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ABSTRACT

Background: The need for read-based phasing arises with advances in sequencing
technologies. The minimum error correction (MEC) approach is the primary
trend to resolve haplotypes by reducing conflicts in a single nucleotide
polymorphism-fragment matrix. However, it is frequently observed that the solution
with the optimal MEC might not be the real haplotypes, due to the fact that

MEC methods consider all positions together and sometimes the conflicts in noisy
regions might mislead the selection of corrections. To tackle this problem, we present
a hierarchical assembly-based method designed to progressively resolve local
conflicts.

Results: This study presents HAHap, a new phasing algorithm based on hierarchical
assembly. HAHap leverages high-confident variant pairs to build haplotypes
progressively. The phasing results by HAHap on both real and simulated data,
compared to other MEC-based methods, revealed better phasing error rates for
constructing haplotypes using short reads from whole-genome sequencing. We
compared the number of error corrections (ECs) on real data with other

methods, and it reveals the ability of HAHap to predict haplotypes with a lower
number of ECs. We also used simulated data to investigate the behavior of HAHap
under different sequencing conditions, highlighting the applicability of HAHap in
certain situations.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Haplotype, Read-based phasing, Hierarchical assembly, Probability score

INTRODUCTION

Haplotype phasing, also known as haplotyping, is the process of resolving precise
haplotypes. A haplotype describes serial genetic variants that co-occur on a single
chromosome. Characterization of haplotypes is essential in various research problems,
including allelic expression (Castel et al., 2016), linkage analysis, association studies
(Nalls et al., 2014; Ripke et al., 2013), population genetics (Sankararaman et al., 2014;
Schiffels & Durbin, 2014) and clinical genetics (Zanger ¢» Schwab, 2013). Many studies
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have proposed experimental or computational phasing approaches to resolve

haplotypes (Browning ¢ Browning, 2011; Snyder et al., 2015). Advances in sequencing
technologies have facilitated faster and cheaper resolution of haplotypes, while increasing
the need for efficient and effective computational methods.

Several computational phasing approaches have been proposed in recent years.
Genetic phasing makes use of related individuals to achieve better precision but can only
be adopted when pedigrees are available (O’ Connell et al., 2014). Population phasing uses
genotyping data of a large cohort to infer haplotypes (Glusman, Cox ¢ Roach, 2014).
However, this approach is only applicable to well-known variants in a population.
Read-based phasing utilizes reads spanning at least two heterozygous variants to infer
haplotypes (Edge, Bafna ¢ Bansal, 2017; Garg, Martin ¢ Marschall, 2016; Mazrouee &
Wang, 2014; Pirola et al., 2016). With the appearance of long-read sequencing
technologies, where longer reads could possibly cover more heterozygous variants,
read-based phasing has increasingly become more appealing. However, since long-read
sequencing still suffers high cost at this moment, it may not deliver as high coverage as
short-read sequencing. In this regard, individual phasing based on short reads with a
sequencing depth of at least 30 remains competitive nowadays. Even though individual
phasing based on short reads cannot deliver as high quality as the long-read or
population-based solutions (Choi et al., 2018), whole-genome sequencing (WGS) becomes
more and more critical and frequently used in medical research and precision
medicine (Ellingford et al., 2016; Glusman, Cox & Roach, 2014; Luukkonen et al., 2018;
Sousa-Pinto et al., 2016; Stavropoulos et al., 2016).

An important computational model developed for read-based phasing is the minimum
error correction (MEC) model (Lancia et al., 2001). The MEC approach corrects
putative errors in the reads by changing the alleles that cause conflicts. Conflicts are the
alleles in reads that do not support the predicted haplotypes. In the MEC approach,
conflicts are considered as errors, which might be sequencing errors or alignment
errors. The MEC problem was proven to be NP-hard (Lippert et al., 2002). In this regard,
methods delivering the optimal solutions were usually time-consuming (Chen, Deng ¢
Wang, 2013; He et al., 2010), and are considered impractical in whole-genome phasing
with a sequencing depth of 30x or more. Here, we used an Illumina WGS sample
downloaded from the Genome in a Bottle Consortium (GIAB) as an example. This sample
(sample ID: NA24143) consisted of 2 x 250 paired-end reads, with a sequencing depth of
about 40x. By using a 48-core machine with Intel Xeon E5-2683 CPUs and 384 GB
of memory, an ILP method, HapAssembly, took more than 150 h to complete the phasing,
in both general and all-heterozygous modes. This is impractical for an application that
contains more than hundreds of WGS samples.

In this regard, many computational methods have been proposed to speed up
the phasing performance. WhatsHap (Garg, Martin ¢ Marschall, 2016) is a well-known
phasing tool that down-samples the read sets first and uses a dynamic programming
fixed parameter tractability algorithm to solve a weighted MEC problem faster.

While WhatsHap delivers optimal solutions, several heuristic methods have been proposed
to find haplotypes more efficiently (Aguiar & Istrail, 2012; Edge, Bafna ¢» Bansal, 2017,
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Xie, Wang ¢ Chen, 2015). HapCut2 is a maximum likelihood estimation heuristic method
that uses max-cut computation to search a subset of variants such that changing
haplotypes on those variants is possible to achieve a greater likelihood. The procedure is
repeated until no further improvements are possible, eventually leading to a near-optimal
approach of MEC.

Although MEC is regarded as the state-of-the-art strategy, there is room for
improvement. First, the quality of the reconstructed haplotypes may be severely affected
by sequencing and alignment errors. Conceptually, MEC methods search solutions in a
global manner, which works well if there are relatively fewer noises than signals.
Second, read-based phasing struggles when handling regions with dense variants, which is
computationally infeasible for many existing methods. The execution time of a read-based
phasing method is highly related to the sequencing coverage and the number of
variants. In the future, longer reads from third-generation sequencing technologies will
necessitate a more time-efficient method, since longer reads involve more variants in
the problem.

This study aims to develop a heuristic read-based haplotyping method based on a
hierarchical assembly algorithm. Our method is not designed to solve the MEC problem.
Instead, it attempts to eliminate the influence of noises through iteratively considering the
most reliable information from variant pairs. We developed an adjusted multinomial
probabilistic metric for evaluating the reliability of a variant pair, and the derived scores
guide the assembly process. Once only the pairs with low scores remain, we accept a
local MEC search method to resolve the haplotypes of this local region, with a much
smaller search space than what used to be. The evaluation was performed using the
haplotype prediction of the Ashkenazim trio by 10x Genomics, which uses a barcoding
technique followed by pooled short read sequencing to resolve haplotypes (Porubsky et al.,
2017; Zheng et al., 2016). This study compares the proposed method with an exact
method tool, WhatsHap, and a heuristic method, HapCut2, on both real and simulated
data. We also generated simulated data in different situations based on the hgl9 genome
in order to study the applicability of HAHap. While local phasing information
becomes more and more important in pathogenicity studies and clinical diagnosis (Cheng
et al., 2018; Wu et al., 2018), we provided an example of phasing using short reads,
ABO blood type detection, in the end, to illustrate how short-read phasing can help real
medical applications.

METHODS

HAHap is a read-based haplotyping algorithm that adopts hierarchical assembly to
progressively build haplotypes, starting from high-confident pairs and working toward
low-confident pairs (Fig. 1). It takes predicated heterozygous variants from a variant
caller as the input. We describe the concept of hierarchical assembly in Sections
“Haplotype-informative reads and variant blocks” and “Hierarchical assembly”; the design
of probabilistic confidence scores (CSs) in “Multinomial distribution metric”; and

the local MEC search in “Local phasing using MEC” and “Examples of choices between
heuristic and local MEC-based search”.
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Figure 1 Haplotyping using hierarchical assembly vs. dynamic programming. (A) Indicates the
proposed heuristic-based process using hierarchical assembly, and (B) shows the MEC-based search
process using dynamic programming. F is a fragment (read pair), and V; is a heterozygous variant.
Given that the gray cell is a sequencing error, the proposed hierarchical approach will not be affected
when phasing other positions, but the MEC approach will consistently consider it during the whole
process, and this might damage the solution if too many noises exist.

Full-size K&] DOT: 10.7717/peer;j.5852/fig-1

Haplotype-informative reads and variant blocks

A locus with the same alleles is homozygous, and a locus with more than one allele is
heterozygous. In the phasing problem, we only consider heterozygous variants. The reads
spanning multiple heterozygous variants are used in assembling haplotypes. The
homozygous variants, which cannot provide information to extend haplotypes, are
ignored. In the rest of the article, “variant” is short for “heterozygous variant”. Two
variants are connected if they are spanned by a read. The connectivity of variant pairs

is transitive. For example, suppose there are three variants A, B and C, but no read spans A
and C. However, there are reads spanning variants A and B and other reads spanning
variants B and C. In this case, A and C can be joined through B, and we describe each pair
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of variants among these three variants connected. In other words, the reads spanning
multiple variants are haplotype-informative. In this regard, the first step of the proposed
method is to identify the haplotype-informative reads and determine a variant block in
which all the variants inside are connected.

DNA sequencing technology produces reads or read pairs, that is, fragments of
DNA. In the field of computer science, we usually define a read as a string of nucleotides
(A, T, C, G). In the phasing problem, we describe it as a string of (0, 1, -) to stand
for the allele of (major, minor, others). A variant block is a set of variants where each one
has at least one connection with the others. The informative reads represent reads that
span at least two variants.

Hierarchical assembly

HAHap considers each pair of two loci as pieces of the puzzle and proceeds with the
assembly according to the CSs. To resolve the whole haplotypes, we start from phasing
small pieces and assemble them using the concept of hierarchical assembly. Each resultant
variant block in Section “Haplotype-informative reads and variant blocks” is an isolated
problem for hierarchical assembly.

Although the MEC method in general capably handles noise, it can still accumulate
errors and thus lead to poor phasing when noise overrides the signal in the data.
According to this observation, our method endeavors to reduce the influence of noise by
leveraging pairs with higher scores. This is achieved by adopting a hierarchical
assembly approach, which considers the pair with the highest score first and proceeds to the
end. At the beginning of the assembly, the algorithm treats each variant as a
vertex and calculates a CS of two vertices for guidance. The CS of a variant pair is described
in Section “Multinomial distribution metric”. Then, the single-linkage metric is adopted
to evaluate the score between two clusters. The term “cluster” represents a group of variants
and is used in the following discussion. The algorithm continues to unify clusters until
all vertices are unified. In total, a block with # variants inside needs n—1 merging to group all
variants into one unit. This process of assembly could be finished in linear time.

The score S(X, Y) between two clusters X and Y is defined below, where X and Y are
any two sets of variants as clusters. The CS takes two variants, x and y, as arguments.

It ranges from negative infinity to zero. A score closer to zero indicates more confidence.
S(X,Y) = (X CS(x, y) (single-linkage)

HAHap always trusts the heterozygous variants reported by the variant caller. In order
words, it only considers the major and alternative alleles detected in variant calling and
treats the variants as heterozygous. This is the so-called heterozygous assumption. For
example, if the variant caller determines V; and V, as two heterozygous loci, and V; is
observed with C/T (0/1) and V, with G/C (0/1), the heterozygous assumption tells us that
the haplotype candidate (C-G, C-C) is not considered since (C-G, C-C) turns V,
homozygous. Only two solutions are preferred; one is (C-G (0-0), T-C (1-1)) and the
other is (C-C (0-1), T-G (1-0)).
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Figure 2 HAHap uses the proposed CS score to guide the haplotyping process. (A) Merging Clusterl
and Cluster2 by variants V3 and V,: There are two variants in cluster] and three in cluster2. HAHap
chooses the pair with the highest CS score to lead the process (the 3-4 pair in this example). HAHap
records the read counts (RC) of four possible combinations into the read table; (B) Calculating the scores
for the two preferred solutions (S1 and S2) for variants V5 and V,: We used the notation (0-0, 1-1) to
denote the first prediction (S1), which is (Clusterl H1-Cluster2_HI1, Clusterl H2-Cluster2_H?2).
Similarly, we used the notation (0-1, 1-0) to denote the second prediction (S2), which is (Clusterl_H1-
Cluster2_H2, Cluster]_H2-Cluster2_H1). In the end, the one with the higher score (CS1) will be chosen
as the prediction. Full-size K&l DOT: 10.7717/peer;j.5852/fig-2

After explaining the rules of the hierarchical assembly, this paragraph introduces a way
to resolve one large haplotype from two small phased haplotypes. Our method takes the
reads spanning the variant pair of the highest score between two clusters to combine
the sub-haplotypes that have been phased in previous steps. Among two preferred
solutions, the first solution’s alleles for the pair are (0-0, 1-1) and those of the second
solution are (0-1, 1-0). We calculated the CS, CS1 and CS2, for the first and second
solutions, respectively, and used the read information of the higher CS to infer a larger
haplotype (Fig. 2). The hierarchical assembly continually executes until all possible
pairs are considered. However, in a heuristic method, it is possible to make a wrong
decision on merging with a low CS. Whenever it is likely to happen, HAHap introduces a
local MEC search to overcome this problem, which will be explained in Section “Local
phasing using MEC”.

Multinomial distribution metric

In this section, we introduce the scoring metric that measures the confidence between
two variants. The CS is based on the multinomial distribution. Each pair of the two
connected variants is treated as an instance for scoring. When appraising the confidence
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level of variants x and y, we count the total reads that span both x and y, and denote this
number as N. Then we consider two preferred solutions separately. First, we define the
observed read count of one haplotype as n; and the observed read count of the other
haplotype as n,. The sum of n; and n, is the total observations coming from the
solution; therefore, we expect this number to be as close to N as possible. However, the
errors from sequencing or alignment bring in unexpected reads that do not fit in any
two haplotypes. To handle these potential errors, we introduce the third number (n5)

to take care of the unexpected reads. Let P; and P, be the likelihoods of the two haplotypes,
and P; be the likelihood of the unexpected observations. We define the multinomial score,
MS, as the log, value of the possibility that the solution satisfies the multinomial
distribution when given the observed reads. A normalizing factor, F, is used to normalize
the effect caused by N. Accordingly, the normalized score, NS, is defined as the value
obtained by subtracting F from MS, and the symbol C in formula means the combination
(a selection of items from a collection) in mathematics.

3 3
N=> nY P=10<P <1 (1)
1 1
MS = Ing(Can Cnszﬂlplﬂlpznzp:sz) (2)
F= 10g2(cx/zcg/2p1N/2p2N/2) (3)
NS =MS —F (4)

Here, we need to consider the effect of the sequencing coverage. Let the term “max
coverage” stand for the largest read count among all pairs in this block and the term
“local coverage” stand for the read count of the two variants of interest. We define the ratio
of local coverage and maximum coverage as c, and use it to adjust the inflection point of
the sigmoid function. In the end, we define CS as shown below, which is actually an
adjusted value of NS.

Local coverage
C=——"—"7"—/—“""

(5)
max coverage
o
Slngld(C) = m (6)
CS = log, (sigmoid(c) x NS) (7)

The meaning of CS is as follows. In diploid organisms, ideally, reads should only come
from the two haplotypes, and the ratio of the observed read counts from the two haplotypes
should be close to 1:1. However, in real cases, sequencing and alignment errors cause
the cis-allelic appearance to stray from equality. Based on this assumption, HAHap uses a
multinomial distribution to estimate how likely the sequencing reads are sampled following
this distribution. As a result, this score evaluates the confidence with which the reads
on this pair follow the multinomial assumption. We note that there are two preferred
solutions for each pair of the two variants. We choose the higher one as the CS for this pair.
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The metric takes three factors to eliminate possible biases caused by different coverages.
First, the multinomial score is divided by the normalized score, which represents the
perfect non-skewed case of the multinomial distribution. Second, we use a sigmoid
function to capture the difference between a good region and a bad region. Third, we use
the parameter ¢ to adjust the inflection point of the sigmoid function to keep the score
with coverage at ¢/2 unchanged. The method takes the CS to prioritize all pairs of variants
and uses it to pilot the hierarchical assembly. The distance between two variants is
another important clue. We assume that two closer variants are more reliable. Among
pairs with the same score, the method chooses the closer one as the next assembly step.

Local phasing using MEC

The assembly process reduces the search space dramatically. However, it has the drawback
that false inferences could cause serious consequences. Therefore, under certain
conditions, we perform a local MEC-based search. When merging two clusters, it is
possible that the variants from the two clusters are interleaved. A junction is the boundary
between two adjacent variants from different clusters. The method adopts a voting
mechanism in which every read spanning the junctions is recruited to evaluate the two
preferred solutions. The penalty is defined as how many corrections have to be made

on reads in order to be consist with the solution. In the end, the solution with a lower
penalty will be chosen. The local MEC process checks potential corrections for every
read in a block. This step is time-consuming, but fortunately it only executes in local
regions in HAHap. Next, we explain when the local MEC process will be invoked in the
following two sub-sections.

Embedded merging
We defined embedded merging as the case that merges two clusters with multiple
junctions in between adjacent variants. In this situation, HAHap applies a local
MEC-based search instead. One reason is that this kind of situation involves numerous
phasing decisions, which means the algorithm should proceed more carefully. Normally,
closer variants tend to have a higher CS and are usually merged earlier. In this regard,
multiple junctions often happen in the area with erroneous information. In the local
MEC-based search, all reads spanning the junctions are responsible for inferring
haplotypes. We defined the minimum junction number as the threshold for triggering a
local MEC-based search. For example, when the number of minimum junctions is set to
three, the merging with three junctions or more will invoke a local MEC-based search.
There are only two potential solutions for a particular MEC-based search (mating the
two sub-haplotypes from each cluster, respectively). The search only inspects all reads
covering the specified region. On average, the time complexity of the local MEC-based
search is proportional to the read coverage in this area.

Only ambiguous variant pairs remain

We declare singleton pairs or low-coverage pairs as ambiguous variant pairs. A singleton
pair means all reads on this pair only support one haplotype in both preferred solutions.
Low-coverage pairs indicate that the count of reads spanning this pair is below the
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Figure 3 An example of the proposed hierarchical assembly. F; is a fragment (read pair), V; is a
heterozygous variant and CS for confidence score. (A) Initial state; (B) Merging variants 1 and 3 and
updating the score matrix by single-linkage; (C) Merging cluster (1-3) and variant 4; (D) Local
MEC-search: calculating the number of error corrections for the two preferred solutions. For each
sub-figures, the lower panel shows the resolved haplotypes.

Full-size K&l DOT: 10.7717/peerj.5852/fig-3

threshold we defined. By default, HAHap chooses the median among all observations
as the threshold. In both cases, the CSs usually fail to guide the assembly correctly.
Based on the definition of CSs, the score of a singleton is quite small due to the absence of
one haplotype. Similarly, low-coverage pairs provide unreliable CSs. Even though the CSs
of singleton pairs are extremely low, they are observed to provide correct phasing
information with only one haplotype observation. In this regard, when only ambiguous
pair remains, we use singleton pairs earlier than low-coverage pairs during assembly.
Sometimes, there may be too many ambiguous pairs in a single block. In this situation,
the method would be slow. To faster the method, we combine the embedded mergence
with this rule. When encountering ambiguous pairs and the most strict embedded
mergence case (minimum junction number is two), we perform a local MEC-based search.

Examples of choices between heuristic and local MEC-based search
In a single nucleotide polymorphism (SNP)-partitioning graph, the vertex stands for a
variant and an edge links two connected variants. Figure 3 shows a toy demonstration of
phasing, which involves hierarchical assembly in the first two steps and a local MEC-based
search in the last step. In this process, the weights on edges are the CS scores and the
edge with the highest CS in this step is used connect the next pair of variants or variant
clusters. In summary, HAHap designs a metric for conducting hierarchical assembly
heuristically and switches to MEC-based searches in certain situations.
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Full-size K&l DOT: 10.7717/peer;j.5852/fig-4

Here, we further used an example to demonstrate that HAHap performs better than
MEC-based methods in certain situations. In Fig. 4, five types of reads span a block
containing three variants. The example was transformed as a SNP-variant matrix
for the phasing problem. In Fig. 4A, we described how a MEC method proceeds to
find the solution. In Fig. 4B, we showed that HAHap determines the phase between V;
and V, first, and then extended the haplotype to V3. In the end, two methods
predicted different haplotypes. The MEC method assumed that the read type 4 and read
type 5 are incorrect and flipped two entries to make the matrix with no conflicts in
the resultant haplotypes. On the other hand, HAHap suggested read types 1, 2 and 3 are
incorrect and predicted the result based on read type 4 and read type 5. In other
words, the MEC-method considers the exact number of errors, while HAHap cares more
about the ratio of the observed read counts from the two haplotypes. We managed
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to validate which method is better in both real data and simulated data in the
next section.

EXPERIMENTAL RESULTS

We evaluated real and simulated datasets. WhatsHap and HapCut2 are two representative
MEC-based tools for phasing problems (Chaisson et al., 2018; Sedlazeck et al., 2018).
We compared HAHap with MEC-based tools to reveal that the proposed idea to

reduce the search space and remove noise is beneficial to phasing. In HAHap, the
likelihood of P; and P, were 0.49, and the minimum number of junctions for triggering
MEC-local search was three as default. The other two programs were executed using
default parameters.

Evaluation measurement

Here, we introduce two concepts, “variant needing to be phased” and “phased variant”.
We define a variant needing to be phased as all variants except the left-most variant

in its block. For example, when a block contains seven variants, the first variant does not
need to be phased, and only six phasing decisions remain. On the other hand, the term
“phased variants” is how many variants are indeed phased by a tool. If a locus is too
difficult to phase, the algorithm could leave it as undecided. We use number_of_variants to
stand for the first concept (“variant needing to be phased”) and number_phased for

the second one (“phased variant”). For convenience, we used the term “case” to refer a
variant block in the phasing problem. This study used two measurements, phasing

error rate and perfect ratio, for evaluating the accuracy of the phasing algorithms.
Additionally, we incorporated a measurement, quality adjusted N50 (QANS50), to evaluate
the average effective length of the properly phased blocks.

For each block, the first predicted haplotype is always a mosaic of the two true
haplotypes, and the second predicted haplotype is exactly the complement of the first one,
due to only considering heterozygous sites. In this regard, the switch error is defined as the
case where a swap event between two haplotypes happens. However, when two switch
errors are adjacent, it is treated as one flip error instead. We used flip_error and
switch_error to, respectively, represent the total number of flip errors and switch errors in a
block. The phasing error rate is defined as the sum of the switch and flip errors divided by
the number of phased variants.

flip_error + switch_error

8
number_of _phased ®)

Phasing error rate =
The perfect ratio is the ratio of the error-free phasing cases over the total phasing cases.
We considered it as the true positive rate in this study:

number_of _error_free_case

(9)

Perfect ratio =
number_of _case

Additionally, we used QANS50 to evaluate the completeness and quality of the
predicated haplotype. This measure is calculated as follows: (1) breaking each haplotype
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block into the longest possible sub-blocks where no switch error inside; (2) calculating the
distance from the first phased variant to the last phased variant for each sub-block;

(3) multiplying the distance of each sub-block by the proportion of phased variants inside
the sub-block; and (4) calculating the N50 of the distance set revised in step (3).

Evaluation using real data
The GIAB hosted by the National Institute of Standards and Technology has characterized
seven individuals using 11 different technologies (Zook et al., 2014). This study focused
on the Ashkenazim trio, consisting of three related individuals: NA24143 (mother),
NA24119 (father) and NA24385 (son). The NovoAlign BAM files of 2 x 250 paired-end
reads with coverage around 40x to 50x produced by Illumina HiSeq were downloaded
from GIAB and used as input for phasing. GIAB also provides the haplotypes of the
Ashkenazim trio predicted by 10x Genomics. The 10x GemCode Technology creates a
unique reagent delivery system that partitions long DNA molecules (including >100 kb)
and prepares sequencing libraries in parallel such that all fragments produced within a
partition share a common barcode. By this barcoding technique and combined with
a proprietary data analysis tool called Long Ranger software (v2.1), the prediction could
be more reliable and large-scale than other experimental phasing. This study adopted
the 10x Genomics prediction as the answer for haplotyping. This study considered all
bi-allelic SNPs on chromosomes 1-22, resulting in 5,342,998 SNPs in the mother,
5,220,679 in the father and 4,931,224 in the son. We only considered heterozygous
variants, resulting in 3,465,217 heterozygous variants in the mother, 3,406,189 in the father
and 3,108,937 in the son. Following the standard pipeline, phasing after variant calling,
we used GATK HaplotypeCaller (v3.6) as the variant caller to forecast the variants, which
identified the heterozygous loci for phasing tools. We took the intersection of the
predictions from 10x Genomics and the variant calling results from GATK as the ground
truth to make sure the interested variants are indeed covered by the raw reads. Finally, in
the answer set of real data experiment, there are 2,240,300 heterozygous variants in the
mother, 2,174,189 in the father and 2,225,891 in the son, which are considered
detectable in the Illumina BAM files. Each tool has unique features for identifying variant
blocks, for example, different mapping quality cutoffs and re-alignment procedures, so that
each tool classifies distinct variant blocks with different numbers of variants inside.
To have a fair comparison, we used all reads without filtering to recognize the original
distribution of the block sizes (defined as the number of heterozygous variants in a block).
The blocks with sizes less than 20 account for 99% (Table S1) of the cases. Since the
challenge of phasing is on the larger blocks, we emphasized our investigation of cases
containing variants more than 20.

We discussed the perfect ratios first. Among the blocks with sizes more than 20,
we identified 12,784 cases in the BAM files before read filtering and took this number
as the original case number. In this condition, HAHap successfully identified more
error-free phasing cases (12,191 perfect cases; true positives) than WhatsHap
(11,712 cases) and HapCut2 (12,125 cases). Table 1 and Table S1 listed the results for all
cases, and Table 2 highlights the results for case sizes larger than 20. To investigate the

Lin et al. (2018), PeerdJ, DOI 10.7717/peerj.5852 12/26


http://dx.doi.org/10.7717/peerj.5852/supp-1
http://dx.doi.org/10.7717/peerj.5852/supp-1
http://dx.doi.org/10.7717/peerj.5852
https://peerj.com/

Peer/

Table 1 Evaluation results of all the cases in real datasets.

Method Perfect ratio (%) Phasing error rate (%)
HAHap 99.39 (1,277,260/1,285,153) 0.2293 (8,646/3,771,159)
WhatsHap 99.15 (1,272,347/1,283,302) 0.3169 (10,955/3,774,198)
HapCut2 99.35 (1,276,857/1,285,092) 0.2503 (9,440/3,771,022)

Table 2 Evaluation results of the cases with size >20 in real datasets.

Method Perfect ratio (%) Phasing error rate (%)
HAHap 95.36 (12,191/12,784) 0.2283 (1,056/462,542)
WhatsHap 91.14 (11,712/12,851) 0.5105 (2,405/471,133)
HapCut2 94.87 (12,125/12,780) 0.2992 (1,384/462,564)
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performance relative to block sizes, the true positive rate across different block size is
shown in Fig. 5. This reveals that HAHap outperformed the others in all categories
of block sizes.

Next, we compared the phasing error rates between tools. HAHap performed better
(0.228%) in this measurement than WhatsHap (0.511%) and HapCut2 (0.299%).

Regarding the block size, HAHap consistently outperformed the others across categories.

The results are shown in Fig. 6.
We used scatter plots to visualize the comparison and verified the significance of

differences. In Figs. 7 and 8, we only considered the blocks with sizes larger or equal to 20.

Because the three tools predicted perfectly on most of the cases, we excluded those
cases in the following statistic testing. After filtering out the cases with “phasing error
rate” = 0 on both tools in comparison, only 447 cases remained in the comparison of
HAHap and WhatsHap and 485 cases remained in the comparison of HAHap

and HapCut2. The p-values of Wilcoxon rank sum test are 8.969E-06 when comparing
HAHap vs. WhatsHap and 0.0181 when comparing HAHap vs. HapCut2. Besides,

we observed that the dots below the diagonal lines are much more than the ones above
the diagonal lines in both figures. This revealed that WhatsHap and HapCut2 predicted
more problematic phased variants (having higher error rates) than HAHap.
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The last measure, in terms of completeness and quality, QANS50, showed closer
phasing quality between these three programs (Table 3 and Table S1). The QANS50 for
blocks with a size large than 20 is 4,295 for HAHap and are 4,367 and 4,275 for WhatsHap
and HapCut2, respectively. WhatsHap delivered slightly longer correct haplotypes than
HAHap and HapCut2.

Evaluation using simulated data

We conducted 50 runs of simulation with different parameter settings to investigate the
performance changes under different situations. First, in each simulation, we used
in-house scripts to create simulated SNPs. A genome sequence on chr22, from 16,070,000
to 16,790,000, were chosen as the experimental region, and we created 10 variant
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Table 3 Evaluation of QAN50 on real datasets.

Method All cases The cases with size >20
HAHap 858.86 4,295
WhatsHap 864 4,367
HapCut2 858 4,275

blocks for each of the five block sizes (containing 30, 50, 100, 200 and 500 variants)
on either one of the haplotypes. Second, based on the artificial haplotypes, we simulated
reads in each of the nine conditions to create a unique experiment. The nine conditions
includes three levels of sequencing error rates (0.002, 0.01 and 0.03) and three levels
of read coverages (20, 30 and 40). In total, the evaluation included 450 experiments, that is,
50 replicates for each of the nine sequencing conditions.

Simulated reads were produced by wgsim. The read length of a paired-end read
is 250 bps, and the fragment length follows a normal distribution with a mean of
850 and a standard deviation of 50. We adopted BWA-MEM as the mapper and all the
chromosomes of hg19 as the reference, and then took the mapped files as the input
for phasing.

Here, we discussed the phasing error rates first. Among the nine sequencing
conditions, shown in Fig. 9 and Table 52, HAHap performed better than WhatsHap
in all conditions and outperformed HapCut2 in most conditions (better in seven
conditions and worse in two). The results are consistent with the results in the real
data. On the other hand, when evaluating the performance according to block sizes, as
shown in Fig. 10 and Table S2, HAHap outperformed the other two tools in most of
the block sizes (except the block size 200-500 when compared with HapCut2).
Second, the perfect ratios of these three tools are pretty close to each other (all above 98%),
and the detailed results are shown in Table S2. The number of blocks is small in the
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simulation, causing the QANS50 to be less meaningful. The details of QAN50 comparison
were provided in Table S2.

Evaluation HAHap on sequencing skewness

We investigated the performance of HAHap in one more sequencing condition,
sequencing skewness. Skewness means the sequencing read unbalance on two haplotypes.
After integrating five levels of skewness into the previous simulation design, where nine
conditions were included when considering two factors, we had 45 conditions in this
examination. We did 25 times of simulation and inspected the effect of the three
factors, respectively. Results of evaluating 45 distinct configurations were exhibited in
Table 4 and Table S3.
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Table 4 Evaluation of 45 distinct configurations.

Coverage S-e S-skew P-e (%%) S-skew P-e (%%)
20 0.002 50/50 1.2798 20/80 1.0249
40/60 1.2289 10/90 1.8478
30/70 1.6000
0.01 50/50 1.2414 20/80 3.2312
40/60 1.2223 10/90 14.7022
30/70 0.8636
0.03 50/50 1.2887 20/80 12.1024
40/60 2.3514 10/90 92.9313
30/70 2.6748
30 0.002 50/50 0.9466 20/80 1.4463
40/60 1.1406 10/90 1.5991
30/70 1.1039
0.01 50/50 1.0248 20/80 1.7626
40/60 1.2779 10/90 12.2350
30/70 0.8631
0.03 50/50 1.1988 20/80 4.1918
40/60 0.9830 10/90 62.1470
30/70 2.3778
40 0.002 50/50 0.9885 20/80 1.1197
40/60 1.4362 10/90 1.2762
30/70 0.9022
0.01 50/50 1.3188 20/80 1.3169
40/60 0.6999 10/90 8.2558
30/70 0.8605
0.03 50/50 1.4048 20/80 2.6704
40/60 1.4719 10/90 36.6091
30/70 1.8134
Note:

S-e, sequencing error; S-skew, sequencing skewness; P-e, phasing error rate (%% = 1/10,000).

Under the same conditions, higher coverage and lower sequencing error rates usually
facilitate better phasing performance. Only a few exceptions exist, but the difference is tiny
(e.g., the combination of “coverage = 40”, “error rate = 0.002” and “skewness = 50/50”
is 0.00041% worse than the combination of coverage 30 with the other factors the same).

Skewness is a factor that attracts attention because the proposed CS is based on a
multinomial distribution where the likelihoods of the first two outcomes are presumed to
be equal. In this regard, a skewness that violates the assumption would confuse the
assembly process. Table 4 reveals that with a skewness of 10/90, HAHap performed
much worse than 50/50. We observe that extreme skewness leads to more singletons and
pairs with much lower scores, which eventually damages the method. Fortunately,
HAHap still performs well with skewness of 30/70 (with a phasing error rate close to that
of 50/50), and 10/90 is an extreme case that rarely happens in real sequencing.

In summary, we recommend not using HAHap under conditions of extreme skewness
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where two tools have different predictions.

(Fig. 11) or when the coverage is under 20. Generally speaking, HAHap is a reliable

phasing method under various conditions.

Comparison of number of error corrections

To evaluate the performance in terms of the number of error corrections (ECs) as in
MEC-based approaches, we compared the number of ECs between HAHap and the

other methods using real data. The EC rate is calculated as the percentage of ECs over the
total characters covering reads. We drew each case on a scatter plot, where the y-axis
stands for the EC rate of HAHap, and the x-axis for the tool to be compared.

Both Figs. 11 and 12 use distinct symbols to label which method achieved better phasing
error rates. In comparison between HAHap and WhatsHap (Fig. 12), we investigated
700 cases for which two tools have different predictions. HAHap outperformed
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Table 5 Comparison of weighted ECs rate with WhatsHap.

HAHap performs better (547 cases) WhatsHap performs better (153 cases)
HAHap 0.0628 0.0460
WhatsHap 0.0633 0.0451
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Figure 13 Error correction (EC) rates of HAHap vs. that of HapCut2 on 475 cases of block size 220
where two tools have different predictions. Full-size k] DOL: 10.7717/peerj.5852/fig-13

Table 6 Comparison of weighted ECs rate with HapCut2.

HAHap performs better (300 cases) HapCut2 performs better (175 cases)
HAHap 0.0761 0.0636
HapCut2 0.0680 0.0592

WhatsHap in 547 cases, where the weighted average of the EC rates of HAHap is 0.0628,
and that of WhatsHap is 0.0633. In contrast, WhatsHap surpassed HAHap in 153

cases, where the weighted average EC rate of HAHap is 0.0460, and that of WhatsHap is
0.0451 (Table 5). In the comparison to HapCut2 (Fig. 13), HAHap outperformed
HapCut2 in 300 cases, where the weighted average EC rate is 0.0761, and that of
HapCut2 is 0.0680. HapCut2 surpassed HAHap in 175 cases, where the weighted average
EC rate of HAHap is 0.0636, and that of HapCut2 is 0.0592 (Table 6).

In conclusion, HAHap achieves a competitive level of ECs compared to the other
methods we evaluated, even though it adopted a different approach rather than
minimizing the number of ECs. Although HapCut2 performed better regarding ECs,
HAHap was superior in most cases, which indicates that a lower rate of EC does not
guarantee better performance in terms of phasing error rates.

Application on ABO blood type detection
We cooperated with the Taipei Blood Center of the Taiwan Blood Services Foundation to
demonstrate the possibility of using genotyping and haplotyping to assist traditional
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Table 7 Comparison of running time.

App NA24385 NA24149 NA24143
HAHap 160m13s 182mb54s 195m58s
WhatsHap 463m58s 481m50s 531m20s
HapCut2 52m50s 57m50s 67m48s

blood typing with serology. The ABO blood group system is used to denote the
presence of the A and B antigens on erythrocytes. The ABO blood group can be
characterized into four main types: (1) only A antigen presents, (2) only B antigen
present, (3) both presents and (4) both not present. These four types are classified as
group A, group B, group AB and group O. However, the blood subtypes are much more
complicated. Until today, there were more than 300 of distinct ABO blood subtypes
discovered. In human blood transfusions, a mismatch on the ABO blood type between
the donor and the recipient could cause a serious adverse reaction and may lead to
fatality. Traditionally, the serology, through blood testing, is the standard method to
determine the ABO blood group, but it has limitations with sensitivity, and manual
testing may be biased to each personnel’s judgment. We chose 12 samples from a
previous study (Wu et al., 2018) to demonstrate how variant phasing can help. Five of the
12 samples belonged to the normal ABO type and served as controls here, and the
remaining seven samples are unknown blood types. For these unknown samples, medical
technologists found a discrepancy using ABO serology and suspected them to be ABO
subtypes. Experts in the Taipei Blood Center manually determined the subtypes for
these seven samples. With HAHap, we were able to find the variations, defining

ABO subtypes, and to determine the cis/trans association to the A/B/O alleles

without the help of the experts. Through the well-studied relations between ABO
subtypes and the ABO genomic sequences, accurate haplotypes provided great
enhancement when compared to the original blood type testing accuracy and
therefore improved the safety of blood transfusion. Among these 12 samples, the
subtypes can be determined by using the haplotypes of the 15 variants plus one
additional variant for the specific subtype. These variants are located at exon 6 and exon
7 of the ABO gene. In the end, HAHap predicted both normal and subtype samples
correctly. We provided the predictions in Table S4. Although only a small number of
variants were included in determining the ABO subtypes, these examples revealed the
value of conducting haplotyping using short reads in many precision medicine
applications in the future.

Running time

We measured the running time of the three tools on the NovoAlign-generated BAM
files of the Ashkenazim trio, which were used in the real data evaluation. All experiments
were performed on a 48-core machine with Intel Xeon E5-2683 CPUs and 384 GB of
memory. HAHap took about 3 h to complete whole-genome phasing, which was slower
than HapCut2, but much faster than WhatsHap (Table 7).
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DISCUSSION

This study presents a read-based heuristic method using hierarchical assembly to build
haplotypes. HAHap uses a CS to rank the pairs of heterozygous variants. The idea is that,
for diploid organisms, all reads come from two chromosomes, and the counts of
observations on the two haplotypes tend to be close to each other. The CS follows the
diploid assumption using a multinomial distribution and takes a relatively low
likelihood outcome to represent sequencing and mapping errors. Unlike MEC-based
methods that try to consider all observations, including noise, HAHap attempts to exclude
the influence of the noise via hierarchical assembly.

We compared HAHap with two state-of-the-art tools: an exact MEC-based method,
WhatsHap, and a heuristic MEC-based method, HapCut2. The results demonstrated
that our method achieves better accuracy in all categories of variant blocks on the real dataset
of Illumina sequencing reads and simulated data. The results supported the idea that
correctly removing noise has the potential to deliver better results. On a simulated
dataset, we tested HAHap under different sequencing conditions. We considered
whether the CSs based on the diploid assumption were stable in some extreme cases.
The results revealed that our method handled high sequencing errors and was stable for a
read set with coverage more than 20x. The degree of sequencing skewness encumbered
HAHap the most. However, it still performed well at skewness of 30/70. A level of skewness
worse than 30/70 rarely occurs. As a result, HAHap is a practical solution in most cases.

CONCLUSION

This study proposed a hierarchical assembly-based haplotyping method, HAHap, for
short-read sequencing technologies. Both real and simulated data revealed the value of
HAHap in handling haplotyping for large variant blocks. In the future, moreover,

it might be possible to incorporate HAHap with some other knowledge-based phasing
methods like genetic and statistic phasing to obtain higher accuracy by using valuable
information of related individuals.
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