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The negative impact of obesity on neurocognitive functioning is an issue of increasing
clinical interest. Over the last decade, a number of studies have analyzed the influence
of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals.
Different approaches, including behavioral, neurochemical, electrophysiological and
morphological studies, have been developed to address the effect of HFDs on neural
processes interfering with learning and memory skills in rodents. Many of the studies
have focused on learning and memory related to the hippocampus and the mechanisms
underlying these processes. The goal of the current review article is to highlight the
relationship between hippocampal learning/memory deficits and nutritional/endocrine
inputs derived from HFDs consumption, with a special emphasis on research showing
the effect of HFDs intake during the juvenile period. We have also reviewed recent
research regarding the effect of HFDs on hippocampal neurotransmission. An overview
of research suggesting the involvement of fatty acid (FA) receptor-mediated signaling
pathways in memory deficits triggered by HFDs is also provided. Finally, the role of leptin
and HFD-evoked hyperleptinemia is discussed.
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INTRODUCTION

Elevated consumption of so-called western diets (WDs) is one of the main causes of overweight and
obesity and a matter of concern for public health institutions. The damaging effect of these diets
seems to be not only related to their content in terms of both saturated fat and easily assimilated
carbohydrates, but also to the fact that they promote disorganized feeding patterns consisting of
frequent energy-dense snacking and/or copious meals before bedtime (Corwin and Hajnal, 2005;
Matheson et al., 2012, 2014). Closely related to this, the concept and term ‘‘comfort food’’ has been
coined, referring to the consumption of palatable, high caloric food to mitigate stress and/or anxiety
(Dallman et al., 2003).

Abbreviations: BBB, Blood-brain barrier; BMI, Body mass index; BW, Body weight; FA, Fatty acids; GLU, Glutamate;
HFD, High-fat diet; LTD, Long-term depression; LTP, Long-term potentiation; NCAM, Neural cell adhesion molecule;
NMDA, N-methyl-D-aspartate; WAT, White adipose tissue; WD, Western diet.
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The effect of WD within the brain is multifactorial since such
diets promote changes in the blood-brain barrier (BBB) and
choroid plexus permeability (Hsu and Kanoski, 2014; Hargrave
et al., 2016), inflammation (Pistell et al., 2010), biochemical
processes compatible with neurodegeneration (Kanoski and
Davidson, 2011; Boitard et al., 2012), changes in both
dopaminergic (Naneix et al., 2017; Romaní-Pérez et al.,
2017) and glutamatergic neurotransmission (Valladolid-Acebes
et al., 2012) as well as neurocognitive deficits (Noble and
Kanoski, 2016). In this regard, a pivotal issue that deserves
particular attention is that WD consumption itself, in the
absence of obesity/overweight, has the capacity to cause
neurocognitive impairment (Beilharz et al., 2015). This suggests
that dietary components (a certain fatty acid (FA), a particular
saturated/unsaturated FA ratio, the presence of elevated mono-
and disaccharides, etc.) may be sufficient to cause neurocognitive
effects—and that these effects are not only the result of metabolic
impairment, such as brain insulin resistance, caused by the
regular consumption of these diets (Bomfim et al., 2012;
Derakhshan and Toth, 2013).

The concept of WD applied to animal research is confusing as
this term covers diets with different qualitative and quantitative
composition. The most commonly used WD are the so-called
high-fat diets (HFDs; Van Heek et al., 1997), which yield mostly
lipid-derived calories from saturated fat (lard), but also contain
an elevated proportion of unsaturated fat and sucrose. The
proportion of lard in these diets usually ranges from 2% (this diet
is often used as a low-fat, control diet) to 32%, and the lower the
amount of fat, the higher the amount of sucrose, with these two
constituents ranging between 33% and 9%, respectively. Surwit
diets, also used for this kind of study, contain hydrogenated
coconut oil and corn-starch as fat and carbohydrate sources,
respectively. Finally, the so-called cafeteria diets, containing
elevated and undefined amounts of saturated fat and sugar have
been also widely used to induce overweight/obesity. Hence, the
complexity of all these diets makes it difficult to draw clear
conclusions regarding the relative contribution of either fat or
sugar to brain alterations. In this respect, exposure to sugar-
sweetened beverages has been shown to have a negative impact
on spatial memory (Reichelt et al., 2016) and neurogenesis
(Reichelt et al., 2015), but systematic studies aimed at identifying
the effect on the brain of either sugar- or fat-enriched diets are
lacking.

As a result of all of the circumstances described above,
comparison between different studies is very challenging and this
might explain the discrepancies observed between such studies,
despite them having been carried out under conditions that are
apparently similar. Most studies reviewed in this article deal with
the effect of van Heek-type diets.

UNHEALTHY DIET HAS AN IMPACT ON
COGNITIVE PERFORMANCE:
EPIDEMIOLOGICAL FEATURES

The relationship between diet composition and cognitive
impairment has been the focus of observational studies showing

that improving dietary habits positively influences cognition
(Drover et al., 2009; Spencer, 2010), while reduction in diet
quality is associated with declining psychological functioning
over the follow-up period (Jacka et al., 2011).

A number of clinical studies highlight that hippocampus-
dependent declarative memory is damaged in overweight/obese
adults (Nilsson and Nilsson, 2009), as well as in
children/adolescents (Cserjési et al., 2007; Afzal and Gortmaker,
2015). Accordingly, an inverse correlation between body mass
index (BMI) and academic performance has been established
(Yau et al., 2014).

Related studies have revealed slower learning rates in
hippocampus-related tasks in humans consuming high-sugar
diets (Attuquayefio et al., 2016). Another clinical study revealed
that a 4-day HFD reduces the extent of hippocampus-
dependent learning and memory as well as interoceptive
sensitivity (Attuquayefio et al., 2017). Some meta-analyses
have also provided evidence for the negative impact of
obesity on neurocognitive functioning (Liang et al., 2014). In
addition, although the mechanism linking overweight/obesity
and cognitive dysfunction remains poorly characterized (Sellbom
andGunstad, 2012), cumulative evidence has identified obesity as
a risk factor for cognitive impairment (for a review see Castanon
et al., 2014), including Alzheimer disease (De Felice and Ferreira,
2014).

Many studies have reported that memory impairment
triggered by diets is associated to specific insulin resistance
(Banks et al., 2012; Kim and Feldman, 2015). In this regard, a
study in humans indicated that glucose, but not insulin fasting
levels, may have an impact on episodic memory in middle-aged
women (Backeström et al., 2015). Thus, understanding the
mechanisms connecting the consumption of unhealthy diets and
cognition deficits is becoming both urgent and necessary in order
to develop effective strategies aimed at preventing the expanding
global burden of co-morbid obesity and dementia.

CONSUMPTION OF HIGH-FAT DIETS
DURING THE JUVENILE PERIOD IMPAIRS
HIPPOCAMPUS MORPHOLOGY AND
FUNCTION

Neurogenesis and Cell Morphology
The negative impact of HFDs on hippocampal neurogenesis
has been the focus of many studies (Hwang et al., 2008; Park
et al., 2010), some of which have shown a differential effect on
animals that started to consume a HFD after weaning compared
to those that consumed the diet during adulthood (Boitard et al.,
2012).

Evidence that HFDs can affect neuron development is
provided by other studies showing that obese young mice
consuming these diets for 8 weeks display an unexpected
increase in hippocampal spine density, accompanied by an
up-regulation of the neural cell adhesion molecule (NCAM)
expression in CA1 pyramidal neurons (Valladolid-Acebes et al.,
2013). Similarly, another study has recently reported a similar
effect within the prefrontal cortex in young rats undergoing
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prenatal exposure to HFD (Rincel et al., 2018). In contrast to
these findings, Wang’s group (Wang et al., 2016) identified a
decrease in hippocampal spine density in obese juvenile rats
exposed to HFDs. Interestingly, a study by Ferreira’s group has
reported that switching to a standard control diet reduces body
weight (BW) and restores levels of hippocampal neurogenesis in
these models (Boitard et al., 2016).

In addition to neuron morphology, astrocytes seem to be
sensitive to HFD. This issue has mainly been investigated
in hypothalamic areas (Chowen et al., 2016), but research
specifically targeted within the hippocampus is less abundant.
In this regard, a study carried out in HFD obese mice reported
that consuming HFD from the time of weaning leads to longer
and less abundant astrocyte prolongations (Cano et al., 2014) as
well as to a reversible activation of hippocampal microglia (Hao
et al., 2016). Obese adult rats undergoing a similar treatment
displayed a lower number of GFAP-positive astrocytes (Gzielo
et al., 2017), and a concomitant increase in the number of Iba1
positive microglia cells was detected in non-obese mice subjected
to a similar dietary intervention from weaning (Vinuesa et al.,
2016).

Effect of High-Fat Diets on Hippocampal
Neurotransmission
It has been reported that HFD impairs synaptic efficacy
and blunts N-methyl-D-aspartate (NMDA)-induced long-term
depression (LTD), but does not affect long-term potentiation
(LTP; Valladolid-Acebes et al., 2012), in the hippocampus of
obese mice exposed to these diets during the adolescent period.
These findings differ from those of other authors. For instance,
Mielke’s group reported that HFD did not affect synaptic
efficacy or LTP (Mielke et al., 2006), whereas other authors
have demonstrated impairment of LTP after HFD treatment
(Hao et al., 2016). The different periods of HFD treatment
and the different protocols for synaptic plasticity processes may
be responsible for these discrepancies. Moreover, Del Olmo’s
group has identified the impairment of LTD as the most
relevant change in synaptic plasticity due to HFD consumed
during the juvenile period (Valladolid-Acebes et al., 2012).
Other authors have observed that, in spite of an identical basal
synaptic transmission, obese HFD-treated adult male—but not
female—mice display lower LTP and LTD values compared with
their respective controls (Hwang et al., 2010)—a result that paves
the way for research related to gender-specific effects of HFD on
hippocampal function. In addition, a 6-month HFD treatment
has been shown to decrease basal synaptic transmission and LTP
in the dentate gyrus of the adult rat hippocampus (Karimi et al.,
2013).

These apparent alterations of hippocampus plasticity
strongly suggest an influence of HFD on glutamatergic
neurotransmission. In fact, a study carried out in obese mice that
consumed HFD during the adolescent period, has shown that
HFD improves glutamate (GLU) up-take kinetics along with the
up-regulation of glial GLU transporters (GLT-1 and GLAST)
and a concomitant down-regulation of glutamine synthase.
In addition, this treatment led to the down-regulation of the

glucose transporter GLUT-1 (Valladolid-Acebes et al., 2012).
All of these findings suggest that HFD can trigger a dramatic
de-regulation of GLU turnover and provides further support
for the above-mentioned changes in hippocampus synaptic
transmission and plasticity elicited by HFD interventions during
the juvenile period. This and other studies have reported that
post-weaning HFD down-regulates the expression levels of both
the NR2B subunit of the NMDA receptor and synaptophysin,
concomitantly with a detrimental cognitive impairment in
rats (Page et al., 2014) and mice (Valladolid-Acebes et al.,
2012).

GLU is not the only neurotransmitter that is sensitive to HFD
within the hippocampus; GABA levels appear to be decreased
in the hippocampus as well as in the prefrontal cortex of adult
rats, and it has been proposed that this change might contribute
to the disruption of GABAergic inhibitory processes and be
related to changes in GLU metabolism (Sandoval-Salazar et al.,
2016), which are coherent with the above-mentioned worsening
of synaptic plasticity.

Influence of High-Fat Diets During the
Juvenile Period on Hippocampus-
Dependent Spatial Memory
Research aimed at characterizing the effects of HFD
consumption and/or HFD-induced obesity on learning and
memory processes is abundant and has frequently been reviewed
(Davidson et al., 2005; Cordner and Tamashiro, 2015; Noble and
Kanoski, 2016). However, differences in the animal strain and
age, the length of the dietary treatment and the experimental
approach used all make it difficult to draw clear conclusions
(Cordner and Tamashiro, 2015).

The effect of HFD on brain areas related to cognition,
such as the amygdala, the prefrontal cortex, and especially
the hippocampus, has received much attention in recent
years. In the amygdala, Vega-Torres et al. (2018) recently
reported that rats that consumed HFD exhibited attenuated
fear learning associated to astrogliosis, which contrasts with
the enhancement of emotional memory and amygdala plasticity
reported by Boitard et al. (2015). Spencer et al. (2017)
reported that HFD evokes neuroinflammation together with
impaired amygdala-dependent memory. Janthakhin et al.
(2017) also reported that maternal HFD impairs amygdala-
dependent memory. Nevertheless, switching adolescent HFD to
a control diet in adulthood reverses neurocognitive alterations
(Boitard et al., 2016). With respect to the effect of HFD
within the prefrontal cortex, a number of studies have
implicated this brain area in cognitive deficits triggered by HFD
(Reichelt et al., 2016), which may be related to morphological
alterations evoked by these diets in this area (Dingess et al.,
2017).

Although a study has reported that HFDs can have an
influence in the ventral hippocampus of female mice (Krishna
et al., 2015), the effect of HFD on memory seems to affect
mainly dorsal hippocampus-dependent learning but spares
other forms of learning (Stouffer et al., 2015). This may be
due to the selective impairment of the dorsal hippocampus
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caused by oxidative stress, inflammation and/or disrupted
neurotransmission produced by consumption of these diets. In
this sense, HFD intake results in a negative influence on the
hippocampus in terms of both spatial learning and reference
memory, and it has been proposed that HFD triggers obesity
in part by interfering with the inhibition of hippocampal-
dependent memory, which is critical to adjust energy intake
to meet energy demands (Davidson et al., 2007; Kanoski and
Davidson, 2011). Most of the studies agree that HFDs impair
hippocampal function. Thus, impaired hippocampus-specific
spatial memory, evaluated in the radial maze paradigm, was
detected in adult rats after 3–5 days on a high-fat/high-sugar
diet, while no effect was observed in the case of hippocampus-
independent memory tasks (Kanoski and Davidson, 2011).
The impact of HFD on hippocampus-dependent learning and
memory during the particularly vulnerable juvenile period has
been assessed in a number of studies showing that these diets
deteriorate both relational and spatial memory (Valladolid-
Acebes et al., 2011, 2013; Boitard et al., 2012; Kaczmarczyk
et al., 2013; Del Rio et al., 2016). This behavioral impairment is
accompanied by the inhibition of hippocampal neurogenesis in
mice (Boitard et al., 2012), as well as bymorphological alterations
of dendritic spines (Valladolid-Acebes et al., 2013). Moreover,
HFD has been shown to evoke hippocampal inflammation in
rats (Boitard et al., 2014). These observations do not appear
to be linked to obesity, as Vinuesa’s group demonstrated that
these processes are present without BW gain (Vinuesa et al.,
2016).

Similarly, the effect of prenatal and perinatal exposure to
HFD has also been shown to have a negative influence on
the hippocampus in terms of spatial learning and reference
memory (White et al., 2009; Lépinay et al., 2015; Wolfrum
and Peleg-Raibstein, 2018). Related to this, a recent study
carried out in humans demonstrated that 4 days of HFD
reduces hippocampus-dependent learning and memory as well
as interoceptive sensitivity (Attuquayefio et al., 2017). However,
other studies carried out in adolescent mice have reported
that short-term HFD fail to induce cognitive impairment
in the novel object recognition paradigm (Del Rio et al.,
2016).

The possibility that mood disorders triggered by obesity
and/or HFD may have an impact on memory performance is
a factor that has to be taken into account, since the increasing
prevalence of childhood obesity has been accompanied by a
parallel increase in comorbid psychological conditions such
as depression and anxiety (Russell-Mayhew et al., 2012).
Nevertheless, data in the literature do not allow the assessment
of the comorbidity between memory and mood impairment. In
this regard, some studies have reported anxiety and anhedonia
after a 16-week HFD in adult rats (Dutheil et al., 2016)
and after a 12-week treatment in mice (Sharma and Fulton,
2013), while other authors have reported a mood improvement
together with a concomitant worsening of memory performance
after 48 h HFD (Del Rio et al., 2016). The independence
between mood and memory is stressed by the study by
Kaczmarczyk et al. (2013), showing that learning/memory
impairment evoked by HFD was not inhibited by the

anti-depressants desipramine or reboxetine. For recent reviews
on this topic, see Baker et al. (2017) and Reichelt and Rank
(2017).

The influence of maternal obesity and high-fat feeding on
synaptic plasticity, learning and memory has been also studied
and recently reviewed by several authors (Contu and Hawkes,
2017; Edlow, 2017). Nevertheless, although there is compelling
evidence of learning and memory deficits in the offspring on
obese mothers (both in humans and in experimental models of
diet-induced obesity), the mechanism that account for such an
effect remains to be further investigated. As potential causes, a
deficient production of BDNF within the hippocampus (Tozuka
et al., 2010; Kim and Park, 2018), brain inflammation (Kang
et al., 2014), and even a deficient leptin signaling (Dodds et al.,
2011; Cordner and Tamashiro, 2015) may underlie deficient
neurodevelopment and poor memory/learning performance
observed in these models.

NUTRITIONAL VS. ENDOCRINE INPUTS IN
MEMORY IMPAIRMENT TRIGGERED BY
HIGH-FAT DIETS

Gut hormones and nutrients—which are pivotal for brain
development and maturation—reach the brain after crossing the
BBB and/or the choroid plexus by means of specific carriers as
well as by unspecific diffusion mechanisms. These inputs can
be altered by HFD as, in addition to an abundant supply of
saturated FAs, these diets cause an imbalance of adipokines in
white adipose tissue (WAT), characterized by the induction of
leptin synthesis and the repression of adiponectin expression,
which occur together with a rise in WAT-derived inflammatory
cytokines, all of which are able to cross brain barriers (Tilg and
Moschen, 2006; Spencer et al., 2017; Figure 1). In addition, HFDs
have been shown to reduce the synthesis of bile acid receptor
ligands, an event that may contribute to the impairment of
neuroplasticity evoked by HFDs (Jena et al., 2018).

Systematic studies aimed at identifying the role of saturated
fat as an independent risk factor for memory and mood
impairment, specifically in the adolescent population, are
lacking. A study by Baym et al. (2014) showed a negative
correlation between hippocampus-dependent relational
memory and the intake of saturated FAs in a child/adolescent
population, supporting the concept that saturated fat impairs
memory processes independently of metabolic factors.
Nevertheless, the Baym study did not identify saturated
fat intake as a BMI-independent risk factor for memory
damage. Related to this, a study by Moon et al. (2014)
demonstrated that acute administration of palmitic acid induces
anxiety-like behavior in mice, independently of metabolic
alterations.

The influence of HFDs on brain and particularly on
hippocampus signaling, seems to involve many neurotransmitter
(Hansen et al., 2018) and hormone-dependent pathways. In
this context, insulin receptor signaling in hippocampal neurons
is pivotal for spatial memory performance. The influence of
HFD interventions on insulin responsiveness is difficult to
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FIGURE 1 | Hypothetical dual effect of high-fat diets (HFDs) on the hippocampus. Fatty acids (FAs) contained in HFDs enter the brain by crossing brain barriers.
Elevated concentrations within the hippocampus of saturated FAs, such as palmitic acid, lead to a deficient activation of PPARγ together with an overstimulation of
PPARα. The consequence of such an imbalance may be inflammation accompanied by a decrease of synaptic plasticity. On the other hand, HFDs trigger adipose
tissue inflammation together with an altered pattern of adipokine secretion, characterized by an increase of circulating leptin. Hyperleptinemia causes leptin
resistance able to limit the activity of signaling pathways relevant in maintaining the structural and functional integrity of the hippocampus.

determine, as most studies do not go beyond the identification
of insulin resistance indexes (HOMA-IR), which are not
indicative of the responsiveness of insulin receptors within
brain areas involved in learning/memory. In this regard,
the study by Vinuesa et al. (2016) reported that memory
impairment triggered by HFD in juvenile mice is associated
to specific insulin resistance within the hippocampus, even
in the absence of obesity, as already observed by Mielke
et al. (2006). These findings are in line with previous studies,
carried out in engineered rats, showing that lentiviral deletion
of insulin receptors within the hippocampus has a negative
influence on hippocampus-dependent learning/memory tasks
(Grillo et al., 2011, 2015). This suggests that integral downstream
signaling of insulin receptors is pivotal for learning/memory
performance. Otherwise, brain insulin resistance evoked by
HFDs has been shown to impair hippocampal synaptic plasticity
and memory by increasing the palmitoylation of the AMPA
GLU subunit GluA1 (Spinelli et al., 2017). Memory deficits
have also been observed—both in mouse and rat models,
after 1- (Molteni et al., 2002) and 8-month dietary treatments
(Stranahan et al., 2008)—associated to marked obesity and
insulin resistance. Nevertheless, other studies have reported

that consumption of HFD for 4 or 8 weeks, triggering
BW increase but failing to alter insulin resistance indexes,
evokes hippocampus-dependent memory deficits specifically in
adolescent mice (Valladolid-Acebes et al., 2011). In humans, one
study indicates that glucose—but not insulin fasting levels—may
have an impact on episodic memory in middle-aged women
(Backeström et al., 2015). In the same vein, hippocampus-
dependent memory deficits in obese adult mice, exposed
to HFD during the juvenile period, were not reversed by
further limited access to HFD (Valladolid-Acebes et al., 2013).
Nevertheless, other studies have reported that cognitive function
is improved by subsequently switching to a standard chow
(Woo et al., 2013; Boitard et al., 2016), and this reversibility
also concerns other aspects such as neuronal plasticity (White
et al., 2009; Lépinay et al., 2015), morphological changes
(Rincel et al., 2018) and memory (Boitard et al., 2016). Taken
together, all of these findings support the concept that it
is diet composition—rather than obesity or elevated caloric
intake—that is pivotal for the long-term effect of HFD on
learning/memory.

All of this research points to uncertainty regarding the relative
contribution of nutritional inputs vs. the influence of endocrine-
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metabolic impairment triggered by HFD. At this point, it should
be highlighted that central inflammatory processes subsequent
to HFD intake may be another key point to be considered. This
topic has been the focus of recent reviews by Castanon et al.
(2015), Morin et al. (2017), Spencer et al. (2017) and Layé et al.
(2018).

THE ROLE OF SATURATED FATTY ACIDS
IN MEMORY AND LEARNING DEFICITS:
FACTS AND HYPOTHESIS

FAs are not only able to generate cell components or precursor
metabolites, but also bind both intracellular and cell surface
receptors, including peroxisome proliferator-activated receptors
(PPARs) and G protein-coupled receptor 120 (GPR120).

PPARs mediate pleiotropic actions in the brain, including
neurogenesis and synaptic plasticity (Roy et al., 2016; Zhou
et al., 2016), as well as physiopathological responses, such
as inflammation (Luna-Medina et al., 2005). Although the
implication of PPARs in neural processes involved in learning
and memory has been analyzed in a number of studies, research
specifically devoted to assessing the relevance of FA receptors
in neural damage triggered by HFD in the juvenile brain
is lacking. Nonetheless, the importance of these receptors in
neurogenesis and inflammation processes clearly points to their
involvement in long-term memory deficits elicited by juvenile
HFD. The up-regulation of NCAMs has been demonstrated
in CA1 pyramidal neurons, occurring concomitantly with an
increase in spine density in mice exposed to HFD only during
the adolescence period (Valladolid-Acebes et al., 2013), showing
the importance of these diets in neurogenesis. As NCAM play
key roles in learning, memory and synaptic plasticity (Becker
et al., 1996), it could be hypothesized that the up-regulation of
NCAM expression induced by HFD is an integral compensatory
reorganization of CA1 neurons aimed at improving synaptic
connectivity (Figure 1).

Saturated FAs are less efficient PPARα and PPARγ agonists
than unsaturated FAs (Kliewer et al., 1997; Varga et al., 2011).
Therefore, a deficient activation of PPARγ and a subsequent
limiting of PPARγ-mediated functions could be expected from
the intake of diets containing elevated saturated/unsaturated
FA ratios, as occurs with HFDs. In this regard, palmitic
acid has been shown to impair amyloid processing both in
neurons and astrocytes (Patil et al., 2006), whereas pioglitazone
(PPARγ agonist) improves learning in Alzheimer disease models
(Papadopoulos et al., 2013). Other studies have reported that
palmitic acid induces lipotoxicity in cortical rat astrocytes (Wong
et al., 2014), reduces hippocampal neurogenesis (Park et al.,
2011) and promotes inflammatory responses, which were absent
after oleic acid administration (Gupta et al., 2012). Concerning
the effect of these diets on PPARα activation, a recent study
by Huang et al. (2017) reported a down-regulation of the
astrocyte GLU transporter, GLT-1, triggered by palmitic acid
and other PPARα agonists. This result would be consistent with
the presence of PPARα in rodent hippocampus (Roy et al.,
2014; Rivera et al., 2014) as well as with the proposed role
of PPARα in modulating synaptic plasticity in hippocampal

neurons, and therefore in memory and learning (Roy et al.,
2013).

Regarding the influence of HFD on GPR120 activity, there
are no studies in the literature. Nevertheless, GPR120 seems to
mediate the effects of Ω-3 PUFA and to improve both glucose
metabolism and insulin sensitivity (Milligan et al., 2017). In
addition, GPR120 seems to be relevant in the regulation of
appetite andmood anxiety (Auguste et al., 2016). One speculative
possibility is that GPR120 is poorly activated in animals subjected
to experimental HFD, which might contribute to the metabolic
and mood disorders triggered by these diets.

LEPTIN AS A KEY FACTOR FOR MEMORY
CHANGES EVOKED BY HIGH-FAT DIETS
IN JUVENILE ANIMALS

The rise in plasma leptin levels during HFD interventions
has a dual effect, since leptin enhances CA1 LTP in rats
(Oomura et al., 2006) and has been shown to be necessary
for both brain maturation and learning/memory consolidation
(Morrison, 2009; Guo and Rahmouni, 2011), whereas leptin
resistance evoked by hyperleptinemia appears to be associated
with deficits in hippocampal-dependent behaviors (Van Doorn
et al., 2017).

Behavioral effects of leptin involve hippocampus leptin
receptors (Harvey et al., 2006), which modulate JAK/STAT3,
PI3K/Akt, MAPK and calcineurin signaling pathways (Morrison,
2009). The relevance of these pathways for hippocampal-
dependent memory/learning has been investigated and there
is compelling evidence that JAK/STAT3 modulates synaptic
plasticity (Nicolas et al., 2012). Moreover, PI3K/Akt and
MAPK, and MAPK and calcineurin regulate LTP and LTD,
respectively (Harvey, 2013). In support of this, Farr et al.
(2006) have reported that leptin therapy improves cognitive
deficits in adult mice displaying a spontaneous overproduction
of amyloid precursor protein. Some authors have shown
that db/db mice, which have an inactivating mutation in
the leptin receptor, display cognitive deficits (Dinel et al.,
2011). Conversely, delivery of leptin within the ventral region
of the hippocampus suppressed conditioned place-preference
for food, increased the latency to run for food in an
operant runway, and suppressed memory consolidation in
a non-spatial appetitive response paradigm (Kanoski and
Davidson, 2010).

On the other hand, hyperleptinemia triggers a rapid
desensitization of leptin transport mechanisms located within
the BBB and the choroid plexus—an effect that limits the
effect of leptin. Although this process seems to be reversible in
adult animals (Banks and Farrell, 2003), little is known about
the influence that juvenile obesity can have on brain barrier
permeability to leptin in the adult brain.

Hyperleptinemia also impairs leptin receptor signaling
both in neurons and glial cells in brain areas relevant for
learning/memory (Grillo et al., 2011). It has been demonstrated
that leptin resistance selectively affected the functionality of the
PI3K/Akt signaling pathway (Valladolid-Acebes et al., 2013).
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Interestingly, Mainardi et al. (2017) have reported that HFDs
causes a loss of leptin-induced modulation of hippocampal
synaptic transmission in mice.

CONCLUDING REMARKS

Consumption of HFD during the juvenile/adolescent period has
a negative impact on hippocampal memory and neural-related
processes in the adult brain as revealed by a substantial amount
of research carried out in murine models. Nevertheless, the
variability of experimental conditions used to investigate this
issue (dietary treatments of different duration, variety of diets,
animals in different states of development, etc.) makes it difficult
to draw reliable conclusions. Systematic studies carried out with
diets of defined composition, which do not merge elevated
amounts of saturated fat and sugar and that are preferably
enriched in a particular FA, would be necessary to investigate
in more depth the influence of fat on brain functions. In
this regard, future research based on the use of experimental
HFD manufactured with highly saturated or unsaturated oils,
enriched in a particular FA, are needed to identify the specific

contribution of the various types of dietary fat to memory
processes.

Otherwise, the translational value of all of these findings
remains unclear, as strong epidemiological studies are lacking.
Therefore, it is necessary to carry out parallel clinical and
basic research devoted to the identification of the molecular
mechanism underlying memory deficits evoked by the regular
consumption of HFD.
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