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Abstract 
Their small sizes enable nanomaterials to express novel properties that have 

created a revolution in science and technology since their discovery in the 1990s. The 

new transport, morphology and material properties of nano-enabled products, however, 

have imposed revision of environmental, health, and safety risk assessments and 

management concepts previously established for conventional materials. At the current 

stage of nanotechnology development, uncertainties still exist due to the inability to 

adequately quantify and characterize nano-enabled products properties in complex 

matrices, including living organisms and the environment. The multidisciplinary effort 

is required for the development of analytical tools and methods that provide answers to 

multiple nanomaterial-related properties and help explicate the property exposure and 

property-hazard relationships from a life cycle perspective. 

 

Keywords: Nano-enabling; Nanotoxicity; Transport principle; Morphology 
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Introduction: Nanotechnology - An Enabling Technology 
Historically, there have been a series of enabling technologies, which propelled 

society forward by enhancing the production of goods, food, materials, energy, and 

medicine; and improving communications, transportation, and the environment. These 

technologies initiated industrial revolutions, including the newest industrial revolution 

often referred to as the information revolution [1, 2]. Each of these new enabling 

technologies was characterized by a rapid adoption period, which levels off, as society 

reaches a technology saturation point (Figure 1). However, the adoption of each 

technology was driven by an underlying natural inclination to make smaller and more 

efficient products. This course induced the birth of nanotechnology as one of the most 

promising enabling technologies capable of transforming society. 
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Fig. 1. Historical overview of new enabling technologies characterized by a rapid 

adoption period and leveling off as society reaches a technology saturation point. 

Nanotechnology is defined as an enabling technology that engages in creation or 

manipulation of materials, structures, and devices with sizes between 1 nm and 100 nm 

to express or utilize novel physical, chemical, and biological properties, which are not 

present in their bulk counterparts. The small sizes of nanomaterials enable them to 

express novel properties that make them extremely promising and suitable for a myriad 

of applications and processes. Driven by this promise, nanomaterials have created a 

small revolution in science and technology since their discovery in the 1990s [3-5].  

Changing the Environmental, Health, and Safety Risk Paradigm 
Many of the novel properties expressed by nanomaterials create a new 

environmental, health, and safety paradigm. This paradigm could not be addressed by 

using the existing risk assessment and management concepts. The existing risk concepts 

define risk as a function of exposure and hazard. In an attempt to objectively quantify 

the risk, the classic toxicological models employ the concept of toxicity. Toxicity of a 

material is directly related to the received dose, which is a product of a measurable 

concentration and the exposure time [6, 7]. The toxicological models work well for 

predicting the toxicity of conventional chemical because the concentration could be 

effectively measured by employing a variety of analytical techniques, while exposure 

time could be measured using chronometric tools [8].  

With nanomaterials, concentration and exposure time are not the only factors that 

determine the toxicity of a dose. In addition to the concentration, many other factors 

contribute to nanomaterial toxicity. To illustrate, nanomaterial shape, size, morphology, 

composition, chemistry, crystallinity, and reactivity are some of the key factors that 

direct toxicity [9, 10]. These properties are unique to nanomaterials, but not to 

conventional chemicals. Furthermore, the presence of functional groups or sorbed 

contaminants on the nanomaterials’ surfaces could induce significantly greater toxicity 
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effects than each pure component (nanomaterial and contaminant) alone [11]. Matrix 

characteristics could also influence the toxicity of nanomaterials. For example, pH 

could induce material dissolution/precipitation, aggregation/disaggregation, 

sorption/desorption or other physicochemical processes [12]. Nanomaterials have a 

tendency to accumulate in interface areas driven by the forces causing them to decrease 

surface tension between two phases of a system; the same behavior found in formation 

of pickering emulsions, an effect that has been documented over 100 years ago [13]. 

The palette of factors that contribute to nanomaterial’s toxicity necessitates redefining 

of the conventional toxicological and risk assessment concepts.  

Nanotoxicity Principles 
All factors that could contribute to nanomaterials’ toxicity could be organized in 

categories based on main nanotoxicity principles: (1) transport principle; (2) 

morphology principle; and (3) materials principle [11, 14-23]. 

Transport Principle 

The transport principle addresses the toxicity effects associated with the 

nanomaterials routes of exposure. This principle is framed around the attempt to 

elucidate or quantify how each exposure route contributes or affects nanomaterials’ 

toxicity. From an environmental, health, and safety perspective, nanomaterial inhalation 

appears to be the most hazardous route of exposure, when compared to the other three 

routes: ingestion, injection, and skin absorption [24]. However, when addressing the 

transport affiliated toxicity contributions, the impacts of exposure time and distance to 

the exposure source are two critical factors that must not be neglected because they have 

the ability to significantly contribute to the overall nanomaterial toxicity effects. These 

two potentially interconnected factors are related to the stability of nanoparticles in 

fluids [25]. In fluids, nanoparticles have a tendency to aggregate and form larger 

particles that could easily precipitate out of the fluid [26]. The aggregation affects the 

nanomaterial number concentrations and consequently their properties, which may 

change as the nanomaterials exceed the sizes where the novel properties are exhibited. 

To illustrate, nanomaterial dispersion with an initial number concentration of 1012 

nanoparticles/cm3 could decrease its number concentration as much as six orders of 

magnitude over a period of about 20 minutes [27]. The measured number concentration 

and particle properties may change while nanomaterials are traveling from the exposure 

source to the exposure target (e.g., breathing zone of a worker). This transport-related 

mechanism has significant implications with respect to adequately assessing the correct 

dose even if the number concentration is the only metric used to estimate the 

nanomaterial associated hazards. 

The transport principle also encompasses toxicity factors related to nanomaterial 

uptake and transport of nanoparticles within a cell, a tissue, or an organism. While some 

cells may be able to isolate or prevent nanoparticles from causing cell damaging effects 

by inducing biochemical mechanisms, other cells may be exposed to such effects. To 

illustrate, because nanomaterials are prone to partition into interfaces, they have a 

tendency to embed themselves into the bi-lipid layer of eukaryotic, potentially creating 

an opening in the cell membrane and contributing to its collapse [28, 29]. In contrast, 

prokaryotic cells, which have cell walls, may be resistant to these nano-induced effects. 

In brief, when assessing nanotoxicity of a material, it is imperative to properly 

elucidate all transport pathways and transport induced changes throughout its life cycle - 
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from the point of nanomaterial generation to its ultimate sink. It may be even more 

important, however, to adequately understand and quantify the contribution of each 

transport-induced mechanism to the overall toxicity of a nanomaterial. 

Morphology Principle 

The morphology principle incorporates all of the factors that are related to the 

morphology of a nanomaterial, including its size, shape, porosity, and specific surface 

area. These factors are directly related to the reactivity, surface chemistry mechanisms, 

(sorption/desorption; radical formation; etc.), and other toxicity related phenomenon. To 

illustrate, the ultimate toxicity of asbestos, which is a naturally occurring nanomaterial, 

is directly related to its fiber-like structure [30]. Once they enter the alveolar region, the 

asbestos fibers get stranded inside the lungs, and their shape causes them to scar the 

lung tissue causing inflammation which ultimately results in mesothelioma and lung 

cancer [31]. Furthermore, studies have shown that the pulmonary inflammation caused 

by carbon nanotubes is directly related to their length and morphology [32]. Similarly, 

the large specific surface area provides for greater number of contaminant sorption sites 

or sites employed in formation radical species [33]. A study conducted by Sun et al. 

[34] demonstrates this contribution of nanoparticles’ high surface area on the 

accumulation of arsenic in carp when of TiO2 nanoparticles are present.  

To summarize, the nanomaterial morphology associated properties represent 

some of the most critical ones that are commonly characterized, but their risk 

implications are frequently neglected when developing nano-enabled technologies. 

More importantly, the nanomaterial morphology changes, which are typically exhibited 

during fabrication and processing of nano-enabled products, are not well elucidated; and 

it is frequently assumed that the nanomaterials in nano-enabled products exhibit the 

same morphological properties as pristine nanomaterials. 

Material Principle 

Closely associated with the morphology principle, which could be associated 

with the physical properties of nanomaterials, the material principle addresses the 

toxicity stemming from their chemical properties. Chemical structure, crystallinity, 

composition, and functionalization of nanomaterials are typically the main contributors 

to nanomaterials’ overall toxicity and environmental, health, and safety concerns. The 

factors encompassed by this principle are the main drivers of nanomaterials’ behavior in 

different environments or matrices. To illustrate, the chemical composition of a 

nanomaterial determines its surface charge under given conditions; or whether a 

nanomaterial will dissolve or aggregate. Furthermore, although a nanomaterial by itself 

may not exhibit toxicity, the presence of functional groups employed to functionalize 

the nanomaterial’s surface may cause it to manifest hazardous properties. Also, as in the 

case of different crystalline phases of TiO2, one crystalline phase may be photoactive 

and generate reactive oxygen species (ROS), while another phase may not be 

photoactive.  

Material principle typically addresses the most important factors contributing to 

the environmental, health, and safety risks associated with nanotechnology. After all, 

this principle represents the closes link to the conventional chemistry-based models that 

are dominating the risk assessment and management arena. While these established 

models represent a great starting point to incorporate some facets of the material 

principle, they need to evolve beyond considering only toxic properties of conventional 
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chemicals by incorporating other important aspects of materials that stem from 

chemistry.  

Conclusions: Bringing it All Together and Moving Forward 
At this stage of nanotechnology development, immense uncertainties exist when 

attempting to predict or assess the risks associated with the development of 

nanomaterials and nano-enabled products. The majority of uncertainties stem from the 

inability to adequately simultaneously quantify and characterize properties in complex 

matrices, including living organisms and the environment. While significant progress 

has been made in the last decade by addressing the three nanotoxicity principles, the 

main reason for this drawback appears to be the absence of analytical tools and methods 

that provide answers to multiple nanomaterial-related properties and help explicate the 

property-exposure and property-hazard relationships from a life cycle perspective. 

These relationships represent the cornerstone in building predictive models that 

elucidate the intended and unintended environmental, health, and safety implications of 

nanomaterials and guide the development of sustainable risk assessment and 

management practices at each nanomaterial life cycle stage. Considering the complexity 

of the challenge, the existing knowledge gaps could not be addressed without the 

engagement of networks comprised of interdisciplinary teams of researchers who have 

expertise in one or multiple science or engineering. Generation of diverse sets of data at 

each life-cycle stage of a nanomaterial represents a key step in understanding and 

addressing the entire nanotechnology-driven environmental, health, and safety paradigm 

and the risks that stem from this new enabling technology. 
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