−E( f |BV,J∩BJ).

When f is BV,I-measurable, E( f |BV,J)−E( f |BV,J∩BJ) is BV,I∩BV,J-measurable, and therefore, by
the inductive hypothesis, BV,I∧J-measurable. By the previous lemma, E( f |BJ) is BV,I∧J-measurable. In
particular, this means E( f |BV,J∪{J}) is BI∧J]BI∧J =BI∧(J∪{J})-measurable.

Lemma 8.24. If µV
E has J-regularity for every J ∈ I⊥, BV,I is

⋂
J∈I⊥BV,J− up to µV

E -measure 0.

Proof. We have
⋂

J∈I⊥BV,J− is BV,
∧

J∈I⊥ J− up to µV
E -measure 0 (it is easy to see that ∧ is associative

and commutative, so this follows by repeated application of Lemma 8.23). We need only check that∧
J∈I⊥ J− = I.

If I ∈ I (or even I ⊆ I′ ∈ I) then for every J ∈ I⊥, we have J 6⊆ I, and therefore I ∈ J−, and therefore
I ∈

∧
J∈I⊥ J−. Conversely, if there is no I′ ∈ I such that I ⊆ I′ then there is a J ⊆ I such that J ∈ I⊥, and

therefore no J′ ∈ J− such that I ⊆ J′, and therefore I 6∈
∧

J∈I⊥ J−.

In the following lemma we have to directly appeal to the definability structure of our σ -algebras.
This is for a good reason: the statement would not be true if we replaced our σ -algebras with, say, simple
product algebras.

Lemma 8.25. Suppose that for J′ ⊆ J, UJ′
∞ (µJ′

E ) is characteristic and that for µ
V\J′
E -almost-every xV ′ ,

UJ′
∞ (µJ′

E,xV ′
) is characteristic. Then UV,J

∞ (µV
E ) is characteristic.

Proof. Suppose ‖ f‖UV,J
∞ (µV

E )
> 0, so, setting V ′ =V \ J, also

0 < ‖ f‖2|J|

UV,J
∞ (µV

E )
=
∫
‖ f‖2|J|

UJ
∞(µ

J
E,xV ′

) dµ
V ′
E .

There must be a set S0 ⊆MV ′ of positive measure such that, for xV ′ ∈ S0, ‖ f‖2|J|
UJ

∞(µ
J
E,xV ′

)
> 0. Since

almost every UJ
∞(µ

J
E,xV ′

) is characteristic, for almost every xV ′ ∈ S0, we have ‖E( f |BJ,<J)‖L2(µJ
E,xV ′

) >
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0. This means that for almost every xV ′ ∈ S0, we may choose a set B(xV ′ ,~a) ∈ B0
J,<J such that

|
∫

f χB(xV ′ ,~a) dµJ
E,xV ′
| > 0. Since B0

J,<J was chosen to be the collection of definable sets, and there
are only countably many formulas, by passing to a smaller set of positive measure we may choose
a single formula B, independent of xV ′ , so that for each xV ′ ∈ S0 there are parameters aQ(xV ′) so that
|
∫

f χB(xV ′ ,aQ(xV ′ ))
dµJ

E,xV ′
|> 0. (Recall our notation—B ∈ B0

J∪Q, and then for each xV ′ we specialize to
the slice aQ(xV ′). There are uncountably many possible choices for aQ(xV ′), so we cannot assume aQ is
independent of xV ′ .)

We may choose an ε > 0, an approximation of f by a simple function f ′, and a set S1 ⊆ S0 of positive
measure so that for xV ′ ∈ S1, |

∫
f ′χB(xV ′ ,aQ(xV ′ ))

dµJ
E,xV ′
| ≥ ε . Since f ′ is simple, f ′ is itself defined using

finitely many formulas, which in turn have finitely many parameters aW .
Recall the distinguished function symbols maxE,J, f ′,B

Q ; these symbols choose values aQ(xV ′) maximiz-

ing the value of |
∫

f ′χB(xV ′ ,aQ(xV ′ ))
dµJ

E,xV ′
|. So, replacing B(xV ′ ,aQ(xV ′)) with B̂(xV ′ ,aW )=B(xV ′ ,maxE,J, f ′,B

Q (xV ′ ,aW )),∣∣∣∣∫ f ′χB̂(xV ′ ,aW ) dµ
J
E,xV ′

∣∣∣∣≥ ∣∣∣∣∫ f ′χB(xV ′ ,aQ(xV ′ ))
dµ

J
E,xV ′

∣∣∣∣ .
In particular, for each xV ′ ∈ S1,

∣∣∣∫ f ′χB̂(xV ′ ,aW ) dµJ
E,xV ′

∣∣∣ ≥ ε . Note that B̂(xV ′ ,aW ) ∈ B0
J,<J (viewing

B̂(xV ′ ,aW ) as a set of J-tuples) and therefore B̂(aW ) ∈B0
J,J− (viewing B̂(aW ) as a set of V -tuples).

We may partition S1 = S+1 ∪S−1 where xV ′ ∈ S+1 exactly when
∫

f ′χB̂(xV ′ ,aW ) dµJ
E,xV ′
≥ ε . Clearly at

least one of S+1 and S−1 has measure ≥ µV ′
E (S1)/2; without loss of generality, we assume S+1 does. Since

f ′ is simple, we have f ′ = ∑i≤n αiχCi . We may write a large union D of sets consisting of those xV ′ such
that (

mJ
E,xV ′

(C1(xV ′ ,aW )∩ B̂(xV ′ ,aW ))< β1∧mJ
E,xV ′

(C1(xV ′ ,aW )∩ B̂(xV ′ ,aW ))> β
′
1

)
∧·· ·

∧
(

mJ
E,xV ′

(Cn(xV ′ ,aW )∩ B̂(xV ′ ,aW ))< βn∧mJ
E,xV ′

(Cn(xV ′ ,aW )∩ B̂(xV ′ ,aW ))> β
′
n

)

so that µV ′
E (D∩S+1 )≥ (1−δ )µV ′

E (S+1 ) and every element of D satisfies∫
f ′χB̂(xV ′ ,aW ) dµ

J
E,xV ′

> ε/2.

The formula defining this set has only free variables xV ′ , so D is BV,V ′-measurable. Then∫
f ′χB̂(xV ′ ,aW )χD dµ

V
E dµ =

∫∫
f ′χB̂(xV ′ ,aW )χDdµ

J
E,xV ′

dµ
V ′
E > ε(1−δ )µV ′

E (S1)/2.

Since we chose f ′ to be an arbitrarily close approximation of f , we may assume that ‖ f − f ′‖L2(µV
E )

<

ε(1−δ )µV ′
E (S1)/4, and so we have∫

f χB̂(xV ′ ,aW )χD dµ
V
E dµ > ε(1−δ )µV ′

E (S1)/4 > 0.

Since χB̂(xV ′ ,aW )χD is BV,J−-measurable, we are finished.
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Theorem 8.26. Suppose that for every J ∈ I⊥ and every J′ ⊆ J, UJ′
∞ (µJ′

E ) is characteristic and that for
µ

V\J′
E -almost-every xV ′ , UJ′

∞ (µJ′
E,xV ′

) is characteristic. Then UV,I⊥
∞ (µV

E ) is characteristic.

Proof. We proceed by main induction on |V |. In particular, if V ∈ I⊥ then the claim is given by the
assumption, so we may assume that every element J ∈ I⊥ has |J|< |V |, and so by the inductive hypothesis,
UJ,J⊥

∞ (µJ
E) is characteristic for any J⊥ with J⊆ P(J). Therefore by Lemma 8.20, µV

E has J-regularity for
each J ∈ I⊥.

Suppose ‖E( f |BV,I)‖L2(µV
E )
= 0. By Lemma 8.24, BV,I=

⋂
J∈I⊥BV,J− , and so ‖E( f |

⋂
J∈I⊥BV,J−)‖L2(µV

E )
=

0. Let I⊥ = {J1, . . . ,Jr}. Then we may define a sequence f0 = f , fi+1 = E( fi |BV,J−i+1
),

f = fr +( fr−1− fr)+( fr−2− fr−1)+ · · ·+( f0− f1).

Since fr = E( f |
⋂

J∈I⊥BV,J−), we have fr = 0. We therefore have

‖ f‖
UV,I⊥

∞ (µV
E )
≤∑

i<r

(
∏

J∈I⊥
‖ fi− fi+1‖2|J|

UV,J
∞ (µV

E )

) 1
∑J∈J 2|J|

.

For each i < r, fi− fi+1 = fi−E( fi | BV,J−i+1
). In particular, ‖E( fi− fi+1 | BV,J−i+1

)‖L2(µV
E )

= 0, and
therefore by the previous lemma, ‖ fi− fi+1‖UV,Ji+1

∞ (µV
E )

= 0. But this means the whole sum is 0, and

therefore ‖ f‖UV,J
∞ (µV

E )
= 0.

9 Principal Seminorms are Characteristic

We now turn to our final argument, showing that the principal norms are always characteristic. The
construction is notationally complicated, so we first illustrate the idea for the simplest interesting case:
V = {v,w} and E = {(v,w)}. (And, for simplicity of notation, no background parameters.) Suppose f is
an L∞ function with || f ||UV

∞ (µV
E )

> 0. This is equivalent to having∫
f (x0

v ,x
0
w) f (x0

v ,x
1
w) f (x1

v ,x
0
w) f (x1

v ,x
1
w)dµ

V+V
E > 0.

We can define a function

G(x0
w,x

1
w) =

∫
f (x0

w,x
1
v) f (x1

w,x
1
v)dµ

v
E,x0

w∪x1
w
.

If we take all three coordinates (x0
w,x

1
w,x

1
v) into account here, we are looking at the measure µW+

E ′

where W+ = {(w,0),(w,1),(v,1)} and E ′ = {((w,0),(v,1)),((w,1),(v,1))}. If we take W ⊆W+ to be
{(w,0),(w,1)}, we have that µW

E ′,x1
v

and µW
/0 are product measures, and therefore G(x0

w,x
1
w) is measurable

with respect to BW,1. This means that we may approximate G(x0
w,x

1
w) arbitrarily well (in the L2(µW

/0 )
norm) by sums of the form

∑g0,n(x0
w)g1,n(x1

w).
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We may further assume that the gb,n are L∞(µW
/0 ) functions since G is. By assumption, we have

0 <
∫

f (x0
v ,x

0
w) f (x0

v ,x
1
w) f (x1

v ,x
0
w) f (x1

v ,x
1
w)dµ

V+V
E

=
∫

f (x0
v ,x

0
w) f (x0

v ,x
1
w)G(x0

w,x
1
w)dµ

V+{w}
E ,

and so also, taking a good enough approximation,

0 <
∫

f (x0
v ,x

0
w) f (x0

v ,x
1
w)∑g0,n(x0

w)g1,n(x1
w)dµ

V+{w}
E .

In particular, for some n, we have

0 <
∫

f (x0
v ,x

0
w) f (xv,x1

w)g0,n(x0
w)g1,n(x1

w)dµ
V+{w}
E .

Dropping the 0 superscript and setting h(xv) =
∫

f (xv,x1
w)g1,n(x1

w)dµw
E,xv

, we have

0 <
∫

f (xv,xw)g0,n(xw)h(xv)dµ
V
E .

Since g0,n(xw)h(xv) is BV,<V -measurable by definition, it follows that ||E( f |BV,<V )||L2(µV
E )

> 0.

Theorem 9.1. Suppose µ is a canonical family of measures of degree k and size ∑e∈E 22|e|. Then UV
∞ (µ

V
E )

is characteristic.

Proof. We show a more general result:

Let I ⊆V be given and let V ′ =V \ I. Let { fω}ω∈{0,1}ω be L∞(µV
E ) functions such that

F(xV ′ ,x0
I ,x

1
I ) = ∏

ω∈{0,1}I

fω(xV ′ ,xω
I )

be such that
0 <

∫
F(xV ′ ,x0

I ,x
1
I )dµ

V+I
E .

Then ‖E( f0I |BV,<V )‖L2(µV
E )

> 0.

The main result is then the case where I =V and fω = f for all ω .
We proceed by induction on |I|. When I = /0, this is trivial—F = f0 /0 , and 0 <

∫
f dµV

E implies that f
has non-trivial projection onto the trivial σ -algebra, so certainly also onto BV,<V . So assume |I|> 0.

Fix some v ∈ I, and let I′ = I \{v}. For each ω ∈ {0,1}I′ and each b ∈ {0,1} we will write ωb for
the corresponding elements of {0,1}I . We define a function

G(xV ′ ,x0
I′ ,x

1
I′) =

∫
∏

ω∈{0,1}I′
fω1(xV ′ ,xω

I′ ,x
1
v)dµ

v
E,xV ′∪x0

I′∪x1
I′
.

DISCRETE ANALYSIS, 2018:3, 47pp. 40

http://dx.doi.org/10.19086/da


AN ANALYTIC APPROACH TO SPARSE HYPERGRAPHS

Let W = V ′ ∪ (I′×{0,1}); recall that there is an E ′ such that µ
V\{v}+I′
E = µW

E ′ . Each edge in E ′

corresponds to an edge in E, and each e∈E leads to at most 2|e∩V | edges in E ′, so ∑e∈E ′ 2|e∩W |≤∑e∈E 22|e|.
(There is likely some room here for optimizing the exact size of the canonical family needed.)

Let J⊆ P(W ) be the collection of subsets of the form

V ′∪{(i,ω(i)) | i ∈ I′}

for some ω ∈ {0,1}I′ . That is, J consists of those sets which contain V ′ together with exactly one copy
of each coordinate from I′. The elements of J⊥ are pairs J = {(i,0),(i,1)} for some i ∈ I′. No edge of E ′

contains both elements of a pair {(i,0),(i,1)}, so µJ
E ′ and µJ

E ′,xW\J′
are product measures, and in particular,

UJ
∞(µ

J
E ′) and UJ

∞(µ
J
E ′,xW\J

) are characteristic by Theorem 8.9.

We claim that G is BW,J-measurable (with respect to the measure µW
E ′ ). Suppose H is a function

with ‖E(H |BW,J)‖L2(µW
E′ )

= 0. By Theorem 8.26, UW,J⊥
∞ (µW

E ′ ) is characteristic, so ‖H‖
UW,J⊥

∞ (µW
E′ )

= 0, and

therefore for µv
E-almost-every x1

v , ‖H‖
UW,J⊥

∞ (µW
E′,x1v

)
= 0, and so ‖E(H |BW,J)‖L2(µW

E′,x1v
) = 0. Then

∫
H(xV ′ ,x0

I′ ,x
1
I′) ·G(xV ′ ,x0

I′ ,x
1
I′)dµ

W
E ′

=
∫∫

H ∏
ω∈{0,1}I′

fω1(xV ′ ,xω

I′ ,x
1
v)dµ

v
E,xV ′∪x0

I′∪x1
I′
dµ

W
E ′

=
∫∫

H ∏
ω∈{0,1}I′

fω1(xV ′ ,xω

I′ ,x
1
v)dµ

W
E ′,x1

v
dµ

v
E

= 0.

Since this holds for any H with ‖E(H | BW,J)‖L2(µW
E′ )

= 0, it follows that G is BW,J-measurable. This
means that we may write

G(xV ′ ,x0
I′ ,x

1
I′) = lim

N→∞
∑

n≤N
∏

ω∈{0,1}I′
gω,n,N(xV ′ ,xω

I′ )

up to the L2(µW
E ′ )-norm. We may assume the gω,n,N are L∞(µW

E ′ ) functions.
Then we have some ε such that

0 < ε <
∫

∏
ω∈{0,1}I

fω(xV ′ ,xω
I )dµ

V+I
E

=
∫

∏
ω∈{0,1}I′

fω0(xV ′ ,xω

I′ ,x
0
v) ∏

ω∈{0,1}I′
fω1(xV ′ ,xω

I′ ,x
1
v)dµ

V+I
E

=
∫

∏
ω∈{0,1}I′

fω0(xV ′ ,xω

I′ ,x
0
v)G(xV ′ ,x0

I′ ,x
1
I′)dµ

V+I′
E .
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Choosing N large enough, we may make

‖G(xV ′ ,x0
I′ ,x

1
I′)− ∑

n≤N
∏

ω∈{0,1}I′
gω,n,N(xV ′ ,xω

I′ )‖L2(µW
E′ )

arbitrarily small relative to ε and the L∞(µV+I′
E )-norms of the fω0; therefore

0 < ε/2 <
∫

∏
ω∈{0,1}I′

fω0(xV ′ ,xω
I ,x

0
v) ∑

n≤N
∏

ω∈{0,1}I′
gω,n,N(xV ′ ,xω

I′ )dµ
V+I′
E

= ∑
n,N

∫
∏

ω∈{0,1}I′
fω0(xV ′ ,xω

I ,x
0
v)gω,n,N(xV ′ ,xω

I′ )dµ
V+I′
E

In particular, there must be some n such that

0 <
∫

∏
ω∈{0,1}I′

fω0(xV ′ ,xω
I ,x

0
v)gω,n,N(xV ′ ,xω

I′ )dµ
V+I′
E .

Consider the functions given by, for each ω ∈ {0,1}I′ , setting f ′ω = fω0gω,n,N . We apply the inductive
hypothesis to I′, and conclude that ‖E( f ′

0I′ | BV,<V )‖L2(µV
E )

> 0. Since g0I′ ,n,N is BV,V ′∪I′ ⊆ BV,<V -
measurable, it follows that ‖E( f0I |BV,<V )‖L2(µV

E )
> 0 as well.

We can now give a sparse version of the hypergraph removal lemma:

Theorem 1.3. For every k-uniform hypergraph K on vertices V and every constant ε > 0, there are δ ,ζ

so that whenever Γ is a ζ , |K|22k-ccc k-uniform hypergraph and A ⊆ Γ with hom(K,A)
|ΓV

K |
< δ , there is a

subset L of A with |L| ≤ ε|Γ| such that hom(K,A\L) = 0.

Proof. Suppose not. Let K,ε be a counterexample. Since there are no such δ ,ζ , for each n we may
choose k-uniform hypergraphs Hn ⊆ Γn with Γn 1/n, |K|22k-ccc and hom(K,H)

|ΓV
K |

< 1/n. Let M be the model
given by Theorem 7.4.

Let V be the set of vertices of K. For any disjoint J0,J1 ⊆V , Theorem 9.1 implies that UJ0
∞ (µJ0

K ) and,
for µ

J1
K -almost every xJ1 , UJ0

∞ (µJ0
K,xJ1

) are characteristic. By Theorem 8.26, it follows that each UJ,I⊥
∞ (µV

E )

is characteristic, and so by Lemma 8.20, µV
E has J-regularity.

For each I ∈ K, let AI = {xV | xI ∈ A}. Since hom(K,An)

|(Γn)
V
K |
→ 0, we have µV

K (
⋂

I∈K AI) = 0. Then

by Theorem 5.3, there must be definable sets BI such that µ I
K(AI \BI) < ε/|K| and

⋂
I∈K BI = /0. Let

L =
⋃

I∈K(AI \BI), so µ
[1,k]
{[1,k]}(L)< ε . L is definable from parameters in M, and therefore the properties

µ
[1,k]
{1,k}(L)< ε and

⋂
I∈K(AI \L) = /0 are witnessed by formulas. Therefore there must be arbitrarily large

finite models where these formulas are satisfied. But this contradicts the choice of the hypergraphs
Hn,Γn.
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10 Conclusion

Many other notions of pseudorandomness for hypergraphs that have been considered [8, 10, 15, 43].
The next step towards developing a rich analytic approach to working with sparse random hypergraphs
would be a detailed investigation of the relationship between notions of pseudorandomness in the finite
setting and the corresponding properties of measures in the infinitary setting. With weaker notions of
pseudorandomness, we would expect to lose the full Fubini property, but the notions that replace it are
likely to be of interest themselves.

Another interesting direction would be to weaken the notion of randomness to allow the ambient
hypergraph to be, say, bipartite. This is needed if one hopes to use these methods to prove sparse versions
of Szemerédi’s Theorem in the style of the Green-Tao theorem on arithmetic progressions in the primes
[32]. (Conlon, Fox, and Zhou have recently extended their version of sparse graph removal to precisely
such a proof [13].)

The approach Conlon and Gowers use to prove hypergraph regularity [12] depends, like our approach,
on the use of various norms to detect the presence of certain properties. Their norms are much more
narrowly tailored than the general uniformity norms. The uniformity norms are strikingly natural in the
infinitary setting, lining up with canonical algebras of definable sets; it is possible that other norms also
correspond to algebras which might be of independent interest.
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