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Phenotypic variations and stochastic expression of transcripts, proteins, and
metabolites in biological tissues lead to cellular heterogeneity. As a result, distinct cellular
subpopulations emerge. They are characterized by different metabolite expression levels
and by associated metabolic noise distributions. To capture these biological variations
unperturbed, highly sensitive in situ analytical techniques are needed that can sample
tissue embedded single cells with minimum sample preparation. Optical fiber-based
laser ablation electrospray ionization mass spectrometry (f-LAESI-MS) is a promising
tool for metabolic profiling of single cells under ambient conditions. Integration of this
MS-based platform with fluorescence and brightfield microscopy provides the ability
to target single cells of specific type and allows for the selection of rare cells, e.g.,
excretory idioblasts. Analysis of individual Egeria densa leaf blade cells (n = 103) by
f-LAESI-MS revealed significant differences between the prespecified subpopulations
of epidermal cells (n = 97) and excretory idioblasts (n = 6) that otherwise would have
been masked by the population average. Primary metabolites, e.g., malate, aspartate,
and ascorbate, as well as several glucosides were detected in higher abundance in
the epidermal cells. The idioblasts contained lipids, e.g., PG(16:0/18:2), and triterpene
saponins, e.g., medicoside I and azukisaponin I, and their isomers. Metabolic noise for
the epidermal cells were compared to results for soybean (Glycine max) root nodule
cells (n = 60) infected by rhizobia (Bradyrhizobium japonicum). Whereas some primary
metabolites showed lower noise in the latter, both cell types exhibited higher noise
for secondary metabolites. Post hoc grouping of epidermal and root nodule cells,
based on the abundance distributions for certain metabolites (e.g., malate), enabled the
discovery of cellular subpopulations characterized by different mean abundance values,
and the magnitudes of the corresponding metabolic noise. Comparison of prespecified
populations from epidermal cells of the closely related E. densa (n = 20) and Elodea
canadensis (n = 20) revealed significant differences, e.g., higher sugar content in the
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former and higher levels of ascorbate in the latter, and the presence of species-specific
metabolites. These results demonstrate that the f-LAESI-MS single cell analysis platform
has the potential to explore cellular heterogeneity and metabolic noise for hundreds of
tissue-embedded cells.

Keywords: single cell analysis, in situ, plant cells, heterogeneity, metabolic noise, mass spectrometry,
metabolites, laser ablation electrospray ionization

INTRODUCTION

Cell types in tissues are distinguished by altered expression
levels of transcripts, proteins, and metabolites resulting in
their ability to serve specific functions. Dermal tissue in
typical plant leaves consists of specific cell types, including
epidermal cells (i.e., pavement and basal cells), trichomes, and
guard cells. To facilitate their functions, different metabolic
pathways are active in these cell types. Single cell analysis
of some of these cell types revealed major differences in the
abundances of primary and secondary metabolites. Compared to
pavement and basal cells, the trichomes of Arabidopsis thaliana
contained higher levels of metabolites from the kaempferol
glycoside biosynthesis pathway (Zhang et al., 2014). Selectively
analyzing specialized single plant cells, e.g., parenchyma cells,
guard cells, trichomes, and excretory idioblasts (Foster, 1956;
Valverde et al., 2001; Labhsetwar et al., 2014; Misra et al.,
2015; Sibbitts et al., 2018) can provide insight into the
biochemical processes and regulatory networks associated with
their function.

Cellular heterogeneity within a particular cell type stems from
stochastic expression of genes (Taniguchi et al., 2010; Brennecke
et al., 2013; Kharchenko et al., 2014), the corresponding proteins
(Newman et al., 2006), regulation of enzymes, asynchronous
cell division, and epigenetic events. For example, in Escherichia
coli, protein copy numbers follow gamma distributions and
are uncorrelated with the corresponding mRNA copy numbers
(Taniguchi et al., 2010). In Saccharomyces cerevisiae, the
magnitude of proteomic noise is linked to the function of
the protein, i.e., enzymes participating in protein synthesis
exhibit low noise, whereas proteins that compensate for external
perturbations show high noise (Newman et al., 2006).

Together with other contributing factors, these variations
affect the concentration levels of downstream products, including
metabolites (Altschuler and Wu, 2010; Paige et al., 2012;
Bintu et al., 2016; Xiao et al., 2016; Rosenthal et al., 2018).
These fluctuations propagate through the complex networks
of regulatory cascades and they are collectively perceived as
biological noise (Levine and Hwa, 2007; Labhsetwar et al., 2014;
Forment and Rodrigo, 2017). Within a clonal population, two
main sources can account for noise in gene expression; intrinsic
noise, e.g., the stochasticity of transcription, mRNA production
and destruction (Newman et al., 2006), and translation, and
extrinsic noise that is caused by cell-to-cell-differences, e.g., the
stage in cell cycle or the number of ribosomes in the cell (Elowitz
et al., 2002; Swain et al., 2002).

Most biological experiments rely on bulk analysis that report
on large cell population averages (millions of cells) and mask

the presence of subpopulations, rare cells, and individual cellular
variations. Measuring the distribution and the magnitude of
biological noise is increasingly feasible through single cell
analysis techniques, including fluorescence (Paige et al., 2012),
microfluidics (Sibbitts et al., 2018), and Raman scattering (Kuku
et al., 2017). The limited size and volume of single cells, and
the low copy numbers of certain analytes make detection,
identification, and quantitation challenging. To overcome these
limitations, on the genomic and transcriptomic level nucleic
acid amplification has been implemented (Efroni et al., 2015).
However, this process cannot be applied in proteomics and
metabolomics, as there is no amplification mechanism available
for these biomolecules. The high sensitivity and selectivity of
mass spectrometry (MS) make it the method of choice for
metabolomic and proteomic analysis of single cells (Zenobi,
2013).

Due to the rapid turnover rates for some small molecules
and the potential loss of material, sampling and handling of
single cells requires special considerations. Several vacuum
and ambient MS-based platforms have been developed to
satisfy these requirements and explore cell-to-cell variations in
tissue-embedded and circulating cells (Rubakhin et al., 2011;
Yang et al., 2017; Zhang and Vertes, 2018). Matrix-assisted
laser desorption ionization (MALDI) MS has been one of
the predominant techniques for single cell analysis, utilizing
different sampling methods, including laser capture micro
dissection (Xu and Caprioli, 2002), isolation and extraction
of single cells (Krismer et al., 2015), and microinjection
of matrix directly into a cell (Agar et al., 2010). Time-of-
flight secondary ion mass spectrometry (TOF-SIMS) has
been used for chemical imaging of small biomolecules
within cells and subcellular compartments (Barnes et al.,
2012). However, vacuum methods require extensive sample
preparation and dehydration, preventing analysis under native
conditions.

Ambient single cell MS methods based on electrospray
ionization (ESI) can sample cells within their natural
environment and provide information on a less perturbed
cell state. Probe-based ESI MS sampling techniques directly
interrogate and analyze tissue-embedded cells by accessing
intercellular material. These methods include probe sampling,
e.g., live single cell MS (Fujii et al., 2015; Yang et al., 2017),
capillary microsampling (Zhang et al., 2014), cell pressure probe
MS (Nakashima et al., 2016), and single-probe MS (Gong et al.,
2014). Another ambient single cell sampling method is based on
laser ablation followed by ESI. These approaches include laser
ablation electrospray ionization (LAESI) (Shrestha and Vertes,
2009), laser desorption ionization droplet delivery (LDIDD)
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(Lee et al., 2016), and laser ablation inductively coupled plasma
(LA-ICP) ionization (Herrmann et al., 2017).

To achieve single cell resolution by LAESI, mid-IR laser
pulses are coupled into an optical fiber with the distal tip etched
to be commensurate with the size of a plant cell. Feasibility
experiments were conducted on pigmented and non-pigmented
Allium cepa epidermal cells (Shrestha and Vertes, 2009). Using
this fiber-LAESI (f-LAESI), cell-by-cell molecular imaging of
metabolites was demonstrated (Shrestha et al., 2011). Subcellular
compartments of tissue embedded cells were also sampled
and analyzed by f-LAESI by exposing the nucleus through
microsurgery (Stolee et al., 2012).

In this contribution, we explore the abundance distributions
of metabolites, their metabolic noise, detect the differences
in prespecified and post hoc identified subpopulations, and
demonstrate the analysis of rare cells by f-LAESI-MS. These
single cell measurements are performed on a population of
soybean (Glycine max) root nodule cells (n = 60) infected by
rhizobia (Bradyrhizobium japonicum), and Brazilian waterweed
(Egeria densa) cells (n = 103) consisting of mostly epidermal
cells and some excretory idioblasts on the adaxial leaf surface.
Epidermal cells from two closely related waterweed species,
E. densa (n = 20) and Elodea canadensis (n = 20), were compared
through single cell analysis by f-LAESI-MS to reveal significant
differences between their metabolite compositions.

MATERIALS AND METHODS

Fiber-LAESI
A Nd:YAG laser driven optical parametric oscillator (IR Opolette
HE 2731; Opotek, Carlsbad, CA, United States) was used to
generate mid-IR laser pulses of 2.94 µm wavelength, 7 ns pulse
length, and 20 Hz repetition rate. The laser energy was externally
attenuated to ∼1.3 ± 0.16 mJ, and this arrangement afforded
a pulse-to-pulse stability of <5%. The laser light was focused
through a 50-mm focal length plano-convex CaF2 lens directly
onto the end of a 250-µm core diameter germanium oxide
(GeO2) based optical fiber (HP Fiber, Infrared Fiber Systems, Inc.,
Silver Spring, MD, United States). For precise coupling, a fiber
mount tilt stage (F-91TS, Newport, Irvine, CA, United States)
was used that supported both the focusing lens and the bare fiber
positioner (F-915T, Newport, Irvine, CA, United States).

The ends of a 1.0-m-long GeO2-based optical fiber were first
stripped of the Hytrel and polyimide coatings by submersing
both ends into 1-methyl-2-pyrrolidinone at 150◦C for ∼2 min.
Both ends were cleaved with a fiber cleaver for improved energy
transmission. The end distal to the laser beam coupling was
subjected to chemical etching by 4% HNO3 solution to form a
tip commensurate in size with single cells. For uniform etching,
a 100-mm diameter beaker was used that provided low curvature
for the meniscus of the acid solution. The distal fiber end was
lowered ∼0.5 mm deep into the solution. The etching was
complete in∼10 min when the liquid bridge between the solution
surface and the fiber end was broken, resulting in a sharp tip. To
remove chemical residues, both ends of the fiber were washed by
deionized water prior to use. The end used for coupling the laser

energy was secured into a bare fiber chuck (BFC300, Siskiyou
Corporation, Grants Pass, OR, United States) and mounted in the
fiber positioner. The etched end of the fiber was mounted onto
a probe holder (MXP-150, Siskiyou Corporation, Grants Pass,
OR, United States), attached to a micromanipulator (MN-151,
Narishige, Tokyo, Japan) and steered into the field of view of the
cell-targeting microscope (CTM) for sampling. Further details
can be found in our previous work (Shrestha and Vertes, 2009).

Microscope Visualization
Two separate visualization systems were used, one for monitoring
the fiber tip to cell distance and the other for cell targeting. The
CTM was positioned at a right angle from the sample surface
and above the electrospray and MS inlet orifice axis. Brightfield
illumination was provided by a white LED with 6500 K color
temperature (MCWHL5, Thorlabs, Newton, NJ, United States)
with its intensity adjusted by a LED driver (LEDD1B, Thorlabs,
Newton, NJ, United States). For uniform lighting, an aspheric
condenser lens with a diffuser surface (ACL2520-DG15-A,
Thorlabs, Newton, NJ, United States) was installed. Since the
illumination was perpendicular to the sample surface and the
camera, a 30:70 (reflection:transmission) beamsplitter (BSS10R,
Thorlabs, Newton, NJ, United States) was inserted into the optical
train. For cell targeting, a 20× infinity-corrected objective lens
(M Plan Apo, Mitutoyo Co., Kanagawa, Japan) was combined
with a 1× tube lens and a 4-megapixel monochrome CCD camera
(4070-GE, Thorlabs, Newton, NJ, United States). A long working
distance fiber-monitoring microscope (FMM) (AM4815ZTL,
Dino-lite, Torrance, CA, United States) with an extended
magnification range (5× to 140×) was positioned at a 20◦
elevation angle to the sample surface.

Plant Tissues
Live E. densa and Elodea Canadensis plants were obtained from
the greenhouse of the Science and Engineering Hall at the George
Washington University and from the Carolina Biological Supply
Company (Burlington, NC, United States). Prior to analysis,
healthy leaves were rinsed with HPLC grade deionized water.
Using tweezers, a leaf was removed and placed onto a microscope
slide abaxial side down.

Three-day-old soybean (G. max, Williams 82) seedlings were
inoculated with B. japonicum (USDA110). After 21 days of
growth, whole root nodules were harvested and flash frozen
at −80◦C. A more detailed description of soybean inoculation
by rhizobia can be found in our previous work (Stopka
et al., 2017). Intact frozen G. max root nodules were fixed
in 2.5% carboxymethyl cellulose (CMC) embedding medium.
Using a cryostat microtome (CM1800, Lecia Microsystems Inc.,
Nussloch, Germany) at−10◦C, the frozen CMC block containing
the nodule was sectioned at 30 µm thicknesses. The sections were
thaw-mounted onto microscope slides and placed on the Peltier
stage of the f-LAESI-MS system for analysis.

Single Cell Sampling
To prevent the sample from drying, the microscope slide with
the sample was mounted on a regulated Peltier stage that was set
to 0 ◦C. A motorized XY-stage (MLS203, Thorlabs, Newton, NJ,
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United States) and a piezoelectric actuator (PIAK10, Thorlabs,
Newton, NJ, United States) in the Z direction were used to adjust
the position of the cooling stage. With the fiber tip in the field
of view of the CTM, XY adjustments were made to the sample
position, so that the fiber tip was directly over a cell selected for
analysis. The sampling area on the leaf was in the basal region,
at 4–5 mm from the stem. Then, the sample stage was driven in
the Z direction until the fiber was just touching the cell surface.
The laser was then fired for ∼1 s (∼20 pulses) that ejected the
contents of the cell as a plume of fine particulates. The ejection
plume was intercepted by an electrospray that was on axis with
the inlet orifice of the mass spectrometer (Synapt G2-S, Waters,
Milford, MA, United States). The analysis was performed in
negative ion mode with a spray solution composition of 2:1 (v/v)
MeOH:CHCl3, a flow rate of 500 nL/min, and a spray voltage of
2.7 kV.

Statistical and Data Analysis
A total of 103 (n = 97 epidermal cells and n = 6 idioblasts)
single cell spectra were collected from 16 leaves of the
E. densa species under identical instrumental settings and
environmental conditions. The raw files have been uploaded
with Study Identifier MTBLS765 to MetaboLights,1 a web-based
metabolomics repository. All raw data files were processed by
removing the ESI background ions through spectral subtraction
to reveal the sample related peaks (MassLynx, 4.1, Waters,
Milford, MA, United States). Data reduction was achieved
by peak picking and deisotoping using mMass (Strohalm
et al., 2010). The web-based metabolomic processing software,
MetaboAnalyst 3.0 was utilized for multivariate statistical
analysis to explore differences between the epidermal vs. idioblast
cell types (n = 6 each) and the E. densa vs. E. canadensis epidermal
cells (n = 20 each). For this analysis, the data were normalized
by the sum of the cell-related spectral intensities and Pareto
scaling was performed. Cutoff values for the volcano plots were
set to 1.0 and −1.0 on log2 scale, corresponding to 2.0 and,
0.5 for the fold change values, and 0.05 for the p-value for
statistical significance. Box and whisker plots were constructed by
plotting the relative intensities within each sample group. Peak
assignments were based on accurate mass measurements and
comparison with online databases (Plant Metabolic Network,2

last accessed 7/6/2018, and METLIN,3 last accessed 7/6/2018)
(Guijas et al., 2018). To support metabolite identification, tandem
MS was performed using data dependent acquisition on leaf
blade and root nodule extracts through direct infusion. Collision-
induced dissociation (CID) was used with energies ramped from
10 to 55 eV. The corresponding fragments were compared to
the external databases above and our internal LAESI metabolite
database.

For low abundance species, the signal occasionally dropped
below the limit of detection, and no peak was detected. In
the classification of missing values, this corresponds to a left-
censored missing not at random (MNAR) case. For such datasets,
imputation of the missing values can be best handled by quantile

1https://www.ebi.ac.uk/metabolights/index
2http://plantcyc.org
3https://metlin.scripps.edu

regression imputation of left-censored data (QRILC) (Wei et al.,
2018). The web-based missing value imputation tool for MS-
based metabolomics data was used for ions with at least 80% of
non-zero data present4 (last accessed 7/24/2018).

RESULTS

Single Cell Sampling
Previously, we demonstrated that single plant cell analysis can
be achieved by f-LAESI-MS with ∼30 µm spatial resolution
(Shrestha and Vertes, 2009). Using a reduced diameter (250-µm
core) GeO2-based optical fiber with a tip radius of curvature
of R = ∼5 µm, improved the spatial resolution to ∼15 µm.
This allowed for precise sampling of the cells without partially
ablating the adjacent cells. The adaxial epidermal cell dimensions
for E. densa were 140 µm × 40 µm × 40 µm, in length,
width, and depth, respectively, corresponding to a volume
of ∼220 pL, whereas for G. max, the cell dimensions of
50 µm × 50 µm × 30 µm in the tissue section defined a
volume of ∼75 pL. The etched optical fiber tip was brought into
gentle contact with the surface of the cell avoiding its mechanical
disruption. When the laser was fired, the cell wall and plasma
membrane were ruptured, and the cell content was ejected into
the electrospray of the f-LAESI source. The schematic of single
cell analysis by f-LAESI-MS is shown in Figure 1.

An E. densa leaf blade consists of two epidermal cell layers
without the presence of mesophyll in this tissue. Away from the
midvein, epidermal cells (n = 97) and excretory idioblasts (n = 6)
were sampled from the adaxial side. The CTM was used to select
the cells for analysis (Figure 2A) and to image the interrogated
area after the ablation to confirm that only individual cells were
ablated (see Figure 2B). Offline optical imaging of both epidermal
layers was performed to assess the damage to the underlying
and neighboring cells after ablation. In the adaxial layer, only
the targeted cell was ruptured (see Figure 2A), whereas in the
underlying abaxial layer, all the cells were intact (see Figure 2B).
Large infected cells in the G. max root nodule sections were
interspersed with smaller uninfected cells (see Figure 2D). The
two cell types were clearly distinguished in the microscope image
based on the size difference. Using the CTM only infected cells
were selected for fiber ablation, before (Figure 2D) and after
(Figure 2E) microscope images of the ablation event revealed
only the cell of interest to be sampled.

Specialized excretory idioblasts, sparsely interspersed
throughout the E. densa leaf blade, were present in much
lower numbers than epidermal cells, and did not contain
chloroplasts. To pinpoint the idioblasts for analysis, fluorescence
imaging tailored to chloroplast autofluorescence was used to
locate these non-fluorescent cells. A blue shifted LED light
source with an illumination maximum at 470 nm and an
emission band at 620–700 nm were selected to highlight the
chloroplast containing epidermal cells. The embedded excretory
idioblasts were targeted for ablation based on the lack of
fluorescent chloroplasts in these cells (see the solid arrows in
Figure 3A).

4https://metabolomics.cc.hawaii.edu/software/MetImp/
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FIGURE 1 | Schematic of f-LAESI setup for single cell analysis. A mid IR laser beam is steered by gold coated mirrors (M) and coupled through a CaF2 focusing lens
(FL) into a germanium oxide-based optical fiber (GeO2 F). When the etched fiber tip is brought into close proximity of the cell, an ablation plume of neutrals (green
dots) is produced. The expanding plume is intercepted and ionized by an electrospray (blue dots) that is on axis with the inlet orifice of the mass spectrometer. Both
the optical fiber and the sample are mounted on XYZ stages for fine adjustments. A fiber monitoring microscope (FMM) is positioned under 20◦ elevation angle to
monitor the distance between the fiber tip and the sample surface. For cell selection, a cell targeting microscope (CTM) is positioned under right angle to the sample
surface.

Single Plant Cell Mass Spectrometry
To make sure the efficiency of ablation had little to no effect
on the spectra, the fiber tip was positioned over the centroid
of the targeted cell using CTM visualization. This way, the
effect of the cell walls on the ablation was minimized. The
volumes of excretory idioblasts and epidermal cells were similar.
Visualization by the CTM confirmed that the cell contents from
both cell types were fully ablated.

From the E. densa epidermal cells, on average ∼186
spectral features were observed after deisotoping (Figure 2C
and Figure 3B, top panel). For example, of the 20 common
amino acids, the following six were detected: [alanine-
H]− at m/z 88.035, [leucine/isoleucine-H]− at m/z 130.084,
[asparagine-H]− at m/z 131.037, [aspartate-H]− at m/z 132.024,
[histidine-H]− at m/z 154.062, and [tryptophan-H]− at m/z
203.084. Other primary metabolites that were detected from
the epidermal cells included [pyruvate-H]− at m/z 87.005,
[malate-H]− at m/z 133.013, [citrate-H]− at m/z 191.012,
[glutamate-H]− at m/z 146.044, and [disaccharide-H]− at
m/z 341.109. Secondary metabolites, including flavonoids
and flavonoid glucosides, e.g., [dihydroxy methylflavan-H]−
at m/z 255.095, [luteolin/kaempferol-H]− at m/z 285.044,
[tetrahydroxy methylsuccinoyl flavone-H]− at m/z 399.072, and
[luteolin/kaempferol glucuronide-H]− at m/z 461.082 were also
identified. Within the epidermal cells some glycerophospholipids,
e.g., phosphatidylglycerol (PG), [PG (16:0/18:2)-H]− at m/z
745.493, and phosphatidylinositol (PI), [PI (16:0/18:2)-H]− at
m/z 831.504, were detected.

The mass spectra of excretory idioblast contained ∼68
spectral features mostly populating the intermediate m/z 600–
1200 range (bottom panel of Figure 3B). The metabolic makeup

of idioblasts, detected by single cell f-LAESI-MS, contained
lipids, triterpenoids, and triterpene saponins. In the lower m/z
range, some metabolites detected in the epidermal cells were
also present in the idioblasts, but with significantly lower
abundance (see Figures 3C–E). For example, malate exhibited
an Iidioblast/Iepidermal ratio of 0.03, indicating a more biologically
driven need of malate in the epidermal cells. A few other
primary metabolites with low abundance were observed in the
idioblasts including asparagine (Iidioblast/Iepidermal = 0.02), and
citrate (Iidioblast/Iepidermal = 0.04). The PG(16:0/18:2) lipid species
(Iidioblast/Iepidermal = 1.77) and medicoside I triterpene saponin
(Iidioblast/Iepidermal = 70.48) were observed in both cell types,
however, with much higher abundance in the idioblasts. Unique
predominantly secondary idioblast metabolites, for example,
[coumaroylcorosolic acid-H]− at m/z 617.394, [azukisaponin
I-H]− at m/z 799.452, and [lablaboside A-H]− at m/z 1101.555,
were also observed.

After deisotoping, a representative G. max single cell mass
spectrum consisted of ∼157 spectral features (see Figure 2F).
Several different classes of compounds were present, ranging
from amino acids, to other primary metabolites, flavonoids,
flavonoid glucosides, and lipid species. Ions of some small
molecules, e.g., [oxalate-H]− at m/z 89.990, [fumarate-H]−
at m/z 115.003, [malate-H]− at m/z 133.0142, [ascorbate-
H]− at m/z 175.029, and [citrate-H]− at m/z 191.016, were
observed both in the G. max and the E. densa cells. A few
secondary metabolites were annotated in the G. max cells
included [hydroxyflavanone glucoside-H]− at m/z 417.090,
[trihydroxyflavone glucoside-H]− at m/z 431.136, and [PG
(18:1/18:1)-H]− atm/z 773.539. All of the metabolite assignments
mentioned here aligned well with our previous conventional
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FIGURE 2 | Selective cell sampling in leaf tissue composed of two cell layers. Focusing on (A) adaxial cell layer and (B) abaxial cell layer of an E. densa leaf blade
after an ablation event reveals that only the adaxial cell is sampled. (C) Corresponding negative ion mode mass spectrum from a single cell that exhibits ∼186
spectral features with detected biomolecules ranging from amino acids to secondary metabolites. Microscope image of single infected cell in G. max root nodule
section (D) before and (E) after ablation of circled cell. (F) Negative ion mass spectrum of the ablated G. max cell.

LAESI-MS analysis of whole soybean root nodules, and
MALDI-MS imaging of nodule sections (Stopka et al., 2017;
Veličković et al., 2018).

Technical vs. Metabolic Noise
Technical noise is the result of signal fluctuation attributable
to the analytical technique. This technical noise is connected
to signal intensity variations. It is different from the more
commonly discussed background noise that stems from
electronic and chemical interferences appearing as a fluctuation
in the baseline. The measured signal always satisfied the S/N
>3 requirement. To distinguish technical variability from the
metabolic noise, i.e., signal variation of biological origin, a
homogeneous solution standard of an endogenous compound

was sampled using the same experimental conditions as in
single cell analysis. Signal intensities from n = 15 replicates were
determined by f-LAESI-MS by ablating 1 µL droplets of a 500-
µM glutamate standard solution. To prevent material loss and
minimize droplet fission, the 1-µL aliquots were deposited onto
Parafilm M and directly ablated by the optical fiber tip. In-source
fragmentation at 23± 4% level was observed in the spectra of the
glutamate standard. To assess technical variability, the intensities
of the precursor ion at m/z 146.041 and the two in-source
product ions at m/z 128.040 and 102.059 were used to calculate
total glutamate intensities. The normalized intensities from
droplet standards were characterized by a mean of µt = 16.6,
a standard deviation of σt = 2.5, and a coefficient of variation
(COV = 100∗σt/µt) of 14.9% corresponding to a technical noise
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FIGURE 3 | Localization of idioblast and spectral variance within the E. densa single epidermal and idioblast cells from a whole leaf tissue. (A) An optical image from
the CTM microscope with the blue illumination conditions. Epidermal cells (indicated by open arrows) contain chloroplasts, whereas idioblasts lack chloroplast and
are non-fluorescent (close arrows). (B) A typical negative ion mode mass spectrum from (top) an epidermal cell and (bottom) idioblast cell, indicating the metabolite
differences. (C) A heat map consisting of (n = 6 each) epidermal and idioblast single cells to illustrate the clustering of spectral features from the mass spectra, where
each column is a spectrum and each row is an m/z value. (D) Volcano plot of significantly different spectral features from (green) idioblasts and (red) epidermal cells.
For example, (I) azukisaponin I and (II) coumaroylcorosolic acid were found to be more abundant in idioblasts, whereas (III) citrate and (IV) malate are at higher level in
epidermal cells. The threshold values of a fold change >2 and the p-value <0.05 based on the Student’s t-test were only considered. (E) Four significant species
that were identified from the volcano plot, (I) azukisaponin I, (II) coumaroylcorosolic acid, (III) citrate, and (IV) malate.

of η2
t = σ2

t /µ
2
t = 0.02 (Supplementary Figure S1). The data

were consistent with a normal distribution with a coefficient of
determination R2 = 0.92.

In relative terms, the signal variability of glutamate from single
E. densa epidermal cells (n = 97) and G. max infected root
nodule cells (n = 60) expressed in normalized intensities yielded
µm = 0.083, a σm = 0.080, and a COV of 97.3% with a measured
noise of η2

m = σ2
m/µ

2
m = 0.94, and µm = 3.23, σm = 1.63, and a

COV of 50.7% with a measured noise of η2
m = σ2

m/µ
2
m = 0.27,

respectively (see Figure 4). The measured noise originates from
a combination of metabolic and technical noise. The technical
noise, found to be η2

t = σ2
t /µ

2
t = 0.02, did not significantly affect

the determination of metabolic noise and cellular heterogeneity
for either of the studied systems.

The glutamate intensity distributions were consistent with
gamma distributions characterized by a probability density
function of:

f (x) =
βα

0(α)
xα−1e−βx, (1)

where α and β are the shape and rate parameters, respectively,
and 0(α) is the gamma function. They are directly related to the
inverse of metabolic noise, α = µ2/σ2, and to the Fano factor,
β = σ2/µ. Although a lognormal distribution could also be used

to describe these data, the gamma distribution was consistent
with more of the metabolite data, and it was also used in the
literature to describe protein copy numbers (Taniguchi et al.,
2010).

Prespecified Subpopulations
Variations of primary and secondary metabolite levels and lipids
were observed for a total of n = 103 cells (n = 97 epidermal
cells and n = 6 idioblasts) in E. densa leaves (see six examples
in Figure 4). As these two cell types were prespecified based
on their phenotypic differences, we collected and processed
the data separately for them. Metabolite ion intensities were
normalized by the sum of all cell-related ion intensities in the
single cell spectra. For the metabolites with significant abundance
values extending down to zero, such as ascorbate, glutamate,
and disaccharide, the counts followed a gamma distribution. For
metabolites that were present at significant levels in all cells, e.g.,
fumarate (see Figure 4) and malate (see Figure 5), the counts
followed normal distributions or multimodal distributions. In
malate, the latter were deconvoluted into a combination of three
normal distributions.

For some metabolite levels, there were significant differences
between the epidermal cells and the idioblasts. For example,
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FIGURE 4 | Metabolite abundance distributions for E. densa epidermal cells (first and third rows), and G. max infected root nodule cells (second and fourth rows).
Data are consistent with gamma and normal distributions.

based on t-tests disaccharide (p = 0.001) and citrate (p = 0.001)
was significantly higher in the epidermal cells. For malate,
medicoside I, and azukisaponin I, the metabolite levels in
idioblasts were dramatically different from epidermal cells.
Malate was almost absent in idioblasts putting their levels outside
the range found in epidermal cells. Conversely, medicoside I and
azukisaponin I were produced at very low levels by epidermal
cells and at significantly higher levels by idioblasts. The very
low level, or absence, of several primary metabolites in idioblasts
might be correlated with their biological function. As excretory

cells, they perform reduced levels of biosynthesis, and mostly
retain the functions needed for secretion and storage of certain
compounds.

For G. max, there was only one prespecified population of
cells, the infected root nodule cells, and normal distributions
were found to fit the data for all the related metabolites in
Figure 4. Supplementary Tables S1–S3 present the descriptive
statistics, the goodness of fit for normal, lognormal and gamma
distributions, and the regression parameters for all successful fits
to the E. densa and G. max data, respectively.
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FIGURE 5 | Abundances of malate in (A) E. densa epidermal cells and
(B) G. max-infected root nodule cells exhibit trimodal and bimodal
distributions, respectively. Deconvolution using normal distributions yielded
the corresponding mean values and standard deviations: (top panel)
µ1 = 14.0 and σ1 = 6.4, µ2 = 29.8 and σ2 = 3.8, and µ3 = 52.0 and σ3 = 6.3,
and (bottom panel) µ1 = 4.0 and σ1 = 1.1 and µ2 = 7.5 and σ2 = 0.6.

Post hoc Subpopulations
In two cases, malate distributions for E. densa and G. max,
trimodal and bimodal distributions were found, respectively.
They were deconvoluted into a combination of normal
distributions (see Figure 5). Such deconvolution enabled the
post hoc grouping of epidermal cells into subpopulations with
low, intermediate, and high levels of malate. The mean values and
standard deviations for the normally distributed subpopulations
in E. densa were µ1 = 14.0 and σ1 = 6.4, µ2 = 29.8 and
σ2 = 3.8, and µ3 = 52.0 and σ3 = 6.3, respectively. For G. max,
the two subpopulations were characterized by µ1 = 4.0 and
σ1 = 1.1 and µ2 = 7.5 and σ2 = 0.6. To confirm the presence
of subpopulations, the D > 2 Ashman’s criterion for normally
distributed components was used, where

D12 =

√
2|µ1 − µ2|√

σ2
1 + σ2

2

(2)

(Ashman et al., 1994). According to this criterion, the three
components in the malate heterogeneity in E. densa are
characterized by D12 = 3.04 and D23 = 4.26, whereas in G. max,
the two components satisfy D12 = 3.46. This means that, based on
their malate levels, the E. densa epidermal cells and the G. max
infected root nodule cells can be post hoc grouped into three
and two subpopulations, respectively. If the multimodal malate
distribution was a consequence of cell morphology differences,
other metabolites would also exhibit such distributions. Yet none
of the other studied metabolites showed multimodality. Thus, it is

unlikely that the bi-/tri-normal malate distributions are the result
of differences in cell morphology or ablation efficiency.

Metabolic Noise
Metabolic noise is induced by variations in enzyme levels,
metabolic fluxes, metabolite pool sizes, and environmental
factors. For most metabolites, these quantities are not available.
Nevertheless, from single cell measurements we can estimate the
amplitude of metabolic noise. Table 1 compares the metabolic
noise for primary and secondary metabolites and lipids, for
E. densa leaf epidermal cells and G. max-infected root nodule
cells. In general, primary metabolites exhibit lower metabolic
noise compared to lipids and secondary metabolites. Comparing
noise for primary metabolites from the two plants revealed higher
amplitudes in E. densa. The noise of lipid levels seems to be
consistent between the two plant types. Looking at the correlation
between the types of distributions and the amplitude of the noise,
we found that metabolite levels that follow normal distributions
are associated with lower metabolic noise.

Comparison of E. densa and Elodea
canadensis Epidermal Cells
Prespecified populations of epidermal cells from the leaves of
two closely related waterweed species, E. densa and E. canadensis
were analyzed and their metabolite compositions were compared.
The epidermal cell volumes of the E. densa and E. canadensis
were comparable at 245 ± 68 and 229 ± 71 pL, respectively.
In both cases, the analysis consisted of sampling most of the
cell content under standardized conditions. A total of n = 20
individual cells was analyzed from each species, and orthogonal
projections of latent structures discriminant analysis (OPLS-DA)
was performed. The resulting S-plot is shown in Figure 6A. The
peaks responsible for most of the variance between the spectra
from the two species with high covariance and correlation were
found on the wings of the S-plot.

A few unique spectral features were only observed
in the E. canadensis epidermal cells, e.g., m/z 637.105
(luteolin/kaempferol digalacturonide), m/z 318.035, and
m/z 677.267, the latter two with unknown annotation.
Metabolites with higher abundances detected in E. densa include
malate (IE.densa/IE. canadensis = 1.30), glutamate (IE.densa/IE.
canadensis = 1.15), hexose (IE. densa/IE. canadensis = 8.15), and
threonate (IE.densa/IE. canadensis = 30.66) (see Figure 6B top panel).
In the E. canadensis cells, ascorbate (IE.densa/IE. canadensis = 0.31)
and luteolin/kaempferol (IE. densa/IE. canadensis = 0.008) were
observed at higher signal intensities (see Figure 6B lower panel).

The metabolic noise of some biomolecules detected in the
two plants was compared. For example, hexose was found more
abundant in E. densa and this was reflected in the metabolite
level distributions for the two plants (see the top panel of
Figure 6C). In the E. canadensis cells, the lower mean of hexose
intensities, µm1 = 1.75, were accompanied by a relatively large
standard deviation, σm1 = 2.56, resulting in a metabolic noise
of η2

m1 = σ2
m1/µ

2
m1 = 2.14. For E. densa, the higher mean value

for the hexose level, µm2 = 11.57, and relatively lower standard
deviation, σm2 = 9.22, yields a significantly lower metabolic nose,
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TABLE 1 | Measured metabolic noise, η2
m = σ2

m/µ
2
m, in E. densa leaf epidermal cells (n = 97) and G. max-infected root nodule cells (n = 60).

Metabolites Metabolic noise (η2
m = σ2

m/µ2
m)

E. densa G. max

Primary metabolites Glutamate 0.94 0.27

Ascorbate 0.72 0.24

Disaccharide 0.58 0.08

Citrate 0.42 0.17

Oxalate 0.45 0.44

Asparagine 0.47 0.42

Fumarate 0.23 0.35

Malate 0.21 0.22

Lipids PG (16:0/18:2) 2.31 N/A

PG (16:0/18:3) 1.89 N/A

PG (18:1/18:1) N/A 1.81

Secondary metabolites Luteolin/kaempferol 1.82 N/A

Luteolin/kaempferol glucuronide 0.64 N/A

Tetrahydroxyisoflavanone 0.46 N/A

Trihydroxyflavone glucoside N/A 2.92

Hydroxyflavanone glucoside N/A 1.00

Technical noise of η2
t = σ

2
t /µ

2
t = 0.02 was determined using glutamate standard solution. Green background indicates metabolic noise levels below 0.3, whereas red

highlights levels above 0.5.

FIGURE 6 | (A) An S-plot showing the variance between the two populations of single epidermal cells (n = 20 each) in which the metabolites on the wings of the
S-plot have the highest covariance and correlation. (B) Box and whisker plots of two metabolites that showed high covariance and correlation values from the
S-plot. (top panel) a hexose found higher in abundance in E. densa with a p-value of 0.0001 and (bottom panel) ascorbate intensity was higher in the E. canadensis
epidermal cells with a p-value 0.0002. Both p-values were based on the Student’s t-test. (C) Metabolite abundance distributions for both (top panel) hexose and
(bottom panel) ascorbate are displayed in (black) E. canadensis and (green) E. densa.

η2
m2 = σ2

m2/µ
2
m2 = 0.64. Conversely, ascorbate was detected at

higher intensities in the E. canadensis cells. The higher mean
of ascorbate intensities, µm1 = 3.81, were accompanied by a
relatively large standard deviation, σm1 = 2.29, resulting in a
low metabolic noise of η2

m1 = σ2
m1/µ

2
m1 = 0.36. For E. densa,

the lower mean value for the ascorbate level, µm2 = 1.23,
and relatively lower standard deviation, σm2 = 1.64, yields a
significantly higher metabolic noise of η2

m2 = σ2
m2/µ

2
m2 = 1.76.

DISCUSSION

Integrating fluorescence and brightfield microscopy with
f-LAESI-MS for single cell analysis allows the selective targeting
of specialized or rare cells. This multimodal system offers unique
capabilities to target cells labeled by a fluorescent tag or identified
by cell morphology for single cell analysis. Although the system
has been used to analyze relatively large plant cells with volumes
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of 75–250 pL, typical animal cells with volumes of low picoliters
are much smaller so their analysis remains a challenge. Possible
mitigation strategies include increasing the sampling, ionization,
and ion collection efficiencies for the LAESI-MS analysis.

Here, we demonstrated the direct analysis of idioblasts
interspersed among epidermal cells in E. densa leaf tissues.
Idioblasts can be identified based on their autofluorescence in
the UV range (Hara et al., 2015). The visualization of these cells
for our study was based on imaging the autofluorescence of
chlorophyll a (Krause and Weis, 1991). Since the idioblasts do
not contain chloroplasts, they were identified and targeted based
on the lack of fluorescence (Figure 3A).

Excretory idioblasts in plant tissues have generated
interest due to the natural products stored within these
specialized cells with potential industrial and medicinal value.
However, these cells occur in significantly lower numbers
than epidermal cells in plant tissues. Assuming a leaf surface
area of ∼43.5 ± 15 mm2, the estimated numbers of adaxial
epidermal cells and idioblasts are ∼7700 and 214, respectively
(Hara et al., 2015). This means a 2.8% frequency for the
idioblasts resulting in a 36-time dilution of the analytical
signal for them in a bulk sample. Through plasmolysis,
it was demonstrated that only half the cell volume of an
E. densa leaf idioblast contains water as compared to nearly
the whole cell volume in epidermal cells (Cordes William,
2006). The detailed composition of E. densa idioblasts is still
unknown but it is reported to contain lipids, tannins, oils,
and enzymes such as lipase (Cordes William, 2006). In our
study, lipids and triterpene saponins were detected along with
several unknown compounds that were only characterized
by their accurate mass. For example, singly charged ions
at monoisotopic m/z values of 821.481, 855.492, 1163.640,
and 1127.216, and doubly charged ions at m/z 839.477,
897.509, 919.518, 940.533, 1309.844, 1330.8184, and 1351.832
were observed. These ions could not be annotated by either
tandem MS or comparing their accurate masses against
external databases. Further identification is needed for these
components.

In E. densa epidermal cells, the malate abundance distribution
was trimodal (see Figure 5A). This can be the basis of post hoc
identification of three distinct subpopulations containing low,
medium, and high malate concentrations. For comparison,
we determined the malate abundance distribution for cells in
the root nodules of G. max, infected by B. japonicum. These
measurements yielded a bimodal distribution corresponding to
post hoc identified subpopulations with low and high levels of
malate. Malate has a multitude of functions in plant physiology
and metabolism. Not only does it play a functional role in
the C4 pathway but acts as a pH homeostasis regulator, is an
intermediate in the TCA cycle, and involved in plant nutrition
(Schulze et al., 2002; Finkemeier and Sweetlove, 2009). These
identified subpopulations may be related to different malate
levels in quiescent cells (G0), and cells participating in the cell
cycle.

Our results illustrate the feasibility of utilizing f-LAESI-MS to
probe cellular heterogeneity directly from tissue-embedded single
cells. Metabolic noise of primary and secondary metabolites from

E. densa epidermal cells and infected G. max root nodule cells
was observed. A rare cell type, specialized excretory idioblasts in
E. densa, was selectively targeted, i.e., prespecified, for analysis,
and compared to other common epidermal cell types. Significant
differences were found between their metabolite compositions
that otherwise would have been masked by the overall population
average. Additionally, based on single cell analysis, differences
in the metabolite makeup of epidermal cells in two waterweed
species, E. densa and E. canadensis, were identified based
on their unique metabolite profiles and the metabolic noise
observed.

For transcripts and proteins, the measured noise, η2
m, consists

of technical, η2
t , intrinsic, η2

int, and extrinsic, η2
ext, components

(Swain et al., 2002):

η2
m = η2

int + η2
ext + η2

t . (3)

The intrinsic noise is associated with the transcription and
translation processes, and it becomes dominant for low copy
number proteins (below 10 copies/cell) as it follows a trend close
to the inverse of the copy number (Taniguchi et al., 2010). At
higher copy numbers (above 10 copies/cell), the extrinsic noise
presents a floor that no longer depends on protein copy numbers.
Extrinsic noise originates from all other sources of fluctuations,
e.g., the number of ribosomes in the cell, and the stage in the cell
cycle.

Copy numbers of transcripts, proteins, and metabolites
in a typical 1 fL E. coli cell are in the range of 1–100,
1–300,000, and 100–108, respectively, whereas for a 20 pL
A. thaliana epidermal cell, they are 1–108, ≤3 × 108,
and 109–7 × 1012, respectively (Zhang and Vertes, 2018).
Therefore, intrinsic stochastic effects can be significant in
microorganisms, and perhaps in the genetic regulation of
plants, but are unlikely to play a role in plant metabolic
processes. In particular, as metabolic enzymes typically have
copy numbers higher than 10 copies/cell, the intrinsic noise
can be neglected. In our experiments, for metabolites the
technical noise, η2

t ≈ 0.02, is also negligible, and the measured
noise is mainly the consequence of the extrinsic noise,
η2

m = η2
ext. However, it is unclear how the noise from extrinsic

sources propagates through the complex system of metabolic
pathways.

Table 1 compares the measured metabolic noise values
for primary and secondary metabolites in E. densa epidermal
cells and G. max infected root nodule cells. Whereas some
primary metabolites showed lower noise in the latter, both
cell types exhibited higher noise for secondary metabolites.
This observation can be explained by the generally lower copy
numbers for secondary metabolites and tighter regulation of the
vital primary metabolites.

Based on their metabolite compositions determined by
f-LAESI-MS, we were able to find distinguishing features
for prespecified populations of epidermal cells from two
closely related waterweed species, E. densa and E. canadensis.
A distinguishing feature (biomarker), only present in the
E. canadensis epidermal cells and not in E. densa, was luteolin
diglucuronide and/or its isomers. Indeed, flavonoid profiling
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of bulk E. canadensis tissue had revealed three species-specific
flavone-diglucuronide, apigenin-7-O-diglucuronide, luteolin-
7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide (Mues,
1983). Two sample t-test indicated that ascorbate was
significantly more abundant (p = 0.0002) in the cells from
E. canadensis (see lower panel of Figure 6C). Abundances of
other metabolites, e.g., glutamate and PG(16:0/18:3), were found
not to be significantly different in the two cell types.

An important limitation of the current method is its low
throughput. Compared to single cell transcriptomics performed
on 100,000 cells, and single cell proteomics, carried out on
thousands of cells, the ∼100 cell numbers in achieved by the
presented method are significantly lower resulting in lower
statistical power. Ongoing work aims to increase throughput
in cell targeting and analysis to improve statistical power. For
the rapid spatial mapping of metabolite abundances within
a tissue, automation of cell sampling by image processing
software is underway. Although our study utilized exclusively
plant cells to demonstrate the utility of the methods, it is
clear that f-LAESI-MS should be widely applicable for the
analysis of a variety of cell types (e.g., plant, animal, insect,
etc.).
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