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Mesoscale cortical activity can be defined as the organization of activity of large neuron

populations into collective action, forming time-dependent patterns such as traveling

waves. Although collective actionmay play an important role in the cross-scale integration

of brain activity and in the emergence of cognitive behavior, a comprehensive formulation

of the laws governing its dynamics is still lacking. Because collective action processes

are macroscopic with respect to neuronal activity, these processes cannot be described

directly with methods and models developed for the microscale (individual neurons).To

identify the characteristic features of mesoscopic dynamics, and to lay the foundations

for a theoretical description of mesoscopic activity in the hippocampus, we conduct a

comprehensive examination of observational data of hippocampal local field potential

(LFP) recordings. We use the strong correlation between rat running-speed and the LFP

power to parameterize the energy input into the hippocampus, and show that both the

power and non-linearity of collective action (e.g., theta and gamma rhythms) increasewith

increased speed. Our results show that collective-action dynamics are stochastic (the

precise state of a single neuron is irrelevant), weakly non-linear, and weakly dissipative.

These are the principles of the theory of weak turbulence. Therefore, we propose

weak turbulence a theoretical framework for the description of mesoscopic activity in

the hippocampus. The weak turbulence framework provides a complete description

of the cross-scale energy exchange (the energy cascade). It uncovers the mechanism

governing major features of LFP spectra and bispectra, such as the physical meaning

of the exponent α of power-law LFP spectra (e.g., f−α, where f is the frequency), the

strengthening of theta-gamma coupling with energy input into the hippocampus, as well

as specific phase lags associated with their interaction. Remarkably, the weak turbulence

framework is consistent with the theory of self organized criticality, which provides a

simple explanation for the existence of the power-law background spectrum. Together

with self-organized criticality, weak turbulence could provide a unifying approach to

modeling the dynamics of mesoscopic activity.

Keywords: hippocampus, mesoscopic collective action, theta-gamma coupling, kinetic equation, turbulence,

spectral evolution, bispectrum analysis, self-organized criticality (SOC)
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1. INTRODUCTION

Hebb’s (1958) hypothesis that no psychological function can be
attributed uniquely to any segment of cortex has the profound
implication that cognition emerges from the coordination of
activity across all spatial and temporal scales of the brain (Lashley,
1958; Allen and Collins, 2013), and that understanding the brain
begins with studying the nature and role of different scales of
brain activity.

Temporal scales, defined based on the frequency structure of
extracellular recordings (local-field potential, LFP), are typically
more accessible to observations. Their relation to spatial scales is
not exactly known, but they are assumed to be in a monotonic
relation to spatial scales (lower frequencies correspond to
larger populations; Buzsáki and Draguhn, 2004). The Fourier
spectra of hippocampal LFP recordings cover a frequency range
approximately from 0.05 to 500 Hz, with spectra generally
decaying as a power law. Two scales ranges are readily identified.
The high end of the spectrum, say, f > 200 Hz1 represents
the microscale, mainly occupied by action potential activity
of single neurons, fast synaptic time constants, ion channel
opening and closing, and heat dissipation (energy sinks)2. These
processes are generated by microscopic neural units such as
individual neurons, pairs of excitatory/inhibitory neurons, or
small neuronal sequences (e.g., Lorente de No, 1938). The
low end of the frequency spectrum (say, f < 60 Hz)
is assumed to represent macroscopic processes encompassing
several segments of the brain. For example, the theta rhythm is
observed across hippocampus, entorhinal cortex, hypothalamus,
prefrontal cortex, and others; e.g., Vertes and Kocsis, 1997;
Buzsaki, 2002; Siapas et al., 2005). It is associated with active
exploration and REM sleep, and is assumed to provide the
temporal structure for the organization of local networks (Green
and Arduini, 1954; Green and Machne, 1955; Vanderwolf, 1969;
Lisman and Idiart, 1995; Buzsaki, 2002).

In addition to these two scales, cortical activity exhibits an
intermediate (meso-) scale (e.g., Freeman, 2000a; Lubenov and
Siapas, 2009; Patel et al., 2012; Muller et al., 2018; Zhang et al.,
2018), which spans the frequency band 60 < f < 200 Hz,
a range of oscillations collectively referred to as the gamma
rhythm (Buzsáki et al., 1983; Bragin et al., 1995; Belluscio
et al., 2012; Lasztóczi and Klausberger, 2014; Schomburg
et al., 2014). Mesoscopic processes have been observed within
brain regions associated with higher cognition, such as the
neocortex and the hippocampus, that exhibit anisotropic and
homogeneous mesoscopic structure3. The monotonic relation

1Frequency bounds given here are just convention, and could be modified

depending on the processes examined.
2While action potentials are the fundamental process that carry the signal, like any

natural process, it burns more energy than it uses. Stated differently, it is not a

lossless system. Rather, synaptic transmission and action potentials comes at the

price of ion exchange/energy loss (ATP required to maintain membrane charge).
3The homogeneous and isotropic character of the hippocampal CA1 is illustrated

by the randomness and density of connections: ~390,000 neurons (Witter and

Amaral, 2004), with approximately 30,000 putative excitatory synapses and ~1,700

inhibitory synapses onto a single pyramidal cell (Megías et al., 2001), also

connected to interneurons (Freund and Buzsáki G., 1996; Marshall et al., 2002)

which in turn contact several hundred principal neurons (Sik et al., 1995). When

between temporal and spatial scales places mesoscopic spatial
scales in the order of a fewmillimeters in rats, suggesting that they
represent collective neuronal activity (i.e., synchronized neuronal
firing; Buzsáki and Draguhn, 2004)4. Rhythms in the 8–200 Hz
range have the spatial structure of propagating perturbations,
i.e., waves (Petsche and Stumpf, 1960; Lubenov and Siapas, 2009;
Patel et al., 2012, 2013; Muller et al., 2018).

Collective action responds to task behavior and intensity of
behavior activity. During spatial exploration, theta and gamma
increase their power and develop measurable phase coupling
in response to intensity of activity (Whishaw and Vanderwolf,
1973; Morris and Hagan, 1983; Bragin et al., 1995; Chorbak
and Buzsaki, 1998; Chen et al., 2011; Ahmed and Mehta,
2012; Kemere et al., 2013; Sheremet et al., 2016; Zheng et al.,
2016). This suggests a relation to cognition that is particularly
intriguing, because isotropic and homogeneous mesoscopic
neuronal structures are the type of environment that would
favor collective action over that of microscopic elements. While
mesoscopic collective activity could be explained away as a
marginally-significant synchronization effect of strongly non-
linear microscopic units (Buzsaki, 2006), its strong relation to
isotropic and homogeneous networks and its connection to
behavior suggest that it might be in fact the function of this type of
network. Freeman and Vitiello (2010) hypothesize, citing Lashley
(1942), that mesoscale processes reflect the essential cognition
step of abstraction and generalization of a particular stimulus
to a category of equivalent inputs, “because they require the
formation of non-local, very large-scale statistical ensembles (our
emphasis)”5.

We therefore conjecture that mesoscopic action plays a crucial
role in the integration of brain activity across scales, and that
its stochastic character is essential for the fulfillment of this
role. This conjecture changes significantly the interpretation
of LFP recordings and possibly other observations of of
hippocampal activity. For example, rather than attributing special
significance to the activity of microscopic elements (like musical
scores played by separate instruments), LFP recordings should
be interpreted as local observations of a stochastic process
representing collective action by mesoscale ensembles involving
a large number of microscopic units, in which the precise state of
a single unit is irrelevant.

Despite a few brilliant insights into collective action dynamics
(e.g., Wilson and Cowan, 1973; Wright and Liley, 1995;

mapping out the local, circuits of the hippocampus, what is found is that the axonal

connections would not necessary travel from one brain region to the next. Rather,

it exhibits connectivity by which activity may locally reverberate. Lorente de No

(1938); Hebb (1949); Maurer (2018).
4The phrase “collective activity” is equivalent to Freeman’s (1975) “mass action”

concept. We prefer “collective” over “mass”, because the word mass has a reserved

meaning in physics.
5Freeman and Vitiello (2010): The problem was clearly stated over 50 years ago:

“Generalization is one of the primitive basic functions of organized nervous tissue.

Here is the dilemma. Nerve impulses are transmitted . . . from cell to cell through

definite intercellular connections. Yet all behavior seems to be determined by

masses of excitation. . . . What sort of nervous organization might be capable

of responding to a pattern of excitation without limited specialized paths of

conduction? The problem is almost universal in the activities of the nervous system

(Lashley, 1942)”.
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Freeman, 2000a, 2006, 2007; Freeman and Vitiello, 2010; Cowan
et al., 2016), a consistent theoretical approach to mesoscopic
dynamics is missing. It is important to note that, because of
the scale separation, mesoscopic and microscopic dynamics
are different, therefore the wealth of knowledge accumulated
about microscopic physics cannot be directly extended to
mesoscopic processes. The notion that theory is scale-dependent
is common in physics: macroscopic systems are characterized
by state variables and laws that are typically inaccessible
directly to microscale theories. An example is Boltzmann’s
celebrated H-theorem, which introduces the entropy (H) as a
new state variable, and elucidates the process through which
time-reversible microscopic dynamics begets the macroscopic
irreversibility of evolution toward equilibrium (Gibbs, 1902;
Khinchin, 1949; Toda et al., 1983; Pathria and Beale, 2011)6.

Here, we propose the theory of weak turbulence as a
framework for the description of mesoscopic collective action
and its energy balance in the hippocampus. The paper is
organized as follows:

(i) In section 2, we discuss briefly data collection and analysis
procedures and provide some guidance on reading the bispectral
maps used to estimate non-linear coupling between Fourier
components of LFP recordings.

(ii) In section 3.1, we examine stochastic features LFP
recordings, using second and third order correlators (spectra
and bispectra). The goal of this section is to highlight important
characteristics of collective action and their dependency on
energy input into the hippocampus. This perspective is important
because it captures the transformation (ultimately, the time
evolution) of the LFP statistical measures, thus providing
a dynamical view of mesoscopic activity. In particular, the
evolution of energy distribution over spatial or temporal scales
is relevant for describing the energy balance of collective action
under non-linear interactions.

(iii) Section 3.5 introduces and discusses the theory of
weak turbulence as a framework for mesoscopic collective
action. Originally formulated for hydrodynamics, the theory
of turbulence has expanded in scope through the work
of Richardson, Kolmogorov, and Zakharov Richardson
(1922), Zakharov et al. (1992), and Kolmogorov (1941) to
become the theoretical foundation of physical disciplines
ranging from plasma physics, to non-linear optics, Bose-
Einstein condensation, water waves, coagulation-fragmentation
processes, and many others (Zakharov et al., 1992; L’vov, 1998;
Nazarenko, 2011). At the center of the turbulence theory is the
study of internal energy processes in non-linear, multi-scale
systems with a large number of components. The non-linear
character of the system allows for scales to interact, creating the
conditions for cross-scale flows of energy and other conserved
quantities. Non-linearity implies interaction connects evolution
across scales, allowing for a cross-scale flux of energy called
the turbulent cascade (Richardson, 1922; Kolmogorov, 1941).

6The reader might find the history of the debate surrounding the work of

Boltzmann (1872, 2003) and the birth statistical mechanics quite instructive (e.g.,

Pathria and Beale, 2011).

The turbulent cascade is the fundamental property defining
turbulence.

(iv) In section demonstrate the capabilities of the theory by
using the three-wave equations (a simplified, universal non-
linear interaction modeling framework) a to re-evaluate the
significance of linear and non-linear structure of hippocampal
LFP recordings.

(v) The significance of the turbulence theoretical framework
for understanding collective action, and its implications for
cognition, are discussed in section 4.
Further details of the weak turbulence formalism are given in the
Supplementary Material.

2. MATERIALS AND METHODS

2.1. Subjects and Behavioral Training
Rat r539♂-maurer used in this study belongs to a cohort
of 4–9 months old Fisher344-Brown Norway Rats (Taconic;
see e.g, Zhou et al. 2018 for additional information about the
cohort). The methods detailing the collection for these rats
have been described in detail elsewhere (Zhou et al., 2018).
Briefly, following acclimation to the University of Florida colony,
animals were trained to traverse a circular track for food reward
(45 mg, unflavored dustless precision pellets; BioServ, New
Jersey; Product #F0021). During this time, their body weight
was slowly reduced to 85% to their ad libitum baseline. Rats
were surgically implanted with a custom single shank silicon
probe from NeuroNexus (Ann Arbor, MI), designed such that
thirty-two recording sites spanned across multiple hippocampal
lamina.For probe preparation instructions and surgical methods,
see (Vandecasteele et al., 2012; Zhou et al., 2018).

All behavioral procedures were performed in accordance with
the National Institutes of Health guidelines for rodents and with
protocols approved by the University of Florida Institutional
Animal Care and Use Committee.

2.2. Neurophysiology
Following recovery from surgery, the rat was retrained to run
unidirectionally on a circle track (outer diameter: 115 cm, inner
diameter: 88 cm), receiving food reward at a single location.
Following a few days of circle track running, the rats were trained
to run on a digital-8 maze (121 × 101 cm, L × W). During
these sessions, the local-field potential was record on a Tucker-
Davis Neurophysiology System (Alachua, FL) at ~24 kHz (PZ2
and RZ2, Tucker-Davis Technologies). The animals position was
recorded at 30 frames/s with a spatial resolution<0.5 cm/pixel.

2.3. Spectral Analysis
The spectral analysis of the LFP in the current study was based
on standard techniques used for stationary signals Priestley,
1981; Papoulis and Pillai, 2002. Descriptions of the stochastic
estimators, meaning, normalization procedures, as well as how
to interpret the bispectral maps, are given in Hasselmann et al.
(1963), Rosenblatt and Van Ness (1965), Swami et al. (2001),
Elgar (1987), Elgar and Guza (1985), and Sheremet et al.
(2016), and many others. Here, we remind the reader the main
definitions and terminology.
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Assume the LFP recordings g(t) and h(t) are realizations
of zero-mean stochastic processes, stationary in the relevant
statistics, with Fourier transformsG(fn) andH(fn), n = 1, · · · ,N.
The second and third order spectral statistics are estimated using
cross-spectrum and bispectrum, defined as

S
gh
n = Sgh

(

fn
)

=
〈

GnH
∗
n

〉

, (1)

Bmn = B
(

fm, fn
)

=
〈

GmGnG
∗
m+n

〉

. (2)

where the angular brackets denote the ensemble average, the
asterisk denotes complex conjugation. We will generally omit
the superscript when a single time series is involved. The
diagonal S

g,g
n of the cross-spectrummatrix are power spectra. The

coherence and phase lag of time series g and h are the normalized
modulus and phase of the cross-spectrum,

C
gh
n =

Sgh
(

fn
)

√

S
gg
n Shhn

, and 2
gh
n = arg Sgh

(

fn
)

(3)

The cross-spectrum matrix provides information about the
degree of correlation and phase lags for between different time
series; spectra describe the frequency distribution of the variance
of processes g and h, i.e., a complete characterization of the
average linear structure of the Fourier representation.

The bispectrum provides information about the phase
correlations between different frequency components of the same
time series (e.g., Sheremet et al., 2016; Kovach et al., 2018).
The bispectrum is statistically zero if the Fourier coefficients are
mutually independent, i.e., for a linear system, and will exhibit
peaks at triads (fn, fm, fn+m) that are phase correlated. The real
and imaginary part of the bispectrum are related to the skewness
S (e.g., positive skewness corresponds to sharp barrow peaks
and flat troughs) and asymmetry A (e.g., positive asymmetry
corresponds to the front of the wave being steeper than the back,
similar to a saw-tooth wave) of the time series g through

σ−3
∑

m,n

Bmn = S + iA, (4)

where σ is its standard deviation (Haubrich and MacKenzie,
1965; Masuda and Kuo, 1981). The bicoherence bmn and biphase
8mn are defined in way similar to the coherence and phase lag
as the normalized modulus and the argument of the bispectrum,
that is

bmn =
Bmn√

SmSnSm+n
, and 8mn = argBmn. (5)

The bispectrum definition 2 has the following symmetries: 1)
Bmn = Bnm; 2) Bmn = B∗−m,−n; and 3) Bm,−n = B∗nq, where
q = m− n, showing that the information contained in the entire
discretized plane (fn, fm) is redundant. Symmetry 1) implies that
the bispectral distribution in octants 1 is 2 is symmetric with
respect to the first diagonal. Symmetry 2) shows that quadrants
1 and 3 contain equivalent, complex conjugate, information, and
the same is true for quadrants 2 and 4. Finally, symmetry 3) shows

that octants 1 and 8 contain equivalent information. Therefore,
the smallest domain of non-redundant information is octant 1,
i.e., the area bounded by the positive frequency axis and the
first diagonal (pink in Figure 1). In addition, if the number of
frequencies is finite n = 1, · · · ,N, as is the case in all numerical
applications (e.g., N = 12 in Figure 1), the bispectrum is only
defined in the area below the second diagonal, because fm + fn ≤
fN , hence the triangle appearance of the bispectral plots.

2.4. LFP Power
Because the quantity measured by LFP observations is the
potential of the electromagnetic field generated by the synaptic
pulses, the spectral distribution of LFP variance (i.e., LFP spectral
density integrated over some frequency interval) is proportional
to the energy of the electromagnetic field per unit volume.
Indeed, if the LFP time series g(t) is a zero-mean, weakly non-
linear stochastic process, stationary in the second order statistics
(Priestley, 1981; Percival and Walden, 2009), one can show that
the discrete Fourier representation has the property

σ 2 =
〈

g2
〉

=
∑

n

1

2

〈

|an|2
〉

=
∑

n

σ 2
n , (6)

where σ 2
n = 1

2

〈

|an|2
〉

= S
gg
n 1f is the variance of Fourier mode

n, an is its amplitude, S
gg
n is the spectral density (Equation 1),

and 1f is the frequency band width. The mean energy per unit
volume of an electromagnetic wave with the amplitude of the
electric potential g is w = εg2, where ε is the dielectric constant
of the medium (e.g., Pollack and Stump, 2002; Nolting, 2016).

FIGURE 1 | The underlying geometry of a bispectrum plot. The symmetries of

the bispectrum (see text) imply that the smallest area in the plans (fn, fm)

containing non-redundant information is the first octant, the solid angle

between the the f1 axis and first diagonal. Because the bispectrum is

computed using discretized frequencies, it is defined only at points (fm, fn)

with n,m = 1, · · · ,N (blue dots; N = 12 here). Because fm + fn ≤ fN, the

triads of the type GnGmG
∗
m+n can only be constructed for m+ n ≤ N, hence

the triangular shape of the bispectral domain. If the bicoherence exhibits a

peak (e.g., the red circle) the triad of modes that are phase coupled can be

identified as the coordinates of the peak, together with the intersection

between the horizontal axis and a parallel to the second diagonal passing

through the peak (red arrows).
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The energy per unit volume of a stochastic electromagnetic field
is therefore

w = ε
〈

g2
〉

=
∑

n

ε
1

2

〈

|an|2
〉

= 1f
∑

n

εS
gg
n . (7)

In other words, the amplitude squared of the Fourier components
of the LFP are proportional to the energy stored in the unit
volume by that particular Fourier component. A large number
of algorithms have been developed for estimating for second-
and higher-order statistics (power spectral density, bispectra,
skewness, asymmetry, etc) of such processes. The analysis of
the LFP in the current study was based on standard techniques
used for variance-stationary signals (Priestley, 1981; Papoulis and
Pillai, 2002) as previously described in Sheremet et al. (2016).

2.5. Numerical Implementation
All data analysis was performed in Matlab R© (MathWorks,
Natick, MA, USA) using in-house developed code, as well as code
imported from the HOSAtoolbox (Swami et al., 2001) for higher
order spectral analysis.

Hippocampal layers were determined from the location of
current sources and sinks derived on ripple and theta events,
gamma power, and the polarity of the sharp-wave (Buzsáki, 1986;
Buzsáki et al., 1986; Bragin et al., 1995; Ylinen et al., 1995;
Lubenov and Siapas, 2009; Fernández-Ruiz et al., 2017). Details
are given in Zhou et al. 2018.

The rat speed was calculated as the smoothed derivative of
position. Raw LFP records sampled at 24 kHz (Tucker-Davis
system) were pre-processed by applying a 2-kHz low-pass filter
and divided into segments of 2048 time samples (approx. 1 s).
Spectra and bispectra were classified by speed by averaging the
speed over each of the 1-s LFP segments.

The dynamical and kinetic three-wave equations were
integrated using the ODE solvers provided by Matlab R©. The
implementation is trivial, therefore, to save space, the codes are
not provided. The authors will, however, gladly share them upon
request.

3. RESULTS

3.1. Observations: Collective-Action
Response to Behavior
The relationship between rat speed and theta and gamma power
(Whishaw and Vanderwolf, 1973; Morris and Hagan, 1983; Chen
et al., 2011; Ahmed and Mehta, 2012; Kemere et al., 2013;
Zheng et al., 2015) is easily observable for speeds roughly above
5 cm/s (e.g., Figure 2). While low speeds, say <3 cm/s may
represent behavior uncorrelated to movement (Zhou et al., 2018),
higher speeds exhibit a monotonic correlation with the power of
hippocampal activity (firing rates of hippocampal and entorhinal
neurons increase with speed; McNaughton et al., 1983; Rivas
et al., 1996; Shen et al., 1997; Hirase et al., 1999; Maurer et al.,
2005; Kropff et al., 2015). This observation provides a monotonic
ordering of LFP statistics, with speed playing the role of an order
parameter. Because of the relation is monotonic, the expression
“evolution with speed” may be used unambiguously for “change

FIGURE 2 | Joint probability density function for LFP variance (LM) and rat

speed, for rat r539♂-maurer. The dashed line is a best-fit analytical

expression
(

v
1 cm/s

)

= a log10

(

V

1 mV2

)

+ b, with a = 0.18 and b = −0.04.

Dots represent individual realizations (1-s time segments of the LFP recording,

section 2). The relation between variance and speed follows the

Weber-Fechner law of stimulus perception (Fechner, 1860; Weber, 1860).

as speed increases” (similar to the standard expression “time
evolution” for change as time the time parameter increases).
A relation to time exists, since speed itself is fundamentally a
function of time: for example, an nominal increase of the speed
parameter is in fact associated with time instances of acceleration.

For simplicity, we limit the data used here for illustration to a
single representative source, rat r539♂-maurer. A discussion
of the consistency of theses trends across the available, small (but
growing) population of rats is presented elsewhere (Sheremet
et al., 2018; Zhou et al., 2018).

3.2. Variance Spectra as a Function of
Speed
Here, we examine estimates of spectral density of LFP traces
recorded in the str. pyramidale (CA1.pyr), radiatum (CA1.rad),
lacunosummoleculare (LM) and upper blade of the dentate gyrus
(DG), indexed by rat speed.

Spectral densities show a weak, but significant variability as
a function of speed and layer (Figure 3). At lowest discernible
speeds (v . 3 cm/s), all hippocampal layers exhibit non-trivial
baseline, lowest-variance spectrum, that can be characterized in
general as having a power-law shape f−α over the entire range
of approximately 6–300 Hz, with the exception of the DG layer,
which exhibits a two-slope shape with a break point in the
neighborhood of 50 Hz. The absolute value α of the power-law
exponent is loosely referred to as “spectral slope”. In the CA1
layers the spectral slope is α ≈ 2 with slight variations (Figure 3).
In the DG, the slope of the lower frequency range f . 50 Hz
visibly smaller, α ≈ 1. At high speeds (v > 15 cm/s), the theta
rhythm and its harmonics dominate the lower frequency band of
the spectrum, and low-power peak appears in the gamma range
between 50 Hz and 120 Hz. Overall, the slope of the spectrum
decreases. The CA1 layers have similar slopes 1.4 < α < 1.7,
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FIGURE 3 | Power spectral density as a function of rat and hippocampal layer for low (red) and high rat speed (blue). The logarithmic representation used in this figure

is useful for detecting frequency intervals where the spectrum follows a power law of the form S (f) = S(f0)
(

f
f0

)−α
, because in this representation of the the relation

S(f ) becomes linear, e.g., log10 S = log10 S0 − α log10
(

f
f0

)

. The absolute value α of the exponent is loosely referred to as “spectral slope.” Dashed lines (offset for

better visibility) represent power laws shapes f−α that approximately match the observed spectra for 6Hz < f < 50Hz. Low-speed spectral slopes are

α0
CA1.Pyr

≈ 1.9, α0
CA1.Rad

≈ 2.1, α0LM ≈ 2.1, and α0
DG

≈ 1.1. High-speed spectral slopes are αv
CA1.Pyr

≈ 1.4, α0
CA1.Rad

≈ 1.7, α0LM ≈ 1.7, and α0
DG

≈ 0.7. Data was

produced from rat r539♂-maurer.

with the DG layer again standing out at α ≈ 0.7. The power
in the high-frequency tail of the spectrum (f > 200 Hz ) also
increases significantly. In agreement with prior research (Bragin
et al., 1995), the CA1.pyr layer shows the least energetic gamma
range of all the layers examined.

Details of the variability of hippocampal LFP spectra with
speed are shown in Figure 3 for seven speed intervals. According
to Figure 2, speed ordering is statistically equivalent to ordering
by total LFP variance. The spectra are normalized by dividing
them by f−α , using the high-speed slopes 1.4, 1.7, 1.7, and
0.7 for CA1. Pyr, CA1.Rad, LM, and DG, respectively. The
normalization reduces the spectra to ≈ 1 in the frequency
range where it agrees to the power law, and highlights spectral
peaks. Although the ordering parameter is total variance, the
spectra show a remarkable monotonic ordering in all frequency
bands, with the exception of the highest two speed intervals,
where the evolution stagnates and perhaps reverses slightly.
The normalization re-scaling highlights several features of the
evolution as a function of speed. The spectra in all layers tilt as
energy increases (e.g., the LM slope changes from 2.1 to 1.7).
Theta and its harmonics become dominant in the low-frequency
range: four peaks at multiples of 8 Hz may be seen clearly in
the CA1.Pyr and DG spectrum, perhaps three in the CA1.Rad
and LM spectra. Also remarkable is the peculiar way the gamma
range evolves: rather than developing some broad peak in 50–120

Hz range, the gamma range growth seems to result from the
s ≈ 1 domain (where s is the normalized spectrum) progressively
extending into the higher frequency range, while a “bump”
develops in the neighborhood of f ≈ 100 Hz. This evolution is
suggestive of a “front” of energy that propagates “against some
resistance” toward higher frequency. This type of evolution may
be seen in all layers. Although one might expect slight differences
between acceleration and deceleration states for the same speed,
these are negligible (data not shown). Therefore, the classification
by speed does not differentiate between acceleration sign: the
transition, say, between 10 cm/s and 20 cm/s may includes
both acceleration and deceleration. Thus, the transition process
described by Figures 2, 4 (and also below) is reversible, therefore
quasi-stationary: all states described by these spectral may be
assumed quasi-equilibrium states (in other words, imagining this
evolution as a number of time steps, the transition between
different steps is slow enough to allow the system to reach
equilibrium and every step). This is consistent with the ability of
the rat to control its speed. We will return to these ideas below.

3.3. Higher-Order Spectra as a Function of
Speed
Higher-order spectra provide information about cross-frequency
coupling. The bispectrum, the lowest order (and hence, the
most “accessible” such estimator) has been used for a long time
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in wave dynamics (Hasselmann et al., 1963; Rosenblatt and
Van Ness, 1965; Coppi et al., 1969). The relationship between
its structure and third order statistics of the time series is well-
understood (e.g., Haubrich and MacKenzie; Masuda and Kuo;
Elgar; for bispectral definitions and terminology, see section 3.3).
Although bispectral analysis is not common in neuroscience,
recent work (Kovach et al., 2018) has shown that similar, widely
used estimators for phase-amplitude and amplitude-amplitude
coupling are, in fact, particular implementations of bispectral
estimators (containing additional restrictive assumptions that
make them susceptible to misinterpretation; e.g., Hyafil, 2015).
To save space, we discuss only low (v < 10 cm/s) and high
(v > 35 cm/s) speed levels; intermediate levels (not shown)
represent a relatively smooth transition between these two limits.
Because of the substantial difference in dynamics between CA1
and DG, we confine our discussion of bispectra to the LM layer.

As previously reported (Sheremet et al., 2016), bispectral
estimates also show significant variability with rat speed.
Low-speed bispectra are statistically zero (Gaussian) overall
(Figure 5). The bicoherence exhibits a weak peak at

(

fθ , fθ , 2fθ
)

,
corresponding to the phase coupling between theta (fθ ≈ 8
Hz) and a relatively broad band around its 2fθ harmonic (see
arrow, Figure 5A, bicoherence). The phase of the harmonic band
is in part in opposition and part in quadrature with theta (see
transition red to blue in Figure 5, biphase), thus contributing
overall to negative skewness of the LFP (peak is negative in
5a, skewness), but positive asymmetry (5a, asymmetry; see
definitions in section).

In contrast, high speed activity show rich phase-coupling
structures, involving theta and gamma (Figure 5B). One may
separate two frequency regions corresponding to the coupling
between theta and its harmonics, and theta and gamma.
The picture of the coupling between theta and its harmonics
agrees with the spectral evolution (Figure 3) and previously
reported results (Sheremet et al., 2016). The bicoherence
exhibits significant levels of phase coupling, reaching as high
as (5fθ , fθ , 6fθ ), (3fθ , 2fθ , 5fθ ), and (3fθ , 3fθ , 6fθ ). The relationship
between harmonics and theta is quite diverse, with some
harmonics contributing to LFP skewness, and others only
to LFP asymmetry. For example (Figure 5B, skewness and
asymmetry), the coupling (fθ , fθ , 2fθ ) generates both negative
skewness and positive asymmetry, while (2fθ , 2fθ , 4fθ ) results in
negative asymmetry only. Theta-gamma coupling is prominent at
high speed, engaging theta harmonics, and contributing strongly
to negative skewness (Figure 5B).

3.4. Summary of Observations
Our observations show that sorting LFP epochs by speed provides
an efficient classification device that produces remarkably well-
ordered spectra and bispectra. As summarized in Figure 6,
with increased speed the total LFP power increases, as well as
the power in the theta and gamma bands. The power in the
theta band grows overall by a factor of 4 at a relatively steady
rate as a function of speed, while gamma grows by about a
factor of 2 and seems to plateau. Phase coupling (as measured
by the bicoherence integrated over the theta/harmonics and
theta/gamma frequency domains) shows a steady growth as a

function of speed, accelerating at high speeds. Spectral slopes
(α) decrease, consistent with an accumulation of energy in the
gamma range; and phase coupling involving theta and gamma
increases.

The process of evolution with speed is reversible. Recall that
we refer to evolution as change with increased speed, therefore
the “reverse” process is the transformation corresponding to
decreasing speed. The reverse process appears to converge as v →
0 (v is speed) toward a limiting, “background” state. Ignoring
for now other forms of activity not taken into account here,
the background state represents “inactive” behavior, whereas the
active state would be associated with significant speed levels.
This hypothetical background has some remarkable properties.
Although its spectrum decays faster than any active-state
spectrum (higher slope α), it still contains significant power (in
Figure 2, about 1

4 of the most active state). In addition, the LFP is
nearly Gaussian, i.e., exhibits overall no phase coupling (ignoring
the weak theta signal).

The evolution with speed of hippocampal power distribution
over scales is strongly suggestive of cross-scale energy exchanges,
statistically directed from low to high frequencies (from large
to small scales). Cross-scale energy transfers can only result
from non-linear interaction between scales; however, there is no
obvious reason for a statistically preferential direction of transfer,
unless the physical system is perturbed in a way that forces a
certain internal exchange. The apparent direction of the cross-
scale energy flow is consistent with the system receiving energy at
the large scales (low frequency end) and losing energy at the small
scales (high frequency end). The collapse, in the range f <12
Hz, of the background spectrum as theta itself progressively
concentrates all spectral power suggests that the background
spectrum is not associated with the energy input and represents
a completely different process, replaced at large scale by theta
during task behavior. This shift and the considerable increase in
theta power are consistent with theta playing an important part
in the energy input process (please see next section for further
discussion).

In our observations, the evolution of the scale distribution
of LFP power and non-linearity exhibits some obvious, yet
unexplained features. Why do spectral slopes change? Why does
phase coupling develop? Why does theta develop harmonics, but
gamma does not, coupling instead to theta? How is the collective
action energy balance related to the background spectrum?

3.5. The Weak Turbulence Framework
Figure 7 compares side by side the standard conceptual model
of turbulence with a schematic of observed hippocampal LFP
evolution with energy input (speed).

Themain focus of the turbulence theory is the internal energy7

balance in a non-linear, multi-scale physical system whose scales
interact and exchange energy (Figure 7, left). If the energy source
and sink of the system are well-separated in scale, for example,
the source is located at large scales, and the sink at small
scales, there exists an intermediate domain, called inertial range,

7The turbulence theory describes the evolution of other conserved quantities also.

In fact most systems have multiple conservation laws (e.g., Nazarenko, 2011).

Frontiers in Systems Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 62

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Sheremet et al. Turbulence in the Hippocampus

FIGURE 4 | Normalized LFP spectrum estimated for CA1.pyr, CA1.rad, LM, and DG layers as a function of speed. Frequency spectra are normalized by dividing them

by the corresponding power law, i.e., s(f ) = S(f )
S(f0 )

(

f
f0

)αvlayer , where S is the power spectrum, s is the normalized spectrum, and f0 = 48 Hz. The dependency of the

LM gamma band on speed has the appearance of a spectral “front” moving to the right (red arrow), as it steepens and develops a peak. A similar behavior may be

seen in all layers. Note that because the limits of vertical axes for the LM and DG layers (lower panels) are different, the spectral front appears to be weaker in the DG

layer than in the LM layer. In fact, at the gamma peak (around 80 Hz, lower panels in Figure 3) the spectral densities grow by remarkably similar factors (≈3).

where the only energy process is the cross-scale energy flow.
Assume that the input rate at the source is constant, and the
system has initially zero energy. If the scale interaction is local
(i.e., the strongest interaction is between similar scales) input
energy will accumulate initially in a band of scales adjacent to
the source. As the energy in that band increases, local non-
linear exchanges intensify (non-linearity increases with energy),
and the energy introduced into the system flows downscale.
Eventually, the energy flow (non-linear cascade) reaches the
dissipation (sink) scales, where it is removed from the system.
The stationary state will occur when the dissipation rate matches
the input rate, and will be characterized by a constant flux
of energy across the inertial range, from source to sink8. The
cross-scale energy flux is turbulent cascade (Richardson, 1922).
One of the most celebrated results of hydrodynamic turbulence
is the Kolmogorov (1941) argument that stationary spectrum
follows the power law k−5/3, where scales are represented by the
wavenumber k.

8Other scenarios are easy to imagine and have been observed. For example, if the

dissipation capacity off the sink is smaller than the input rate at the source, energy

will accumulate in the small scale range, possibly causing some system failure (e.g.,

a switch to different physical regime). This is a type of bottleneck scenario (e.g.,

L’vov et al., 2007; Meyers and Meneveau, 2008; Proment et al., 2009; Nazarenko,

2011).

But for the presence of a background spectrum, the similarity
between the standard turbulence model and LFP spectral
evolution are striking. The analogy suggests that theta is
the source of energy for collective action, and microscopic
processes are as the main energy sink, while the mesoscale
acts largely as an inertial window that allows for a cross-
scale energy flow from source to sink. The development
of the gamma peak, similar to the bottleneck effect in
hydrodynamics, may be interpreted as the existence of a
transitional scale right above microscopic, that has a limited
energy-flux ability, thus causing an accumulation of energy
at intermediate scales. The observation that spectral evolution
with speed is reversible (in other words, that spectra at
each speed represent an equilibrium state) is also remarkable,
because it is consistent with Kolmogorov stationary spectra of
turbulence.

3.5.1. Mesoscopic Turbulence on an Active Network
Therefore, turbulence framework could be useful for collective
action dynamics, provided that the mesoscale may be
identified with the inertial range; or, equivalently, if non-
linearity dominates dissipation at mesoscale. However, while
observations of propagating theta waves suggest that collective
action is weakly dissipative, this seems to contradict the
well-known strongly-dissipative character of microscopic
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FIGURE 5 | Normalized bispectrum (Equation 5) for the LM layer. The bicoherence is blanked below 0.1 (with 300 DOF, zero-mean bicoherence is <0.1 at 95%

confidence level; Haubrich and MacKenzie, 1965; Elgar and Guza, 1985).
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FIGURE 6 | The evolution with speed of LM theta power (upper left); gamma power (upper right; note the different units); phase coupling of theta and its harmonics

(lower left, blue); phase coupling of theta and gamma (lower right, red). The phase coupling measure is the bicoherence integrated over the area of the rectangles

shown in the lower-right panel (same colors as in lower-left panel). Because the bicoherence is normalized, the units of the phase coupling measure are arbitrary. In

upper panels, the red line is a moving average, included to highlight the evolution trend.

neuronal dynamics9. Furthermore, the presence and role of the
background spectrum deserves some discussion.

From the perspective of collective action, the hippocampus
behaves as an “active” network, i.e., a physical system of active
elements that contain a certain amount of energy which they
release in explosive bursts when activated by a threshold type
of trigger. The statistical state of the network may be described
by a probability distribution of internal energy around a mean
level, sustained by energy (pulses) channeled through network
connections. Even if the mean internal energy level is below
the threshold, a small number of elements will have energy
exceeding the threshold, and will fire. A fraction of the burst
energy is recaptured and redistributed through the network
connections to maintain a mean level of internal energy. After
bursts, network elements go through a “recharge” (refractory)

9Scale localization of dissipation processes is common in physics. In the case

of water waves, for example, long swells (ocean waves people surf; wavelength

~100 m) lack a direct dissipation mechanism and can propagate for hundred

of kilometers with negligible decay, while capillary waves (wavelength ~ cm)

experience strong dissipation. Because energy cannot jump scales from swells

directly to capillary waves, swells decay by cascading their energy into progressively

smaller scales until the dissipation scale is reached.

period. Note that, in the absence of external input, bursts are
the only energy source for maintaining the internal energy level.
If no bursts occur, the system collapses. In an equilibrium state,
the probability distribution of the internal energy should have a
standard deviation large enough to maintain the mean.

If the state described above is perturbed by adding energy over
a mesoscopic area, the internal energy distribution shifts toward
the threshold, increasing the number of bursts. The perturbation
decays or grows in time depending on whether the ratio of energy
recaptured from bursts to the energy of the initial perturbation
smaller or larger than 1. If this fraction is≈ 1, the perturbation is
self sustained.

We conjecture that self-sustained collective action is the
behaviorally meaningful hippocampal activity. Thus, the relevant
type of collective action is only weakly dissipative. Remarkably, it
also likely requires a non-zero background activity (background
spectrum, section 3.1). Indeed, for a self sustained perturbation,
both the energy recaptured from bursts and the energy of
the perturbation depend on the mean energy level of the
system. A likely mechanism to maintain an equilibrium level
of internal energy, and its required standard deviation, is to
randomly trigger multi-scale burst patterns. This idea circles

Frontiers in Systems Neuroscience | www.frontiersin.org 10 January 2019 | Volume 12 | Article 62

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Sheremet et al. Turbulence in the Hippocampus

FIGURE 7 | Left: The turbulence model. Energy is introduced into the system at the forcing scale (blue) is separated from the dissipation scale (red) by a “transparent”

inertial range (white), largely free of forcing and dissipation. Non-linear interactions generate a cross-scale energy flux (cascade) from the source to the sink. Gray

curves show the possible evolution of the spectrum toward stationary state, if initially the inertial range contains no energy. The stationary spectrum (purple)

corresponds to a constant spectral flux of energy across the inertial range. A “bottleneck” in the spectral flux capacity at small scales may cause an accumulation of

energy (spectral bump) at larger nearby scales. The axes are in logarithmic scale. Right: A schematic of the observed spectral evolution, interpreted in a way similar to

turbulence. The light-colored spectrum is the background, corresponding to low activity (speed), and representing the self-organized critical (SOC) state. Increasingly

dark lines represent the spectral shape at increasing intensity of activity (speed). The low-frequency peaks represent the theta rhythm and its harmonics (marked

collectively as “theta”). A feature similar to the turbulent spectral front is observed in the gamma range. A spectral bump similar to a bottleneck (e.g., L’vov et al., 2007;

Meyers and Meneveau, 2008; Proment et al., 2009; Nazarenko, 2011, see note in the text) is observed in the high-frequency gamma range.

back to the concept of self-organized criticality (SOC) (SOC; Bak
et al., 1988; Beggs and Plenz, 2003; Beggs and Timma, 2012;
Pruessner, 2012) and metastability (Tognoli and Kelso, 2014).
The featureless, power-law, Gaussian background spectrum we
observe (Figure 3) is consistent with the “edge of chaos”, self-
organized critical background state for optimal transmission of
collective action. In this context, SOC becomes an important
element of brain dynamics.

The relation between background SOC state (rest) and
collective-action turbulence (intense task behavior) might also
explain the behavior of the LFP power spectra in the low
frequency range f < 12 Hz (see discussion at the end of section
3.1). If the excess energy for sustaining the collective action is
provided (as observations suggest) by increasing theta power,
much of the large scale activity is taken over by organized theta
action, thus restricting the large scale extent of SOC spectra.

3.5.2. The Weak Turbulence Model
The turbulence framework may now be formalized. The
turbulence theory investigates the internal balance of a multi-
scale system. It studies the interaction efficiency as a function of
scale (e.g., resonance conditions); the development of cross-scale
coupling correlations between scales; characteristics of the long
term evolution of the system; the existence of equilibrium spectra
associated with cascades of conserved quantities (e.g., power

law spectra that maintain a non-zero cross-scale energy flux);
non-stationary evolution patterns (e.g., bottleneck formation);
and other characteristics of the non-linear, cross-scale exchange
mechanisms related to conservation laws.

These are precisely the features that characterized the
evolution with speed of our LFP observations (e.g., Figure 4).

Here we give only the a brief elementary discussion of the
basic equations that govern weak turbulence. The principles of
the weak turbulence model, some derivation algebra, and some
results are further discussed in the Supplementary Material. We
caution, however, that presentation is an oversimplified, retold
version, and that the full theory is much richer and complex.
We encourage the interested reader to consult the original
sources, written by the fathers of the theory: the comprehensive
monograph (Zakharov et al., 1992), excellent review papers by
Zakharov (1999), Newell et al. (2001), and Newell and Rumpf
(2010), and the account by Nazarenko (2011), that includes more
recent results.

3.5.3. Dynamical Equation
The focus of the turbulence theory is to describe the internal
energy balance of a multi-scale system, i.e., the evolution of
the distribution of energy over scales (the spectrum), the cross-
scale energy flux (the energy cascade), associated non-linear
cross-scale coupling, and other quantities. The general way to
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achieve this is to define the state of the system using a “state
variable”, for example internal energy, and write its evolution
using conservation laws. For example, in thermodynamics the
rate of change of internal energy is equal to the heat and
mechanical work exchanged by the system with the environment.

For a spatially-distributed system such as collective action, the
state variable becomes a function of space and time (a field), and
the evolution equation becomes a partial differential equation.
The exact form of these equations for collective action will be
presented elsewhere. Here, it suffices to note that the internal
energy field for hippocampal collective action may be defined
proportional to the mean neuron potential per unit area, and
the conservation of the internal energy involves a balance of
electric pulses sent down the network connection and the energy
recaptured by the network from bursts. This approach leads
to equations similar to the Wilson and Cowan (1972, 1973);
Cowan et al. (2016) model, although its form and derivation
methodology is different and somewhat less consistent.

To avoid having to reference the specifics of the system, for
illustration purposes only we will tentatively identify the internal
energy with the Hamiltonian, which will conveniently allow us to
introduce the equations of weak turbulence in a general form,
without having to reference the specifics of the system. The
Fourier representation of the collective-action field provides a
scale decomposition of the internal energy field, so in principle,
the Fourier transform of the conservation law (Hamilton’s
equations) yields an equation for the Fourier amplitude a(k, t) of
the collective action component with wave number k. The general
form of this equation is:

i
•
ak = ωkak +

1

2

∫∫ ∞

−∞

(

Vk;12a1a2δ
k
k;12 + 2V∗

1;k2a1a
∗
2δ

k
1;k2

)

dk12 + . . .

(8)
where Fourier collective-action mode (or simply, mode) is
identified by its wavenumber k and frequency f (k), (we assume
that the dispersion relation has a single root). In Equation (8),

the notations are: ω(k) = 2π f (k) is the radian frequency;
•
a = da

dt
;

Vk;12 = V(k; k1, k2) is the interaction coefficient; and δ is the
Dirac delta function. We use the shorthand notation σ1,2 =
σ

(

k1,2
)

, σk = σ (k), and δσ
k;12 = δ (σk − σ1 − σ2), where σ is

some quantity depending on k; and also dk12 = dk1dk2. For
simplicity, we limit the discussion quadratic non-linearity (right-
hand side terms of the form a2) terms, but a full description
might require including cubic (a3), and possibly higher-order
non-linearity (e.g., the non-linear Schrodinger equation, Newell,
1985; or the Ginzburg-Landau equation Ermentrout, 1981; Cross
andHohenberg, 1993; Passot andNewell, 1994; Ermentrout et al.,
1997).

Two equations for the modulus b ≥ 0 and phase θ of a(k, t)
are obtain substituting a(k, t) = b(k, t)eiθ(k,t) into Equation 8

•
bk =−

1

2

∫∫ ∞

−∞
Vk;12b1b2 sin1

θ
k;12δ

k
k;12

+
1

2

∫∫ ∞

−∞
2V∗

1;k2b1b
∗
2 sin1

θ
1;k2δ

k
1;k2dk12, (9a)

•
θk = −ωk +

1

2

∫∫ ∞

−∞
Vk;12

b1b2

bk
cos1θk;12δ

k
k;12

+
1

2

∫∫ ∞

−∞
2V∗

1;k2
b1b

∗
2

bk
cos1θ1;k2δ

k
1;k2dk12, (9b)

where we used the notation1θ
k;23 = θk − θ1 − θ2.

Meaning of the dynamical Equation 8.
(i) Temporal (frequencies) and spatial scales (wavenumbers)

are related through the dispersion relation (see the
Supplementary Material), therefore only one of the parameters
k and f is independent. The choice of the independent parameter
is arbitrary, because the dispersion relation is invertible. The
f (k) representation resolves the spatial structures and yields a
time-evolution equation. The k(f ) representation resolves the
time structure and is appropriate for time-series analysis (e.g.,
LFP recordings). Therefore, equations are written here in f (k),
but observational data is discussed in the k(f ) representation.
Below, the concepts of “frequency”, “wavenumber”, “mode” and
“scale” will be treated as equivalent and interchangeable.

(ii) Equation 8 is called dynamical equation. If the
Hamiltonian is identified with energy, the quantity |a|2 has
the physical dimensions of action (energy×time). The form of
Equation (8) in universal in the sense that the details of the
physics of the system are contained the coefficients ωk and Vk;12
only.

(ii) Equation (8) describes the non-linear interaction of mode
k with the pair of modes (k1, k2). A triplet of interacting modes
(k, k1, k2) is called a “triad”. The strength of the interaction
depends on the interaction coefficient Vk;12. The factor δk

k;12,
resulting from the orthogonality of the Fourier representation,
is a selection criterion: interacting modes satisfy the equation

1k
k;12 = k− k1 − k2 = 0. (10)

It is useful to think of Equation (8) in a discretized form, e.g.,
replacing the integrals by sums. A schematic representation is
shown in Figure 8.

(iv) Equations (9) show that non-linear interaction result
in both amplitude and phase evolution. The effectiveness of
non-linearity depends on modal amplitudes, on the interaction
coefficient, and (importantly) on the phase mismatch 1θ

k;12. If

1θ
k;12 is large, the non-linear term oscillates fast and the effect

small; if 1θ
k;12 is small, the non-linear term preserves sign over

longer periods of time and the effect is significant. If1θ
k;12=0, the

contribution is maximal.
(v) The non-linear contributions to modal phase evolution

(Equation 9b) have same properties as those in the amplitude
Equation 9a, with the important difference of bk appearing at the
denominator. If bk → 0 (mode k has small amplitude) the non-
linear phase component becomes arbitrarily large and dominates
the total phase. Therefore, the phase of low-amplitude waves is
“dictated” by non-linear forcing.

(vi) The dynamical equation 8 is deterministic: may be
integrated exactly to obtain the state of the system at time t if
the initial value of amplitudes a(k, t0) are known (t > t0). To
understand the general energy balance (e.g., spectral evolution),
however, one is not interested in particular realizations, but in the
predictions the equation provides for averaged quantities such as
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FIGURE 8 | Discrete representation of interacting triads (Equation 8). The

underlying grid geometry is the same as for the bispectral representation (see

section 2, and also Figure 1). Because k and f are interchangeable, we refer

to either as “scale”. Light blue dots represent triads. The axes represent scale

1 and 2 in the triad (e.g., k1 and k2 in Equation 10). The third interacting mode

(k in Equation 10) may be found by as the intersection of the second diagonal

passing through the triad with the horizontal axis (e.g., arrows in triad 1, red

dot). One can easily check that the triangle of blue dots represents all possible

triads for the scale interval shown (hence the triangular shape of the

bispectrum). A schematic of a LFP spectral shape (dark red) is used to indicate

possible locations for the theta (θ ) and gamma (γ ). Example of triads involving

theta and gamma are identified by colored dots (compare with the annotations

in Figure 5B). Green circles mark an example (arbitrarily-chosen) of a chain of

triads connecting triads 1 and 3. The order of connection is marked with a

green line. One can check that each pair of consecutive circles share one

mode. All triads in the spectrum are connected by many such chains.

the spectrum or bispectrum. In practice, the averaging operator
〈·〉 used in Equations (1–2) may be replaced by averaging over
initial phases (see the discussion of random phase average in
Nazarenko 2011). Therefore, estimates of spectra and bispectra
may be obtained by integrating Equation (8) many times with
different sets of initial phases and, for example for the spectrum,
averaging |ak|2 over all integrations.

3.5.4. The Kinetic Equation
The last remark above suggests averaging the equation
itself, rather than averaging the solutions. Briefly (see
Supplementary Material), averaging introduces a hierarchy
of averages of amplitude products (correlators), such as

〈

a∗1a2
〉

,
〈

a∗1a2a3
〉

,
〈

a∗1a
∗
2a3a4

〉

, and so on, where the angular brackets
denote the ensemble average. Assuming spatial homogeneity
implies that

〈

a∗1a2
〉

= n(k1)δ(k1 − k2) = n1δ
k
1;2, (11)

〈

a∗ka1a2
〉

= Bk;12δ(k− k1 − k2) = Bk;12δ
k
k;12. (12)

The quantity n(k) represents the action density, or “occupancy
number”, or “number of particles” (by analogy with quantum

mechanics). In statistics n and B are called “spectrum”
and “bispectrum”, respectively. The quasi-Gaussian assumption
results in a system of two coupled equations for the spectrum and
bispectrum

dnk

dt
=

∫∫ ∞

−∞

(

ℑ
{

Vk;12Bk;12
}

+ 2ℑ
{

V∗
1;k2B

∗
1;k2

})

dk12, (13a)

(

i
d

dt
+1ωk;12

)

Bk;12 = −V∗
k;12δ

k
k;12nkn1n2

(

1

nk
−

1

n2
−

1

n2

)

,

(13b)

Assuming additional long-time regularity conditions reduces the
system to single equation called the kinetic equation

nk = π
(

Rk;12 −R1;k2 −R2;k1
)

, (14)

Rk;12 =
∫∫ ∞

−∞

∣

∣Vk;12
∣

∣

2
nkn1n2

(

1

nk
−

1

n2
−

1

n2

)

δkk;12δ
ω
k;12dk12,

(15)

where δω
k;12 = δ(1ω

k;12) = δ(ωk − ω1 − ω2).

Meaning of kinetic Equation 14.
(i) Equation (13a) highlights the dynamical significance of

the bispectrum as the non-linear forcing in the evolution of
the spectrum. If the bispectrum cancels, non-linear interactions
cancel and the system is effectively, on average, linear.

(ii) The kinetic Equation (14) or the more general system
of Equations 13, represent a stochastic, ensemble-averaged
description of the system 8. Kinetic equations of the type
of Equation 14 were introduced in statistical mechanics by
Boltzmann (e.g., Boltzmann, 1872, 2003; Alexeev, 2004), and are
powerful tools in the study of multiple-scale system.

(iii) Equation (14) states that in the long-time limit the
only interactions that are effective are due to triads that satisfy
the resonance conditions imposed by the factors δω

k;12δ
k
k;12, i.e.,

satisfying the conditions,

1k
k;12 = k− k1 − k2 = 0, (16a)

1ωk;12 = ω(k)− ω(k1)− ω(k2) = 0, (16b)

equivalent to the “maximal” effectiveness of non-linear
interaction (see discussion of Equations 9). Whether or not
Equation (8) has resonant triads depends on the linear properties
of the physical system. The resonance conditions play an
important role in the stochastic theory (e.g., Zakharov et al.,
1992; Nazarenko, 2011; Anenkov and Shrira, 2018).

3.5.5. Stationary Spectra

Stationary spectra (
•
n(k) = 0) are of importance for systems

whose evolution is a quasi-equilibrium process. Equation (14) has
two classes of stationary solutions (e.g., Nazarenko, 2011).

The Rayleigh-Jeans (RJ) class of spectra comprises the

stationary solutions k−1, ω−1, and
(

cωω + ckk
)−1

, that obviously
cancel the integrand in Equation (14), and correspond to zero
exchange across scales. Therefore RJ spectra correspond to
thermodynamic equilibrium and equipartition of momentum
(nk) and energy (nω). Realistic, non-isolated systems do not
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typically reach thermodynamic equilibrium, therefore RJ spectra
are not important for the weak turbulence framework, which
includes sources and sinks as essential elements.

The Kolmogorov-Zakharov (KZ) spectra are different class of
stationary spectra, that correspond to a constant spectral flux
∂kFq = 0, Fq(k) 6= 0 across the inertial range. They were
derived for Equation (14) by Zakharov and Filonenko (1967a,b).
They are important for systems in which the dissipation sink can
absorb arbitrary rates of energy. Remarkably, they are realized
as a non-trivial power law spectrum nKZ ∝ kν , with ν < 0,
ν 6= −1. The slope ν of the spectrum is a value that reflects
the dimensionality of the system, as well as its linear non-linear
properties (homogeneity degrees of the interaction coefficient
and dispersion relation).

3.6. A Demonstration: Dynamics and
Kinetics of a Single Triad
Some features of the high-speed bispectra are consistent with
stationary solutions of the dynamical equations 8. We illustrate
this using a simplified, universal toy model derived from the
framework dynamical equation by considering a single triad
of modes k = κ1, k1 = κ2, k2 = κ3, with κ1 + κ2 =
κ3 (see Equation 10). If interactions with all other modes are
ignored (equivalent to a single blue dot in Figure 8), Equations
(8) to reduce to three equations, called the “three-wave system”
(see Supplementary Material; Craick 1985; Rabinovich and
Trubetskov 1989). Written in amplitude/phase these are

•
b1 = 2V3;12b2b3 sin1

θ
3;12;

•
b2 = 2V3;12b1b3 sin1

θ
3;12;

•
b3 = −2V3;12b1b2 sin1

θ
3;12,

(

1θ3;12
)• = −1ω3;12 − 2V3;12

(

b1b2

b3
−

b2b3

b1
−

b1b3

b2

)

cos1θ3;12
′

(17)

where bj and θj are amplitudes of modes κj, j = 1, 2, 3, and

1θ3;12 = θ3 − θ1 − θ2. Averaged over realizations, the quantity

1θ3;12 = θ3 − θ1 − θ2 may be identified with the biphase (see
section 3.3). If the triad is resonant, the kinetic version of the
three wave equation is (e.g., Rabinovich and Trubetskov, 1989)

•
n1 =

•
n2 = − •

n3 = 2π
∣

∣V3;12
∣

∣

2
n1n2n3

(

1

n3
−

1

n1
−

1

n2

)

. (18)

A large body of literature is available that investigates the
relevance and dynamics of single-triad interactions in many
physical situations, including plasma physics (Coppi et al., 1969;
Weiland andWilhelmsson, 1977; Craick, 1985), non-linear optics
(Ablowitz and Segur, 1981; Boyd, 2003), internal oceanic waves
(Phillips, 1977; Craick, 1985), and other fields.

One may readily check that a stationary solution of Equations
(17) is given by the conditions: 123;12 = 0 or 123;12 = π ;
1ω3;12 = 0 (the triad is resonant, Equations 16), and that

1

b23
−

1

b21
−

1

b22
= 0. (19)

FIGURE 9 | Evolution toward stationarity of the solution of the kinetic Equation

18. The initial conditions used n1(0) = 1, n2(0) = 0.5, and n3(0) = 0.01, and

interaction coefficient are arbitrary and exaggerated to highlight the behavior.

The Hamiltonian ω1n1 + ω2n2 + ω3n3 is conserved for ω1 + ω2 = ω2 (values

for ω are also arbitrary).

The last equation has, for example, the trivial solution b2j =
(

cωω + ckk
)−1

(RJ spectrum, thermodynamic equilibrium). In
other words, stationary state solutions of the framework
equations exhibit naturally 8 a biphase of 0 or π .

Applied to the triad formed by theta and its first harmonic
(θ , θ , 2θ), i.e., κ1 = kθ , κ2 = kθ , and κ3 = k2θ (red dot in
Figure 8) this result is consistent with observations that show
theta and in first harmonic are in phase (see Figure 5B, upper-
right panel). The effect of this type of coupling is to sharpen
the crests and flatten the troughs of the time series, generating
positive skewness.

Applied to a theta-gamma triad (γ , θ , γ + θ), κ1 = kθ , κ2 =
kγ , and κ3 = kθ + kγ (yellow dot in Figure 8), this result is
consistent with the biphase value of π in Figure 5B, upper-right
panel. It is easy to check that effect of this type of coupling is that
gamma envelope is maximal in theta troughs. Indeed, let ϕj =
aj cos

[

κjx− ωjt + ψj

]

, where κj and ωj satisfy the resonance
conditions 16. Elementary trigonometric manipulations yield
the gamma envelope ∝ sin

(

ω1
2 t

)

. In other words, the gamma
envelope is in quadrature with theta and its period is twice that of
theta. The kinetic evolution of a triad is illustrated in Figure 9.
The interactions described by the three-wave model result in
time-reversible cyclic transfers of energy (the total energy is
conserved if the system is at resonance). In contrast, the long-
time, average behavior (Equation 18) shows a slow irreversible
trend toward the stationary solution. If a full set of triads is
taken into account, because all triads interact, a weak energy flow
(turbulent cascade) develops that has the effect of driving the
system of modes toward stationary distribution of energy over
scales (RJ spectrum). If a sink is introduced in the small scales
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(e.g., high frequencies), the flow will naturally be directed toward
the leaking mode, where it is taken out of the system. In this case
a stationary state can bemaintained only if energy is pumped into
the system at the leakage rate, and a stationary state is realized if
the energy is injected by the source at the rate it is lost to the sink.
The cross-scale flow of energy is in this case constant at all scales.
This type of stationarity corresponds to the KZ spectra.

4. DISCUSSION

While a wealth of knowledge has accumulated in recent years
about brain activity at microscopic and macroscopic scales, the
need for a consistent theory of the dynamics of intermediate-
scale (mesoscopic) processes has received comparatively little
attention, possibly because, in some parts of the nervous system,
they are the expression of activity of complex microscopic
structures (e.g., for example central pattern generators can
maintain specific, yet re-configurable rhythms; e.g., Rabinovich
et al., 2012; Gutierrez et al., 2013; Marder et al., 2016). Although
somemicrocircuits, with definite structure, may be able to impose
an oscillation on the mesoscale, the cortex, with an isotropic and
homogeneous structure, is rhythmically organized in a different
manner, with a different source and might play a different role.

A number of previous studies (Lashley, 1942; Hebb, 1958;
Freeman, 2000a, 2007; Freeman and Vitiello, 2010) hypothesize
that mesoscopic processes in the cortex represent the essential
cognition step of abstraction and generalization, and therefore
provide an essential mechanism for integration of brain activity
at all scales. This observation is particularly intriguing, because
the isotropic and homogeneous structure of the cortex at the
anatomical mesoscale (e.g., any highly recurrent region in which
activity is projected back into the same region or dense inter-
connectivity mediated by interneurons; Lorente de No, 1938;
Freund and Buzsáki G., 1996; Buzsáki et al., 2004; Mante et al.,
2013) suggests that the material support of activity in the
temporal mesoscale (e.g., gamma frequency band) is collective
neural activity, Freeman’s (2000a) “mass action”. These ideas
suggest that the physics of mesoscopic collective action in the
cortex is intimately related to cognition; that the physics of
collective action is, in fact, the physics of cognition.

The focus of this study is the dynamics of mesoscopic
collective action and its role in the general energy balance in
the brain. Despite the potentially paramount importance of the
topic, studies dedicated to its physics are few (but of outstanding
quality; e.g., Wilson and Cowan, 1972, 1973; Wright and Liley,
1995; Troy, 2008; Cowan et al., 2016). Here, we attempt to lay
the foundation of a systematic theory of collective action. A few
recent studies show that collective action in the hippocampus
takes the form of propagating waves (Lubenov and Siapas, 2009;
Patel et al., 2012, 2013; Muller et al., 2018; Zhang et al., 2018), but
in general, information about its spatio-temporal organization is
scarce.

The discovery of the strong correlation between rat speed
during active exploration and hippocampal activity provides
a parametrization of the evolution of hippocampal activity
with behavior. Our observations of scale distribution of LFP

power (spectra) and the leading order estimators of cross-
phase coupling of LFP oscillations (bispectra) in the lacunosum
moleculare layer show a strong and remarkably ordered
evolution (representative of both CA1 and dentate gyrus layers).
The LFP power and phase coupling in the theta and gamma
frequency bands increases consistently with speed. The lowest
levels of LFP power are associated with a featureless power
law distribution. The high-power spectra exhibit distinctive
spectral peaks at theta frequency and harmonics, and significantly
increased levels of gamma activity. In the transition, at
intermediate states, the spectrum tilts to a smaller-slope shape
that extends progressively into the gamma range generating
the appearance of a spectral front. The existence of a non-
zero energy, lowest-level spectrum in the absence of coherent
collective action is strongly suggestive of a self-organized critical
background state (Buzsaki, 2006). As collective action energy
increases with exploration, the decreasing spectral slope, the
appearance of a spectral front, and the development of a broad
gamma peak, are strongly suggestive of a transfer of energy
from the low frequencies (large scales) toward high frequencies
(microscopic scales; Buzsáki and Draguhn, 2004). The similarity
of collective action with the general turbulence theory is striking.
This motivated us to propose weak turbulence as an framework
for collective action dynamics.

In summary, we propose that the mesoscopic hippocampus
may be described as an isotropic and homogeneous, active
network containing a macroscopic number of randomly and
densely connected neural units (neurons). Collective action
represents a perturbation of a background state of the active
network, that may be represented as a self-organized critical
state. Because collective action is macroscopic with respect to
neural units, we postulate therefore that it is fundamentally
stochastic (the precise state of a single unit does not matter),
weakly non-linear, and weakly dissipative. These form a minimal
set of features for the development of a turbulence theory of
collective action. We summarize the principles of the turbulence
framework and demonstrate its applicability to observations by
showing that the reduced (universal) three-wave interaction toy
model provides results consistent with observations.

Our proposed description provides a unified view of the
physics of active networks that reconciles the theories of self
organized criticality and turbulence in the hippocampus and
perhaps other regions of the cortex. The central idea of the
turbulence theory is the energy cascade through the inertial
range of scales. As a theory of the internal balance of a multi-
scale system, a full turbulence formulation of hippocampal
collective action should provide answers to questions raised by
the evolution the scale distribution of LFP power. Collective
action physics appears to be consistent with the energy cascade
concept (Richardson, 1922; Kolmogorov, 1941; Zakharov et al.,
1992; Newell et al., 2001; Nazarenko, 2011). In particular, the
spectral tilting (slope change) observed in the evolution from
the background state to high-speed states suggests a transition
from self-organized criticality to some type of stationary
turbulent state of the Kolmogorov-Zakharov kind (Zakharov
and Filonenko, 1967a,b; Zakharov et al., 1992; Newell et al.,
2001). Do spectral slopes change because the system transitions
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from a SOC background state to a turbulent, stationary state
supporting non-zero cross-scale energy fluxes? Are non-linear
resonances band-limited, for example, forcing theta to develop
self interaction, while allowing theta-gamma resonances? Is the
growth of gamma power related to a spectral bottleneck (a break
in cross-scale non-linear energy exchange at high frequencies)?
Further research is needed to understand the structure of this
evolution; a systematic exploration of hippocampal dynamics
starting from first-principles governing equations is ongoing.
The scope of this study is limited to investigating the effect of
running speed as a proxy for energy into the system. Future
experimental applications should explore transitions between
sleep and wakefulness, the effects of learning and memory recall
as well as the system is compromised in aging and disease. As
cognition is the consequence of activity moving through the
circuits of the brain, any experimental approach which alters the
forcing or how the local network capture the activity (Bottleneck,
Figure 7) will have the ability to test the predictions of the
turbulence theory.

Remarkably, the isotropic and homogeneous mesoscale
structure appears to be a general theme that is used across
species and brain regions (Lorente de No, 1938; Parent and
Hazrati, 1995; Marder and Bucher, 2001; Garamszegi and
Eens, 2004; Apps and Garwicz, 2005; Mante et al., 2013),
which suggests a “universal computational principle” with a
comprehensive reconfiguration potential, especially under a
priori unknown conditions (Sussillo and Abbott, 2009). The
nature of this computation process is not well-understood.
As often argued (e.g., Freeman, 2000b; Edelman and Gally,
2001; Frisch, 2014), cognition processes cannot resemble a
human-engineered system, built based on principles such as
maximum simplicity, well-defined internal interactions, explicit
assignment of function, no irrelevancy, and no adventitious
compensation for error. Rather, they are expected to resemble
biological systems: no design, no a priori function, and for which
irrelevance has no meaning (Edelman and Gally, 2001). As Frisch
(2014) states it, “biological systems have an intrinsic ability to
maintain functions in the course of structural changes”, such
that “specific functions can obviously be constituted on the basis
of structurally different elements, a biological property that is
referred to under the term degeneracy (Edelman and Gally,
2001)”.

This begs the question, if collective action is fundamental for
cognition, what is its role? We conclude this study by suggesting
a possible answer. An intriguing paradigm of the computational
function of mesoscale turbulence is offered by Liquid State
Machines (LSM) models (Jager, 2002; Maass et al., 2002). LSMs
are online neural network models that process a time-windowed
signal in real time. Their basic function is to perform a non-linear
transformation of the input, e.g., expand it into a wave field, and
hold this information for a short duration, while output neurons

extract local information from the field. Learning is achieved at
the readout stage. Fading memory and input separability imply
that LSMs are universal function approximators, and can serve
as effective online classification pre-processor for the readout
neurons. If the brain is a prediction machine, scrambling to
assign meaning to streams of data10 in real time, processing of
fragmentary information (short-time windows) is crucial. A LSM
may perform fast, online, short-term memory pre-processing;
learning is performed by long-term memory readouts, that can
record optimal responses. It is conceivable that the hippocampus
uses collective action in a way similar to a LSM, perhaps as a fast
online classificationmachine, or as a dynamical system simulator.
It seems plausible to imagine the cortex as a network of LSMs. In
the least, the concept seems to agree with most natural systems.
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