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Abstract. The isotopic composition of atmospheric trace
gases such as CO2 and CH4 provides a valuable tracer for
the sources and sinks that contribute to atmospheric trace
gas budgets. In the past, isotopic composition has typically
been measured with high precision and accuracy by isotope
ratio mass spectrometry (IRMS) offline and separately from
real-time or flask-based measurements of concentrations or
mole fractions. In recent years, development of infrared op-
tical spectroscopic techniques based on laser and Fourier-
transform infrared spectroscopy (FTIR) has provided high-
precision measurements of the concentrations of one or more
individual isotopologues of atmospheric trace gas species in
continuous field and laboratory measurements, thus provid-
ing both concentration and isotopic measurements simulta-
neously. Several approaches have been taken to the calibra-
tion of optical isotopologue-specific analysers to derive both
total trace gas amounts and isotopic ratios, converging into
two different approaches: calibration via the individual iso-
topologues as measured by the optical device and calibration
via isotope ratios, analogous to IRMS.

This paper sets out a practical guide to the calculations
required to perform calibrations of isotopologue-specific op-
tical analysers, applicable to both laser and broadband FTIR
spectroscopy. Equations to calculate the relevant isotopic and
total concentration quantities without approximation are pre-
sented, together with worked numerical examples from ac-
tual measurements. Potential systematic errors, which may
occur when all required isotopic information is not avail-
able, or is approximated, are assessed. Fortunately, in most
such realistic cases, these systematic errors incurred are ac-
ceptably small and within the compatibility limits specified
by the World Meteorological Organisation – Global Atmo-
sphere Watch. Isotopologue-based and ratio-based calibra-

tion schemes are compared. Calibration based on individual
isotopologues is simpler because the analysers fundamen-
tally measure amounts of individual isotopologues, not ra-
tios. Isotopologue calibration does not require a range of iso-
topic ratios in the reference standards used for the calibration,
only a range of concentrations or mole fractions covering the
target range. Ratio-based calibration leads to concentration
dependence, which must also be characterised.

1 Introduction

Until recently, measurements of the amounts of CO2 and
other trace gases in the atmosphere and in calibration gas
standards within the Global Atmosphere Watch – Green-
house Gas Monitoring Techniques (GAW-GGMT) commu-
nity were mostly made by analytical techniques which do
not discriminate between isotopic variants of the target gases.
Manometry and gravimetry enable the calibration of gas mix-
tures to be traceable to SI units of pressure, volume, mass and
temperature but measure only the total amounts of the tar-
get trace gas without taking into account differences in iso-
topic composition. Gas chromatography is also commonly
used both in atmospheric measurements and in the propaga-
tion of standards but is also blind to the isotopic composition
of the target gas and measures only total amounts.

Non-dispersive infrared (NDIR) analysers have been used
for many years as an instrument of choice for atmospheric
trace gas monitoring. NDIR is an optical technique based
on infrared absorption by the target trace gas, and like any
optical or spectroscopic instrument, NDIR instruments have
a different response to different isotopologues of the target
species because different isotopologues have different ab-
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sorption spectra. Earlier NDIR instruments such as URAS,
UNOR, Siemens and APC employed microphone detectors
filled with the target trace gas that responded selectively to
the absorption of infrared radiation by the target gas in the
sample (Griffith, 1982). The NDIR instrument response de-
pends, in a complex and non-linear way, on the isotopic com-
position of the target gas and on the carrier gas. The more
recent LI-COR instruments replaced the microphonic detec-
tor with an optical semiconductor detector that relies on a
broad bandpass filter to restrict the wavelength range from
the source to that absorbed by the target gas, for example,
around 4.3 µm for CO2. Optical NDIR detectors also respond
differently to the different isotopologues of the target gas be-
cause the bandpass filter does not cover the entire absorption
range of the trace gas, and because different isotopologues
have different absorption strengths and sensitivities. NDIR
instruments thus have an ill-defined sensitivity to isotopic
variability, which must be empirically quantified for the most
precise atmospheric measurements (Lee et al., 2006; Tohjima
et al., 2009).

Most recently, laser and Fourier-transform infrared (FTIR)
based optical infrared analysers have taken on a major role in
atmospheric trace gas measurements for many gases, espe-
cially the dominant greenhouse gases CO2 and CH4. These
instruments are based on infrared absorption by single ab-
sorption lines or bands of specific isotopologues, which are
only a proxy for the total amount of the target trace gas. If
the isotopic composition of the trace gas is invariant, such
analysis provides a valid measure of the total amount of the
gas after calibration, but it has long been recognised that
isotopic differences between the calibration gases and the
samples measured lead to variations in the total trace gas
amounts deduced from a single isotopologue measurement
that are significant relative to GAW compatibility goals (Loh
et al., 2011). Several studies have addressed isotopic calibra-
tion (e.g. Esler et al., 2000; Bowling et al., 2003; Griffis et al.,
2005; Mohn et al., 2008; Loh et al., 2011; Tuzson et al., 2011;
Griffith et al., 2012; Wehr et al., 2013; Wen et al., 2013; Rella
et al., 2015; Vardag et al., 2015; Pang et al., 2016; Flores et
al., 2017; Tans et al., 2017; Braden-Behrens et al., 2017) and
compared calibration approaches (Wen et al., 2013), but un-
til recently most studies made some level of approximation
in dealing with the calculations required to properly include
the contributions of all possible isotopologues of the target
species in the calculation scheme. Most recently Griffith et
al. (2012), Flores et al. (2017) and Tans et al. (2017) have
published isotopic calibration strategies which are equivalent
and which correctly and completely account for the full iso-
topic composition of the target gas (CO2 in these studies, but
applicable in principle to any species).

Established calibration laboratories using mass spectrom-
etry as the primary method for isotopic analysis normally
provide calibration standards which specify the total amount
and isotopic ratios of a trace gases in an air matrix, such
as CO2, δ13C and δ18O, while optical analysers fundamen-

tally determine individual amounts of isotopologues, such as
16O12C16O, 16O13C16O and 16O12C18O. Here we present a
practical guide to the calculations required to rigorously, yet
simply, convert between the two equivalent descriptions and
to derive isotope-specific calibrations for optical analysers.
The calculations described here are equivalent to those de-
scribed by Wehr et al. (2013), Flores et al. (2017) and Tans
et al. (2017). The motivation for this technical note is thus
3-fold:

– to show that the complete and correct treatment of iso-
topic composition in calibration calculations is straight-
forward and that there is no need to invoke some ap-
proximations often made in earlier analyses,

– to provide a practical guide to isotope-specific calibra-
tion calculations, and

– to assess the potential errors when all isotopic informa-
tion is not available and approximations or assumptions
must be made.

2 Calculation of isotopic quantities

Using CO2 as an example, considering the stable isotopes
12C, 13C, 16O, 17O and 18O, there are eighteen possible iso-
topologues (2×3×3 isotopic possibilities). 14C is a negligi-
ble proportion of total carbon for these purposes and is ne-
glected. Only twelve of these eighteen possibilities are dis-
tinct due to symmetry. Assuming the substitution of each
isotope at each position in the molecule follows its bulk
statistical abundance (i.e. no clumping; see Sect. 6), only
four independent quantities are required to fully define the
total amount and full isotopic composition of CO2. These
quantities may equivalently be the total CO2 amount and
three isotopic ratios 13r,17r and 18r (or delta values δ13C,
δ17O and δ18O), or the amounts of four individual iso-
topologues with each isotope substituted, most conveniently
16O12C16O, 16O13C16O, 16O12C17O and 16O12C18O. Once
these are known, the abundances of all multiply substituted
isotopologues can be calculated.

The most fundamental quantity defining isotopic compo-
sition for each element is the isotope ratio of the minor to the
major isotope:

13r =
n(13C)
n(12C)

17r =
n(17O)
n(16O)

18r =
n(18O)
n(16O)

, (1)

where, for example, n(13C) is the amount of 13C in a sam-
ple (number of moles or atoms). Isotope ratios for standard
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or reference materials are assigned by the isotope metrol-
ogy community, (e.g. Allison et al., 1995; Brand et al., 2010;
Werner and Brand, 2001).

Isotope ratios are commonly expressed as delta values rel-
ative to a standard or reference material:

δ13C=
( 13r

13rref
− 1

)
δ17O=

( 17r
17rref

− 1
)

δ18O=
( 18r

18rref
− 1

)
. (2)

(Following the recommendation of Coplen (2011) and to
simplify equations, the factor 1000 ‰ is not included in the
definition of δ.) For the relevant reference scales commonly
used in atmospheric analysis, the reference isotope ratios are
given in Table 1.

For each isotope of an element, the isotopic abundance or
isotopic fraction is the fraction of that isotope relative to all
isotopes in a sample:

12x =
n(12C)

n(12C)+ n(13C)
=

1
(1+13r)

13x =
n(13C)

n(12C)+ n(13C)
=

13r

(1+13r)

16x =
n(16O)

n(16O)+ n(17O)+ n(18O)
=

1
(1+17r+18r)

17x =
n(17O)

n(16O)+ n(17O)+ n(18O)
=

17r

(1+17r+18r)

18x =
n(18O)

n(16O)+ n(17O)+ n(18O)
=

18r

(1+17r+18r)
. (3)

Note that these are fractional abundances, such that
12x+13x = 1 and 16x+17x+18x = 1.

Similarly, the isotopologue abundances or isotopologue
fractions are defined for a molecule; for example, for CO2 the
isotopologue abundances for 12C16O2 (626), 13C16O2 (636),
12C16O18O (628) and 12C16O17O (627) are

x626=
16x·12x·16x =

1
Rsum

x636=
16x·13x·16x =

13r

Rsum

x627 = 2·16x·12x·17x =
2·17r

Rsum

x628 = 2·16x·12x·18x =
2·18r

Rsum
, (4)

where

Rsum = (1+13r) · (1+17r+18r)2. (5)

The labels 626, 636, 628 and 627 are the common isotopic
shorthand used in spectroscopy and the HITRAN database

(Rothman et al., 2005). The sum of all isotopologue abun-
dances x over all 18 isotopologues is equal to unity. Rsum
is a sum of the 18 products of isotope ratios, one corre-
sponding to each of the 18 possible isotopologues of CO2.
Rsum conveniently accounts for all possible isotopologues in
calculations of abundances, providing a normalising factor
somewhat analogous to a partition sum over all energy lev-
els of a molecule. From Eq. (4), x626 = 1/Rsum i.e. 1/Rsum
is the fractional abundance of the major isotopologue and
Rsum−1≈ 1−x626 is that fraction of the sample that is made
up of all the minor isotopologues. Equivalently, from Eq. (10)
and the following paragraph, it can be seen that Rsum is the
ratio of the total amount of CO2 to that of the major isotopo-
logue in a sample.

Abundances of the major and three singly substituted iso-
topologues and Rsum values for standard reference materi-
als are given in Table 2. Abundances of the multiply substi-
tuted isotopologues can be calculated following the exam-
ples of Eq. (4). They are also listed for HITRAN isotope ra-
tios on the HITRAN website: https://www.cfa.harvard.edu/
hitran/molecules.html (last access: 25 October 2018).

For a calibration or reference gas, δ13C and δ18O are usu-
ally provided by calibration laboratories, and δ17O can nor-
mally be deduced from δ18O, assuming mass dependent frac-
tionation of oxygen isotopes with negligible error (Brand et
al., 2010):

17r/17rref = (
18r/18rref)

0.528 or

δ17O= 0.528 · δ18O. (6)

The mass dependent fractionation assumption is discussed
below in Sect. 6. The isotope ratios 13r,17r and 18r for a
sample can thus be calculated from inverting Eq. (2):

13r = (1+ δ13C)·13rref
17r = (1+ δ17O)·17rref
18r = (1+ δ18O)·18rref, (7)

thence Rsum can be calculated from Eq. (5) for any sample or
reference gas.

If the total mole fraction of CO2 in a sample of air, yCO2 ,
is also known (for example, for a certified calibration gas),
the individual isotopologue amounts or mole fractions can
be calculated from

y626 = yCO2 · x626 = yCO2/Rsum

y636 = yCO2 · x636 = yCO2 ·
13r/Rsum

y627 = yCO2 · x627 = yCO2 · 2·
17r/Rsum

y628 = yCO2 · x628 = yCO2 · 2·
18r/Rsum. (8)

(Following the recommendation of the IUPAC Gold Book
(McNaught and Wilkinson, 2014) and usage by Tans et
al. (2017), the symbol y is used here for mole fraction (more
formally amount fraction) of a trace gas or isotopologue in
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Table 1. Standard isotope ratios for relevant reference scales used in atmospheric trace gas analysis.

Element Ratio VPDBa VPDB-COb
2 HITRANc,d VSMOWa Air Na

2

C 13r =13C/12C 0.0111802 0.0111802 0.0112374
O 18r =18O/16O 0.0020672 0.00208835 0.0020052 0.00200518
O 17r =17O/16O 0.000386 0.0003931 0.0003729
N 15r =15N/14N 0.00367 0.0036782
H 2r =2H/1H 0.000156 0.00015575

a Werner and Brand (2001). b Brand et al. (2010). c Bievre et al. (1984). d https://www.cfa.harvard.edu/hitran/molecules.html (last
access: 25 October 2018).

Table 2. Isotopologue fractional abundances and isotopic sums for the VPDB-CO2 and HITRAN scales and conversion factors.

Isotopologue Notation Abundancea,b xHITRAN Abundancec xVPDB−CO2 Rescaling factor (HITRAN–VPDB-CO2)

16O12C16O 626 0.98420 0.984054 1.000150
16O13C16O 636 0.01106 0.0110019 1.005280
16O12C18O 628 0.0039471 0.00411009 0.960319
16O12C17O 627 0.000734 0.00077366 0.948734

Rsum – 1.016205 1.016053 0.9998505

Abundances are taken from a Rothman et al. (2005) and b https://www.cfa.harvard.edu/hitran/molecules.html (last access: 25 October 2018) for HITRAN and c Brand
et al. (2010) for VPDB-CO2. The Brand et al. values supersede earlier values given by Allison et al. (1995).

air to distinguish from x, the isotope or isotopologue frac-
tional abundance.)

Conversely, if a set of calibrated isotopologue mole frac-
tions {y626,y636,y628,y627} in a sample are measured with
an isotopologue-specific analyser, the total CO2 mole frac-
tion yCO2and isotope ratios or delta values can be calculated.
The isotope ratios are derived directly from the isotopologue
amounts:
13r = y636/y626
18r = 0.5 · y628/y626
17r = (18r/18rref)

0.528
·
17rref. (9)

Then delta values are calculated from Eq. (2) and Rsum from
Eq. (5). The total CO2 mole fraction is then calculated from
Eq. (8):

yCO2 = y626 ·Rsum (10)

The key quantity in these calculations is Rsum, which cor-
rectly and completely accounts for all possible isotopologues
of the molecule at their actual isotopic abundances. Note that
to correctly calculate the amount of any isotopologue in a
sample, all isotope ratios should be known to calculate Rsum
exactly. Errors incurred when this requirement is relaxed are
discussed and quantified in Sect. 5.

3 Normalised isotopologue mole fractions

In the HITRAN database, tabulated line strengths are nor-
malised by the natural abundance of the relevant isotopo-

logue; the reference isotopologue natural abundances as-
sumed in HITRAN are listed in Table 2. Retrievals from
spectra based on HITRAN line parameters thus provide
scaled or normalised mole fractions of isotopologues, which
are referenced to the isotopic scales assumed by HITRAN.
For some purposes it may be convenient to work with these
normalised mole fractions directly rather than convert them
to absolute mole fractions as in Sect. 2 because the refer-
ence isotopologue abundances are inherently included in the
normalised amounts. In terms of normalised mole fractions,
Eq. (8) becomes

y′626 =
y626

x626,ref
= yCO2 ·

Rsum,ref

Rsum
= yCO2/Xsum

y′636 =
y636

x636,ref
= yCO2 ·

13r
13rref

·
Rsum,ref

Rsum

= yCO2 · (1+ δ
13C)/Xsum

y′627 =
y627

x627,ref
= yCO2 ·

17r
17rref

·
Rsum,ref

Rsum

= yCO2 · (1+ δ
17O)/Xsum

y′628 =
y628

x628,ref
= yCO2 ·

18r
18rref

·
Rsum,ref

Rsum

= yCO2 · (1+ δ
18O)/Xsum, (11)

where rref and Rsum,ref refer to the reference scales listed in
Tables 1 and 2 and Xsum = Rsum/Rsum,ref = Rsum · x626,ref.
Equation (11) allows normalised mole fractions to be calcu-
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lated the from total CO2 mole fraction and δ values on any
reference scale for which rref and Rsum,ref are known.

The calculation of δ values from normalised isotopologue
mole fractions is analogous to Eqs. (9) and (10):

δ13C=
y′636
y′626
− 1

δ18O=
y′628
y′626
− 1

δ17O= 0.528 · δ18O, (12)

and the total CO2 mole fraction is

yCO2 = y
′

626 ·
Rsum

Rsum,ref
= y′626 ·Xsum. (13)

The normalised mole fractions have the convenient property
that they are all equal to the total CO2 mole fraction in a sam-
ple if all isotopes are in natural abundance in the reference
scale (i.e. Eq. 11 with δ = 0, Rsum = Rsum,ref and Xsum = 1).
HITRAN natural abundances are based on a superseded def-
inition of the VPDB isotope ratio for carbon and VSMOW
for oxygen, while for atmospheric CO2 the isotopic scale of
choice is VPDB-CO2, which is based on VPDB for both car-
bon and oxygen and may be adjusted over time as scales are
redetermined. To convert normalised mole fractions retrieved
directly from spectra (HITRAN scale) to the VPDB-CO2
scale, each normalised mole fraction can be multiplied by
xref,Hitran/xref,VPDB. The reference isotopologue abundances
and rescaling factors are listed in Table 2.

4 Calibration and measurement procedures – step by
step

Calibration of an isotopologue-specific analyser can in prin-
ciple be carried out in two ways: calibrating on either the
individual isotopologue amounts or on the derived isotope
ratios or delta values. Both methods have been used in pub-
lished work to date. The former is more fundamental be-
cause optical methods actually measure individual isotopo-
logue amounts, not ratios. Ratio- or delta-based calibration
leads to the additional complication of concentration depen-
dence in the calibration. A step-by-step method for direct iso-
topologue calibration is presented in Sect. 4.1 based on the
equations of Sect. 2. Ratio or delta calibration is discussed in
Sect. 4.2 and the two methods are compared in Sect. 4.3.

4.1 Direct calibration by isotopologue amounts

The steps described here are consistent with those recently
published by Flores et al. (2017) and Tans et al. (2017). Grif-
fith et al. (2012) previously described the same methods but
used a minor approximation in accounting for the sum of all
multiply substituted isotopologues in the calculation of Rsum
in Eq. (5) or Xsum in Eq. (11).

There are two parts to the calibration and unknown mea-
surement procedure: (1) determination of the reference iso-
topologue amounts and the calibration equation for each iso-
topologue in a calibration gas, and (2) measurement of the
isotopologue amounts in an unknown sample and calculation
of its total trace gas amount and delta quantities. As above,
CO2 is used as an example, but the procedures apply in prin-
ciple to any molecule.

4.1.1 Calibration

1. From reference standard tank data provided by the cali-
bration laboratory {CO2,δ

13C,δ18O, (δ17O)}, calculate
isotope ratios 13r,18r,17r and Rsum for each standard
(Eq. 7 then Eq. 5).

2. Calculate the calibrated amount of each isotopologue
y626, y636 and y628 in each standard (Eq. 8).

3. Measure uncalibrated analyser responses or raw iso-
topologue amounts of each standard y626,meas, y636,meas
and y628,meas with the analyser.

4. Derive the calibration equation for each isotopologue,
for example, for a linear calibration:

y626,meas = a626 · y626+ b626. (14)

4.1.2 Sample measurement

1. Measure the sample with the analyser and determine the
analyser responses or raw isotopologue amounts.

2. Apply the inverted calibration determined in step 4 (Eq.
14) above for each isotopologue to determine calibrated
isotopologue amounts.

3. Calculate 13r,18r,17r and Rsum from calibrated isotopo-
logue amounts (Eq. 9).

4. Calculate δ13C and δ18O on the desired reference iso-
tope scale (Eq. 2 or 12).

5. Calculate total CO2 (Eq. 10).

With this scheme, for complete calibration of the analyser
for the total CO2 amount, δ13C and δ18O should be known
for each reference standard, and each isotopologue should be
measured by the analyser (or a combination of analysers).
δ17O can be calculated with sufficient accuracy from δ18O.
Calibration gases may, but do not need to, span a range of
delta values; they need only span the range of amounts of
each isotopologue covered by the range of samples to be
measured (Bowling et al., 2003). Flores et al. (2017) demon-
strated isotopic calibration of CO2 in which all standards
were synthesised from the same CO2 source gas, and all had
the same δ13C and δ18O values.
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4.2 Calibration by delta values

Spectroscopic analysers fundamentally determine the
amounts of individual isotopologues, and the isotopologue-
based analysis as described in the preceding section is
the natural choice as a basis for calibration. Historically,
however, isotope ratio mass spectrometry (IRMS) has been
the method of choice for isotopic analysis because many
sources of noise cancel in calculating the ratio. Traditional
IRMS calibration schemes are based on standards over
a range of isotope ratios or delta values directly, rather
than on isotopologue amounts. Ratio or delta calibration
schemes have thus, perhaps inevitably, flowed through to
optical techniques. Ratio calibration schemes use calibration
standards which cover a range of delta values and derive
calibration equations analogous to Eq. (14) directly in terms
of delta values rather than isotopologue amounts. The raw
measured delta values are calculated from the uncalibrated
isotopologue amounts. However, as shown in the following,
this method inevitably leads to a concentration dependence
of the calibration equations, which must be characterised as
part of (and which significantly complicates) the calibration
procedure.

Several groups have reported on ratio calibration schemes
and the consequent concentration dependence (e.g. Griffith
et al., 2012; Wen et al., 2013; Rella et al., 2015; Pang et al.,
2016; Braden-Behrens et al., 2017; Flores et al., 2017). The
concentration dependence inevitably follows if the actual cal-
ibration relationships between measured and true amounts
of individual isotopologues (Sect. 4.1, Eq. 14) have a non-
zero y intercept or an additional non-linear term. Griffith et
al. (2012, Eq. 14) showed that a non-zero intercept in the
calibration equations leads to an approximate inverse depen-
dence of measured δ13C on concentration. Extending that to
include a quadratic term in the calibration equation represent-
ing non-linearity adds an approximately linear term to the
concentration dependence, which can then be described by a
combination of an inverse and linear dependence on yCO2 :

δ13Cmeas = α · δ
13Ctrue+ (α− 1)+

β

yCO2

+ γ · yCO2 , (15)

where δ13Cmeas is calculated from the raw measured isotopo-
logue amounts. For a perfectly linear calibration, i.e. Eq. (14)
with b626 = b636 = 0, both β and γ are zero, α = a636/a626
and Eq. (15) represents a simple concentration-independent
scale shift of (α− 1) in the δ scale. β is a function of the in-
tercept terms b626 and b636. γ becomes non-zero if quadratic
terms are added to the calibration equations. The inverse and
linear yCO2 dependences are not exact because the coeffi-
cients β and γ contain terms dependent on δ13C and also
have weak cross-terms, but together they provide a useful
model to describe the concentration dependence. The linear
term becomes relatively more important than the inverse term
at high CO2 mole fractions, where the inverse CO2 term be-

Figure 1. Example of δ13C dependence on CO2 mole fraction for a
Spectronus FTIR analyser. The measured data are fitted with a func-
tion of form of Eq. (15) with fitted parameters β =−1227 ‰ ppm
and γ = 0.0054 ‰ ppm−1.

comes small, and any quadratic contribution to the calibra-
tion equation leading to the linear term becomes large.

Figure 1 illustrates this concentration dependence with
a typical δ13C vs. CO2 dependence for an FTIR analyser
similar to that used in the example of Sect. 5 below. The
dependence was determined by continuous flow measure-
ments of a single CO2-spiked air tank while the CO2 con-
tent was gradually reduced by passing a fraction of the flow
through Ascarite. The measured δ13C vs. CO2 data are fit-
ted to Eq. (15) with fitted parameters β =−1227 ‰ ppm and
γ = 0.0054 ‰ ppm−1, corresponding to CO2 dependent cor-
rections of up to 5 ‰ over the CO2 range of 400–1000 ppm.
The residuals of the fit illustrate potential errors from the
modelled behaviour of up to ±0.3 ‰. Uncertainties in cal-
ibrating the CO2 concentration dependence can lead to sig-
nificant errors in Keeling-type analyses over a wide range of
total CO2 amounts even if the isotopologue calibration non-
linearity is very small (Pang et al., 2016; Wen et al., 2013).

The concentration dependence is a function of the iso-
topologue calibration coefficients, and thus in principle for
best accuracy it should be redetermined for every calibration,
complicating the calibration procedure. The Thermo Fisher
Delta Ray isotope analyser, for example, takes this approach
in a prescribed sequence of measurements using several ref-
erence standards; however, Braden-Behrens et al. (2017) and
Flores et al. (2017) found this procedure not to be sufficiently
accurate or stable and invoked separate a posteriori calibra-
tion schemes. Rella et al. (2015) and Picarro (2017) similarly
describe a calibration procedure for Picarro analysers to take
concentration dependence into account.
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Table 3. Worked data for calibration of an FTIR analyser using four reference standards in (a) using actual mole fractions of all isotopologues,
and (b) using normalised mole fractions on the VPDB-CO2 scale. The 17r and δ17O values were not directly determined and are not included
in the table – they are derived from 18r and δ18O following Eq. (6).

(a) Reference yCO2 ppm δ13C ‰ δ18O ‰ 13r 18r Rsum y626 ppm y636 ppm y628 ppm
Standard

Calibration tank data Reference mole fractions

CB11138 396.74 −8.38 0.30 0.011087 0.002089 1.016112 390.45 4.3287 1.6313
CB11483 452.06 −8.19 −2.11 0.011089 0.002084 1.016103 444.90 4.9333 1.8543
CA06845 416.06 −10.69 −2.71 0.011061 0.002083 1.016072 409.48 4.5291 1.7056
CB09950 392.91 −8.38 −0.20 0.011087 0.002088 1.016110 386.68 4.2870 1.6147

Measured mole fractions

CB11138 426.50 4.9011 1.8942
CB11483 486.46 5.5937 2.1768
CA06845 447.49 5.1310 1.9891
CB09950 422.33 4.8533 1.8731

Calibration coefficients

Slope a 1.10146 1.14563 1.26747
Intercept b −3.56 −0.0579 −0.1733

(b) Reference yCO2 ppm δ13C ‰ δ18O ‰ 13r 18r Xsum y′626 ppm y′636 ppm y′628 ppm
standard

Calibration tank data Reference normalised mole fractions

CB11138 396.74 −8.38 0.30 0.011087 0.002089 0.999909 396.78 393.45 396.90
CB11483 452.06 −8.19 −2.11 0.011089 0.002084 0.999900 452.11 448.40 451.15
CA06845 416.06 −10.69 −2.71 0.011061 0.002083 0.999869 416.11 411.67 414.99
CB09950 392.91 −8.38 −0.20 0.011087 0.002088 0.999906 392.95 389.66 392.87

Measured normalised mole fractions

CB11138 433.41 445.48 460.87
CB11483 494.34 508.43 529.62
CA06845 454.74 466.38 483.96
CB09950 429.17 441.13 455.74

Calibration coefficients

Slope a 1.10146 1.14563 1.26748
Intercept b −3.62 −5.27 −42.16

4.3 Comments on the accuracy of optical isotopologue
and ratio calibration

As an example, assume a calibration laboratory provides cali-
brated reference gases with an absolute accuracy of 0.05 ppm
for total CO2 amount (0.12 ‰ in 400 ppm CO2) and 0.02 ‰
for δ13C measured by IRMS. The isotope ratio is thus more
accurately determined than the total amount fraction for the
reference gases. Now take as a practical measurement re-
peatability for optical analysers 0.02 ppm (0.05 ‰) for total
CO2 amount and 0.07 ‰ for δ13C (e.g. Griffith et al., 2012;
laser instruments are similar). The absolute accuracy for the
calibrated optical measurement of total CO2 is limited by
the reference gas amount fraction, but the more accurately

known reference 13r or 626/636 ratio is carried through the
calibration calculations and this accuracy is preserved when
retrieved isotopologue amounts are ratioed. The accuracy of
measured 13r or δ13C is thus limited by the optical measure-
ment (0.07 ‰), which is less precise than the IRMS-provided
reference accuracy (0.02 ‰). This reasoning applies to both
isotopologue and ratio calibration schemes, which both bene-
fit from the higher accuracy and precision in the isotopologue
ratios than in absolute isotopologue amounts. The principle
differences between the isotopologue and ratio calibration
schemes are 2-fold.

– The isotopologue scheme does not require calibration
gases spanning a range of delta values; it is sufficient to
span the range of total amount fractions of interest. This
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simplifies the preparation of reference gases for calibra-
tion laboratories.

– The ratio scheme has an unavoidable CO2 concentra-
tion dependence which must be characterised and leads
potentially to a loss of accuracy, as shown in Sect. 4.2.
This complicates the calibration procedure for optical
analysers.

Optical FTIR and laser methods do not currently meet GAW
requirements of 0.01 ‰ for repeatability of δ13C in CO2
in clean background air measurements (WMO-GAW, 2016).
Their precision is limited by the inherent signal : noise ratio
of the optical measurement, not by the choice of absolute or
ratio calibration. The precision currently available from opti-
cal measurements is nevertheless very useful for continuous
analysis of air in non-baseline scenarios, such as urban air or
agricultural flux measurements.

Errors are discussed further in Sect. 6.

5 Tutorial: a practical worked example

This section presents a worked example of the calibration of
an optical analyser using reference gases of given total CO2
mole fraction, δ13C and δ18O, followed by measurements of
air to which this calibration is applied. The data are derived
from an Ecotech Spectronus FTIR analyser which measures
three isotopologues of CO2 (626, 636, 628) in the calibra-
tion gases and in the sampled air. The calculations follow
Sect. 4.1.

5.1 Calibration

The calibration data were collected in the laboratory at the
University of Wollongong on 27 September 2017. Four ref-
erence tanks were sourced from CSIRO, with total CO2 mole
fraction, δ13C and δ18O provided on the current WMO refer-
ence scales (WMO X2007 scale for total CO2, VPDB-CO2
for δ13C and δ18O). For each calibration tank, 13r,18r,17r ,
Rsum and reference isotopologue mole fractions are calcu-
lated from Eqs. (7), (5) and (8). The four reference gases
were measured in the analyser, and raw measured values
of the isotopologue mole fractions were corrected to dry
air and for small spectroscopic cross-sensitivities to pres-
sure, temperature and water vapour, as described by Griffith
et al. (2012). A two-parameter linear regression (slope and
intercept) of measured against reference mole fractions for
each isotopologue provides the linear calibration coefficients
a and b for the analyser, Eq. (14). The worked data are pre-
sented in Table 3 and calibration plots shown in Fig. 2.

5.2 Sample air measurements

Figure 3 shows an example of 1 day of calibrated 1 min mea-
surements from the same FTIR analyser collected at a rural

Figure 2. Calibration plots for three CO2 isotopologues.

site in SE Australia on 23 and 24 January 2018. Table 4 illus-
trates the worked calibration of the raw data at four times of
differing CO2 amounts and isotopic fractionations. The lin-
ear calibration of 27 September 2017 described above has
been applied to the measured data without further correction.
The calculations follow Sect. 4.1 to determine yCO2 , δ13C
and δ18O for each 1 min measurement. Figure 4 shows an
example of a Keeling plot derived from the data of Fig. 3,
with an intercept −24.5 ‰ typical of the dominant plants in
this agricultural area.

6 Assessment of potential errors

Table 5 shows examples of actual isotopologue amounts for
samples with total CO2 = 400 ppm and a range of isotopic
compositions. The table includes Rsum values calculated for
each sample. The potential error incurred in calculating the
total CO2 amount from a spectroscopic measurement of y626
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Table 4. Worked calibration of sample data in Fig. 3 at four times with varying CO2 mole fractions. Columns 2–4 contain the raw measured
isotopologue mole fractions corrected to dry air, columns 5–7 contain the calibrated dry air mole fractions after applying the coefficients
from Table 3, columns 8–10 are the isotopic ratios and Rsum for each sample, and columns 11–13 contain the final calibrated total CO2,
δ13C and δ18O.

Time y626,meas y636,meas y628,meas y626,cal y636,cal y628,cal
13r 18r Rsum yCO2 δ13C δ18O

23–24 ppm ppm ppm ppm ppm ppm ppm ‰ ‰
Jan

18:00 433.79 4.9845 1.9325 397.07 4.4015 1.6614 0.011085 0.002092 1.016117 403.47 −8.53 1.76
00:00 492.97 5.6550 2.2211 450.80 4.9867 1.8891 0.011062 0.002095 1.016102 458.05 −10.56 3.31
06:00 541.01 6.2000 2.4531 494.41 5.4624 2.0722 0.011048 0.002096 1.016088 502.37 −11.80 3.46
12:00 433.37 4.9800 1.9309 396.69 4.3975 1.6601 0.011086 0.002092 1.016119 403.08 −8.47 1.97

Table 5. Actual isotopologue amounts and Rsum values in 400 ppm total CO2 for various isotopic compositions. The last column lists errors
in calculating total CO2 if different isotopic composition between reference (calibration) and sample measurements are not accounted for.
See text for details of the various cases.

Case yCO2 ppm δ13C ‰ δ18O ‰ δ17O ‰ Rsum y626 ppm y636 ppm y628 ppm yCO2 error ppm

1 400 0 0 0 1.01620 393.62 4.4077 1.6440 0.000
2 400 −8 0 0 1.01611 393.66 4.3660 1.6442 0.035
3 400 −35 0 0 1.01581 393.77 4.2484 1.6447 0.155
4 400 0 2 0 1.01621 393.62 4.4007 1.6473 −0.003
5 400 0 0 2 1.01621 393.62 4.4007 1.6440 −0.001
6 400 5.13 −39.82 −51.4 1.01605 393.68 4.4240 1.5788 0.060
7 400 0 0 0 1.01614 393.65 4.4010 1.6441 0.024

via Eq. (10) if the different isotopic composition between
sample and reference gases is not taken into account is shown
in the rightmost column – it is the difference from 400 ppm
of the total CO2 calculated from Eq. (10) taking the refer-
ence valueRsum,ref (case 1) instead of the correct value on the
same line Rsum. This simulates the effect of ignoring the dif-
ference in isotopic composition between reference and sam-
ple. The reference case (case 1) is a hypothetical standard
with the isotopic composition of VPDB-CO2. Examples in-
clude typical clean air (case 2), synthetic air synthesised with
13C-depleted CO2 with δ13C=−35 ‰ (case 3), systematic
errors of 2 ‰ in δ18O and δ17O (cases 4, 5), and the use
of isotope ratios assumed by HITRAN rather than VPDB-
CO2 (case 6). Case 7 simulates the result if only singly sub-
stituted isotopologues are included in the sum and all dou-
bly substituted minor isotopologues are ignored. Other cases
can be assessed following the equations of Sect. 2. Potential
errors are fortunately small relative to GAW compatibility
goals for realistic isotopic variations of a few per mil around
clean air values. However the potential for significant errors
(> 0.1 ppm) exists for reference gas mixtures or samples with
13C-depleted CO2 as is often the case for synthetic mixtures
or for samples with added CO2 derived from plant or fossil
fuel sources.

These potential errors in computation of delta values
should also be viewed in the context of experimental mea-
surement errors. Flores et al. (2017) formally evaluated the
uncertainty budget for their particular FTIR measurements

of δ13C in CO2 and found a standard uncertainty of 0.09 ‰,
of comparable magnitude to the largest potential computa-
tional approximation errors. The measurement uncertainty
was dominated by uncertainty in assigned reference mole
fractions for the reference standards rather than the spectro-
scopic measurement uncertainty.

Three assumptions, previously mentioned and summarised
here, have negligible impact on the calculations of Sect. 2 and
Table 5.

– 14C, with an isotopic abundance of < 1 ppt is ignored in
all calculations.

– The relative amounts of multiply substituted minor iso-
topologues are assumed to be in statistical relative abun-
dance, i.e. there is no isotope clumping. Clumping refers
to the case where the enrichment (or depletion) of two
or more isotopes in a multiply substituted isotopologue
are correlated, rather than each following their statistical
amounts independently. Clumping effects are normally
much less than 1 ‰, and according to Table 5 are there-
fore insignificant.

– Values 17r and δ17O are calculated from 18r and
δ18O (Eq. 6) assuming mass dependent fractionation.
Thermodynamic and kinetic fractionation processes are
mass-dependent and account for most fractionation
mechanisms in nature. Mass-independent fractionation
typically occurs in quantum processes such as photol-
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Table 6. Details of isotopologues of common atmospheric species.

Species Stable No. No. Rsum
isotopes isotopocules independent

total quantities
(distinct) to specify

isotopic
composition

CO2
12C, 13C 16O, 17O, 18O 18 (12) 4 (1+13r)(1+17r+18r)2

CH4
12C, 13C 1H, 2H 32 (10) 3 (1+13r)(1+2r)4

N2O 14N, 15N 16O, 17O, 18O 12 (12) 4 (1+15r)2(1+17r+18r)
CO 12C, 13C 16O, 17O, 18O 6 (6) 4 (1+13r)(1+17r+18r)
H2O 1H, 2H 16O, 17O, 18O 12 (9) 4 (1+2r)2(1+17r+18r)

Figure 3. Calibrated total CO2, δ13C and δ18O of sampled air on
23–24 January 2018 at a rural site in SE Australia. Air was sampled
continuously, and the displayed data are 1 min averages.

ysis and can cause small deviations from mass depen-
dence. These deviations are also typically < 1 ‰ (e.g.
Miller et al., 2002) and thus also negligible for the pur-
poses of this work.

Figure 4. Keeling plot of data shown in Fig. 3.

7 Other molecules

Similar considerations apply to other molecular species, see
Table 6. For CH4, 13CH4 measurements are commonly made
using laser analysers such as those of Picarro (Rella et al.,
2015), and isotopic reference gases are available. An analysis
similar to that in Sect. 6 and Table 5 shows that for 2000 ppb
CH4 in air, an error of 10 ‰ in the assumed value of δ13C
leads to an error of 0.2 ppb in the calculated total CH4 mole
fraction, and for a−35 ‰ error the total CH4 error is 0.7 ppb.
A 100 ‰ error in δ2H leads to an error in total CH4 of only
0.1 ppb.

For N2O there is the additional complication of the iso-
topomers 15N14N16O and 14N15N16O, for which standard
reference gases are not available, and for which measurement
technologies are currently less advanced. The general mag-
nitude of potential errors will be similar to those of CO2. For
CO, reference gases are available, but current optical tech-
niques are not able to resolve isotopic variations with suffi-
cient accuracy at the typical low total mole fractions in air.
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8 Calibration of commercially available analysers

Several commercial manufacturers offer isotopologue-
specific optical analysers based on laser (Campbell Sci-
entific, Picarro, Los Gatos Research, Aerodyne Research,
Thermo Fisher Scientific) or FTIR (Ecotech) spectroscopy
that analyse sampled air for one or more specific isotopo-
logues. These instruments report results in a variety of ways,
as isotopologue mole fractions and/or as total mole fractions
and isotopic delta values, both calibrated and uncalibrated.
In most cases the scheme by which total mole fractions and
delta values are calculated from the raw measured data is not
fully described, although some details are available in user
manuals and published works. In most cases some level of
approximation is used in accounting for the full molecular
isotopic composition when converting between isotopologue
amounts and total amounts and delta values. As shown in
Sect. 6, these approximations are fortunately in most cases
acceptably small, but it is nevertheless recommended that
they be assessed and documented if the full computation
scheme is not used or measurement, and calibration data for
all isotopologues are not available.

GAW reports on Carbon Dioxide, other Greenhouse Gases
and Related Tracers Measurement Techniques since 2011
(WMO-GAW, 2012) recommend that the computational
scheme for isotopic quantities derived from all commercial
and non-commercial analysers be published and fully trans-
parent to the user to avoid the potential for biases and in-
accuracies stemming from different calibration and calcula-
tion schemes. Potential errors and calibration biases due to
inconsistent isotopic calculations and the empirical determi-
nation of concentration dependences can be avoided if only
the raw output isotopologue amounts from the analyser(s) are
used and calibrated and isotopic quantities are calculated a
posteriori following consistent calculation schemes, such as
those described here and in Flores et al. (2017) and Tans et
al. (2017).

9 Summary, discussion and conclusions

Optical trace gas analysers based on laser or FTIR spec-
troscopy measure the concentrations or mole fractions of in-
dividual isotopologues of a trace gas rather than the total
amount of all possible isotopologues of the target gas. This
leads to potential calibration inaccuracies in relating the in-
dividual isotopologue measurements made by the analyser
to the more usual quantities of total amount and isotopic ra-
tios or delta values. This paper reviews previous studies ad-
dressing isotopic calibration of optical analysers and presents
a practical guide to the calculations required to completely
and rigorously account for the isotopic composition of a
trace gas when determining its total concentration with an
isotopologue-specific optical analyser. Although most previ-
ous work has made some level of approximation in account-

ing for the full isotopic composition, this paper shows that
such approximations are not required and save little effort
– the complete calculations are relatively straightforward.
The approach described here is consistent with those of Flo-
res et al. (2017) and Tans et al. (2017); for CO2 for exam-
ple, the measurement of either three isotopologues (12C16O2,
13C16O2, 12C16O18O), or total CO2 and two delta values
(δ13C, δ18O) is necessary and sufficient to specify the com-
plete isotopic composition with sufficient accuracy to meet
GAW compatibility goals. Calculations to interconvert be-
tween these equivalent specifications of composition accu-
rately are described.

Potential errors which may arise when making sometimes-
unavoidable approximations in the calculations are assessed
and, in most cases, fortunately found to be small and of-
ten negligible. However, significant errors can arise when
the isotopic composition of an air sample is very different
from that used to calibrated the analyser. Two common cases
where this may occur in practice are in the production of syn-
thetic reference standards using highly depleted 13C in CO2
and in environmental studies such as soil chambers where
high levels of 13C-depleted CO2 are analysed with an anal-
yser calibrated around clean atmospheric 13C levels.

Provided the appropriate calibration standards are avail-
able, this paper recommends that the calibration of opti-
cal analysers be carried out via direct measurement of the
amounts of individual isotopologues, from which the total
trace gas amount and isotopic composition can then be cal-
culated completely and accurately. It recommends against ra-
tio or delta-based calibration because this approach leads in-
evitably to concentration dependences in the calibration that
must be characterised. Direct isotopologue calibration avoids
concentration dependence and requires only reference stan-
dards spanning the range of concentrations to be measured
and of known isotopic composition. There is no requirement
for the reference gases to span the range of expected delta
values; they can all be produced from the same source of
trace gas and all have the same isotopic composition.

Optical FTIR and laser methods do not currently meet
GAW requirements for repeatability of δ13C in CO2 in clean
background air measurements (0.01 ‰). Their precision is
currently limited by the inherent signal : noise ratio of the op-
tical measurement, not by the calibration methodology. The
precision currently available from optical measurements is
nevertheless very useful for continuous analysis of air in non-
baseline scenarios such as urban air or agricultural flux mea-
surements.

Data availability. Data in the paper are only illustrative of the cal-
culations. There are no original or published data.
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