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Wnt signaling plays a central regulatory role across a remarkably diverse range of
functions during embryonic development, including those involved in the formation of
bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic
differentiation of mesenchymal stem cells. Disruptions in this highly-conserved
and complex system leads to various pathological conditions, including impaired
bone healing, autoimmune diseases and malignant degeneration. For reconstructive
surgeons, critically sized skeletal defects represent a major challenge. These are
frequently associated with significant morbidity in both the recipient and donor sites. The
Wnt pathway is an attractive therapeutic target with the potential to directly modulate
stem cells responsible for skeletal tissue regeneration and promote bone growth,
suggesting that Wnt factors could be used to promote bone healing after trauma. This
review summarizes our current understanding of the essential role of the Wnt pathway
in bone regeneration and repair.

Keywords: Wnt, β-catenin, canonical, non-canonical, regeneration, repair, stem cells, bone

INTRODUCTION

Unlike most tissues in the human body, bone is capable of spontaneous scarless repair throughout
adult life. Skeletal tissue heals following injury by producing new bone with structural geometry
and biomechanical integrity (Tarantino et al., 2011) indistinguishable from the surrounding bone
(Arvidson et al., 2011). The process of fracture healing in the adult skeleton recapitulates embryonic
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bone development and is considered a form of tissue regeneration
(Ferguson et al., 1999). It is a complicated metabolic process,
involving certain regenerative patterns and changes in the
expression of 1000s of genes (Marsell and Einhorn, 2011).
Disruption to this highly coordinated process can result in
delayed or impaired healing (Victoria et al., 2009) leading
to mal-union or ‘Non-union.’ Numerous pre-, intra-, and
post-operative factors have been found to be associated
with impaired bone healing (Panteli et al., 2015), including
excessive periosteal stripping, damage to surrounding soft tissue,
inadequate post-traumatic or post-operative immobilization,
repeated manipulations, and excessive early motion at fracture
sites (Victoria et al., 2009). The exact molecular mechanisms of
delayed fracture healing, however, are unknown.

Fracture repair is regulated by multiple growth factors
(Lieberman et al., 2002). The Wnt signaling pathway has
well-known and central roles in bone development, homeostasis,
as well as bone repair and regeneration following injury (Xu et al.,
2014). Wnt ligands stimulate bone growth, suggesting a strong
regulatory role for canonical Wnt signaling pathway in bone
healing and highlighting its potential as a therapeutic target to
augment fracture healing. A number of molecules able to enhance
the canonical Wnt signaling have shown promise in pre-clinical
and clinical trials (Secreto et al., 2009).

In this paper we review the canonical Wnt signaling pathway
and its role in bone regeneration and repair. A provide an
overview of the Wnt pathway and discuss specific canonical
Wnt-signaling molecules that may offer favorable targets for
facilitating bone repair and regeneration.

FORMATION OF BONE DURING
EMBRYOLOGICAL DEVELOPMENT

In the early stages of embryonic development, the skeleton is
composed of fibrous membrane and hyaline cartilage (Wang
M. et al., 2017). By the sixth or seventh week of embryonic
life ossification (osteogenesis), begins (Rivas and Shapiro, 2002).
Skeletogenesis involves the combined action of numerous genetic
programs governing vasculogenesis (Ingber and Levin, 2007),
and the specification, proliferation, differentiation, programmed
cell death, and remodeling of the ECM. These processes are
underpinned by key molecular pivots (Table 1), and as the
molecular orchestra responsible for bone formation in the
fetus also plays a role in adult skeletal repair (Gadjanski
et al., 2012), these pivots represent potential therapeutic targets
(Table 2).

Together, bone and cartilage comprise skeleton, and are
produced by osteoblasts and chondrocytes, respectively (Regard
et al., 2012). During embryological development, bone is formed
by (1) intramembranous and (2) endochondral ossification
(Figure 1A). During embryonic development skeletal elements
are separate in places to form joints, critical structures for
mobility. Synovial allow for movement between boney fronts, and
form upon the dedifferentiation and flattening of chondrogenic
cells in newly formed cartilage, which creates an interzone
(Figure 1B).

MECHANISMS OF BONE REPAIR AND
REGENERATION

The main function of the skeleton is structural; it creates
a strong, protective, mechanically optimal structure for more
delicate organs and soft tissues (Oryan et al., 2015). Bone tissue
constantly adapts to biomechanical loading and environmental
stress (Ozcivici et al., 2010) through two opposing but synergistic
processes; bone resorption and bone formation (Feng and
McDonald, 2011).

Bone repair following damage is a complex and well-organized
regenerative process initiated in response to injury which
effectively restores skeletal function (Morgan et al., 2014).
Unlike other adult tissues, which generate scar tissue in
response to injury, the skeleton undergoes regenerative healing,
forming new bone indistinguishable from adjacent, uninjured
tissue (Colnot et al., 2003). Fracture healing mimics early
developmental processes and occurs by both direct and indirect
repair (Secreto et al., 2009). Direct (primary) repair is possibly
when the bony fronts of adjacent bones are in close contact.
This is usually the case after surgical treatment with stable
fixation of the injury (Pesce et al., 2009). Osteoprogenitor cells,
osteoclasts, and undifferentiated mesenchymal stem/stromal cells
(MSCs) recruited to the fracture site may also promote bone
formation in a mechanism similar to formation of bone during
intramembranous ossification in the skull and clavicles (Wu et al.,
2016). During indirect (secondary) healing, bone formation is
akin to endochondral ossification, the developmental method
by which long bones are originally made in development
(Long and Ornitz, 2013). Following injury, a soft callus forms
composed of largely inflammatory cells. This callus develops
into an intermediate cartilaginous template which subsequently
undergoes calcification, and ultimately is replaced by woven bone
(Marsell and Einhorn, 2011) and then lamellar bone through
a remodeling process that takes several months before. The
resulting lamellar bone is able to support normal load bearing
(Marsell and Einhorn, 2011). With surgical fixation, temporary
immobilization, or both, most fractures heal after several months.
However, three to 10% of fractures fail to heal and result in the
formation of a fibrous or non-union (Kloen et al., 2012). The rate
of successful fracture healing may be increased, and the time of
healing decreased, by therapies that induce bone formation at the
break point (Hoang-Kim et al., 2009).

Three Wnt Signaling Pathways
Wnt signaling is a pathway that has been conserved over
evolution. It regulates important aspects of cell polarity, cell fate
determination, cell migration, formation of the primary axis,
organogenesis, and the renewal of stem cells during embryonic
development (Komiya and Habas, 2008). Dysregulation of Wnt
signaling has been implicated in many diseases, including
autoimmune diseases and cancer (Shi et al., 2016).

The name Wnt originates from the fusion of wingless,
the segment polarity gene of the Drosophila, and integrated
(int-1), the vertebrate homolog (van Amerongen and Nusse,
2009). Wnt ligands, which are encoded by 19 Wnt genes,
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TABLE 1 | Key molecules and cells involved in bone repair.

Key factors Function In vivo and in vitro effects

Extracellular messengers

IL-1, IL6, TNFα Elicit inflammation and migration In vitro inhibit osteoblastic differentiation, but in vivo TNFα is crucial
for bone repair; role of IL-6 is controversial (anti-or pro-osteogenic
probably, depending on soluble IL-6 receptor)

TGFβ Mitogenic factor, osteogenic factor Can induce osteoblast differentiation at the early stage of immature
cells but can also inhibit osteogenesis in committed cells

BMP2 Osteogenic factor Osteochondrogenic factor; might initiate bone formation and bone
healing and can induce expression of other BMPs

BMP4 Osteogenic factor Osteochondrogenic factor in vivo and in vitro

BMP7 Osteogenic factor Osteogenic factor in vivo and in vitro; active on more mature
osteoblasts

SDF1 Chemotactic factor Allows MSCs homing both in vitro and in vivo

Noggin BMP2, 4, and 7 specific inhibitor Suppresses osteoblastic differentiation

FGFb Angiogenic and mitogenic factor, osteogenic
factor (controversial)

Mutations induce chondrodysplasia and craniosynostosis; can
stimulate Sox9; might be a negative regulator of postnatal

IGF-I, II Mitogenic factors, osteogenic factors Stimulates growth plate formation, endochondrate ossification and
bone formation by osteoblasts

PlGF Angiogenic and vasculogenic factor Induces proliferation and osteogenic differentiation of MSCs; crucial
for vascularization

VEGF Angiogenic and vasculogenic factor Most potent angiogenic and vasculogenic factor; crucial at the
onset of bone formation

PDGF Mitogenic and chemotactic factor Highly mitogenic factor for MSCs and chemotactic for MSCs,
osteoblasts and perivascular cells

Wnts Mitogenic and osteogenic factors Depending on Wnt type, crucial for osteoprogenitor proliferation;
can also inhibit final osteoblast maturation

DKK1 Inhibitor of Wnt signaling Strongly inhibits osteogenesis of MSC and osteoprogenitor cells;
can stimulate terminal maturation

Ihh Osteochondrogenic factor Pivotal role for growth plate and endochondral formation; can inhibit
osteoblast differentiation; might induce PTHrP expression

PTHrP Osteochondrogenic factor Pivotal role for growth plate and endochondral formation; can
induce or inhibit osteogenesis

OPG Decoy receptor of RANKL, inhibition of RANKL Strongly inhibits bone resorption and has a pivotal role in bone
remodeling

RANKL Induces osteoclastogenesis Strongly stimulates bone resorption and has a pivotal role in bone
remodeling

M-CSF Induces osteoclastogenesis Crucial for osteoclastogenesis

Gastrointestinal serotonin Neurotransmitter inhibiting osteogenesis Expressed by enterochromatin cells, inhibits bone formation and
repressed by Lrp5

Intracellular messengers

PKA/CREB Transduce osteogenic signaling Can transduce osteogenic signaling (still controversial); possible
indirect effect

MAPKs Transduce osteogenic signaling by
phosphorylation

Crucial for regulation of intracellular signaling induced by osteogenic
factors (still controversial)

β-Catenin Osteogenic transducer factor Pivotal role in transducing osteogenic signal from Wnt and is
negatively regulated by GSK3β

Runx2 Early osteogenic transcription factor Master regulator of early osteogenesis; runx2 mice died, with no
bone formation

Osterix Late osteogenic transcription factor Master regulator of late osteogenesis, inhibiting chondrogenesis

Dlx5 Osteogenic homeobox protein Induces osteoblast maturation but inhibits osteocyte formation

Msx2 Osteogenic homeobox protein Induces proliferation of immature cells; responses depend on Dlx5
quantity

NF-kB Inflammation transducer factor, inhibits
osteogenesis

Inhibits the differentiation of MSCs and committed osteoblastic cells

Cells

MSCs Origin of osteoblasts Can form bone in vivo and osteoblasts in vitro

Osteoblasts Osteogenic professional cells Generate bone formation

Adipose tissue-derived stromal cells Multipotential cells Can give rise to bone in vivo and in vitro but are less effective than
bone marrow MSCsl
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TABLE 2 | Clinical relevance of key factors in bone repair.

Key factors tested Observations

BMP2 Used for spine fusion, bone non-union and bone
defects; clinically efficient for bone repair and
regeneration; some adverse effects observed
(osteolysis and ectopic bone formation)

BMP7 Used for spine fusion and bone non-union; clinically
efficient for bone repair

PTHrP/PTH Used for osteoporosis; efficient for increasing bone
mass when intermittently administered

Wnt-β-catenin LiCl used as a specific inhibitor of GSK3β to
increase bone mass post-fracture and to diminish
fracture risk Bortezomib, proteasome inhibitor used
in treatment of multiple myeloma (MM); also
increases bone mass Anti-DKK1 monoclonal
antibody (BHQ880) used to inhibit osteolysis in MM
or to increase BMD Anti-sclerostin antibody used to
increase bone mass

RANKL/OPG Targeting RANKL to treat osteoporosis; e.g.,
denosumab (anti-RANKL antibody), which can be
used with biphosphonates

Biphosphonates Widely used for osteoporosis, bone necrosis,
osteogenesis imperfecta and some osteolytic
tumors (MM) (zoledronate, alendronate,
risedronate); some adverse effects noted
(osteonecrosis, inhibition of osteogenesis)

TGFβ Used as a bone non-union marker

Platelet-rich plasma Used in maxillofacial surgery and for bone defects
with or without biomaterials with or without
osteoregenerative cells

MSCs or osteoblasts In vitro-expanded MSCs (or osteoblasts) used for
bone defects, osteonecrosis, immune rejection;
randomized controlled clinical trials are required

are cysteine rich highly hydrophobic proteins, 320–400 amino
acid base pair in length, with an N-terminal signal peptide
for secretion, and a high degree of sequence homology (Wang
et al., 2018). The Wnt ligands bind receptors on the cell surface
of recipient cells to activate the Wnt pathway by triggering
intracellular signaling cascades which orchestrate numerous cell
biological and developmental processes (Willert and Nusse,
2012), important in many physiological settings (MacDonald
et al., 2009). Due to thier hydrophobic natuextrre, Wnt proteins
are found in association with cell membranes and the ECM.
They become palmitoylated in the endoplasmic reticulum
of Wnt-producing cells in the presence of acyltransferase
porcupine (Herr and Basler, 2012). This palmitate modification
is thought to assist in ligand reception on Wnt-responding
cells (Mikels and Nusse, 2006). Modified Wnt proteins are then
transported and secreted in secretory vesicles which are under
control by Wntless/Evi (evenness interrupted) – the multi-pass
transmembrane protein present in the plasma membrane and/or
the Golgi apparatus (Ching and Nusse, 2006). This facilitates
the release of Wnt protein from the cells and thus their
association with the seven-pass transmembrane receptor Frizzled
(Fzd) (Maupin et al., 2013). Fzd is present on the surface of
responding cells and possesses a large extracellular domain,
the ‘cysteine-rich domain’ – made of 10 cysteine residues
in a conserved motif ’(Huang and Klein, 2004). Low-density

lipoprotein receptor-related proteins 5 or 6 (LRP5/6) or ROR
act as co-receptors to Fzd and assist the binding between Wnt
proteins and the receptor (MacDonald and He, 2012). The
co-receptor engaged then determines the downstream effect of
the successful ligand binding, initiating either the non-canonical
or the canonical pathways (Mohammed et al., 2016). As the
Wnt signaling pathway is fundamental during embryological
development, the expression of Wnt proteins and antagonists
happens under strict temporal and spatial regulation (Komiya
and Habas, 2008).

Intracellular Wnt signaling is categorized into least three
main pathways: (1) the β-catenin dependent pathway (also
called the ‘canonical Wnt pathway’); (2) the planar cell polarity
(PCP) pathway; and 3. the Wnt/Ca2+ pathway (Houschyar
et al., 2015). In the canonical Wnt signaling pathway, the
ubiquitination and degradation of β-catenin mediated by
glycogen synthase kinase 3 (GSK-3) is inhibited (Gao et al.,
2014). In the PCP pathway, Wnt signaling activates jun
N-terminal kinase (JNK) and this results in cytoskeletal
rearrangements into an asymmetrical organization, as well as
polarization of cell morphology within the plane of epithelial
sheets (Geetha-Loganathan et al., 2008). This pathway shares
many components of the canonical Wnt pathway including
Frizzled, and the downstream components GTPase Rho and
a kinase cascade including Misshapen, JNK kinase, and JNK
(Habas and Dawid, 2005). GSK-3 and adenomatous polymosis
coli (APC) of the canonical Wnt signaling pathway are also
involved in spindle orientation and asymmetric cell division
of C. elegans and Drosophila (Wu and Herman, 2006). In
the Wnt/Ca2+ pathway, Wnt is involved in the release of
intracellular calcium, possibly via G proteins (Lu and Carson,
2009; Thrasivoulou et al., 2013). This pathway includes activation
of Phospholipase C (PLC), protein kinase C (PKC), and
calmodulin-dependent kinase II, and has a role in Xenopus
ventralization and in the regulation of convergent extension
movements (Kestler and Kuhl, 2008). The canonical Wnt
signaling pathway is the best characterized and is strongly
implicated in skeletal tissue regeneration and repair (Clevers,
2006) (Figure 2).

CANONICAL Wnt SIGNALING PATHWAY

Recent investigation into the canonical Wnt pathway has led to
novel insights into the various levels of canonical Wnt signaling
whichhave refined the model of how this pathway is regulated
(Zhan et al., 2017). At least seven of 19 Wnt proteins (Wnts 1,
2, 3a, 3b, 4, 8, and 10b), can activate this pathway (Chen et al.,
2015). Cannonical Wnt signaling results in the accumulation and
translocation of Beta-catenin (β-catenin), into the nucleus (Enzo
et al., 2015). β-catenin is an adherens junction-associated protein
and functions to: (1) enable cell–cell adhesion; and (2) mediate
intracellular Wnt signaling (Valenta et al., 2012). Intranuclear
accumulation of β-catenin activates transcription factors that
target specific genes that mediate cellular development (Cadigan
and Waterman, 2012). Dysregulation of β-catenin signaling is
implicated in a number of malignancies, suggesting its important

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 January 2019 | Volume 6 | Article 170

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-06-00170 December 24, 2018 Time: 16:31 # 5

Houschyar et al. Wnt and Bone Regeneration

FIGURE 1 | Ways of bone formation. (A) Ossification can occur via endochondral or intramembranous mechanisms. As part of the intramembranous ossification,
mesenchymal cells differentiate directly into osteoblasts and generate bone tissue. Chondrocytes develop from mesenchymal cell differentiation with forming an
intermediate cartilage during endochondral ossification. By mineralizing the matrix, undergoing apoptosis and attracting blood vessels and osteoblasts,
hypertrophying chondrocytes that stop proliferating initiate a centric growth plate. (B) Histologically detectable flattening and gathering of cells that are forming an
interzone, is the first sign of joint formation. This is followed by maturation and remodeling leading to a mature synovial joint. The Wnt signaling pathway is crucial for
controlling almost all aspects of this skeleton formation. Osteoblasts (purple); chondrocytes (blue); osteochondroprogenitor cells (brown).

role in the control of cellular proliferation and/or cell death
(Tarapore et al., 2012). In the absence of Wnt ligands, cytoplasmic
β-catenin is degraded by a multiprotein complex made of Axin,
casein kinase 1 (CK1), APC and GSK3 (Stamos and Weis, 2013).
CK1 and GSK3 phosphorylate β-catenin in the NH2-terminal
degradation box, targeting it for ubiquitination (Stamos and
Weis, 2013). bTRCP1 (a component of ubiquitin E3 ligase) or
bTRCP2 complex the ubiquinate phosphorylated β-catenin for
proteasome-mediated degradation by the β-catenin destruction
complex (Reischl et al., 2007).

The canonical Wnt pathway is activated by binding of specific
Wnt ligands to the Fzs along with the LRP-5/6 co-receptors

(Gao et al., 2014). However, Wnt intracellular signaling is
complex (Sethi and Vidal-Puig, 2010); there are 10 known
human Fz receptors to date (Shevtsov et al., 2006), and although
the role of Fz in acting as a receptor for Wnts has long been
known, the role of LRP-5 and its homolog LRP-6, acting as
co-receptors for Wnt proteins has only recently been established
(MacDonald and He, 2012). The Dickkopf (Dkk) family are
secreted proteins which bind LRP-5 or LRP-6 with high affinity
can therefore directly antagonize canonical Wnt binding
(MacDonald and He, 2012). Upon the successful binding of Wnt
with its receptors, the intracellular protein, Dvl, is activated.
Dvl transduces the membrane signal from the receptor complex
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FIGURE 2 | The Wnt signaling cascades. (A) The canonical Wnt signaling cascade depends on β-catenin, which serves as an intracellular signaling molecule. In
case Wnt is not binding to Fz receptors, β-catenin is sequestered into a destruction complex composed of Axin, CK1α, APC and GSK3β, phosphorylated,
ubiquitinylated and subsequently degraded by the proteasome. Following the binding of Wnt to Fz receptors and LRP5/6 co-receptors, DSH recruits the destruction
complex to the cell membrane by interacting with the receptor complex. This allows newly synthesized β-catenin to accumulate within the cytoplasm and to
translocate to the nucleus. By displacing the transcriptional co-repressor groucho from TCF transcription factors, nuclear β-catenin can activate a gene transcription
program, whereas Wnt-binding antagonists (sFRPs/WIF) and Wnt receptor antagonists (Dkk/SOST) inhibit the canonical cascade. (B) The non-canonical Wnt
signaling cascade is characterized by the activation through phosphorylation cascades, which are themselves activated by specific ligand–receptor interactions,
seemingly without engagement of the LRP co-receptors. Increasing intracellular Ca2+ levels following PLC- and DAG production can trigger many of these
cascades. Subsequently, PKC and CaMKII can activate transcription factors like NFκB and CREB, mediated IP3 and calmodulin is involved in the activation of NFAT.
However, only the Wnt-binding antagonists are able to inhibit the non-canonical cascade. APC, adenomatous polyposis coli; CaMKII, calcium/calmodulin-dependent
protein kinase type II; CK1α, caseine kinase 1-α; CREB, cyclic AMP-responsive element-binding protein; DAG, diacylglycerol; Dkk, Dickkopf; DSH, disheveled;
GSK3β, glycogen synthase kinase-3 β; IP3, inositol 1,4,5-triphosphate; LRP, low-density lipoprotein receptor-related protein; NFAT, nuclear factor of activated T cells;
NFκB, nuclear factor κB; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, phospholipase C; sFRPs, secreted frizzled-related proteins;
SOST, sclerostin; WIF, Wnt inhibitory factor.

(Gonzalez-Sancho et al., 2004) by inhibiting GSK-3b, leading to
the collapse of the multi-protein β-catenin destruction complex
(Medina and Wandosell, 2011). Consequently, β-catenin is
not phosphorylated and targeted for proteasome mediated
degradation and is able to accumulate in the cytoplasm and
translocate to the nucleus. Intranuclear β-catenin then associates
with members of the T cell factor/lymphoid enhancer factor
(TCF/LEF) family and together they activate the transcription of
numerous genes involved in a range of functions, for example
c-myc and cyclin D1 (Ma and Hottiger, 2016).

The first indication of a link between bone biology and
canonical Wnt signaling was discovered more than one decade
ago (Baron and Kneissel, 2013). Mutations in the Wnt signaling
cascade were found to result in excessive bone growth or in
excessive resorption (Yavropoulou and Yovos, 2007): loss of
function mutations of the co-receptor LRP5 causes syndromes
characterized by low bone mass and consequently frequent bone
fractures (Pinzone et al., 2009); alternatively, the gain of function
mutations of LRP5 receptor lead to high bone mass (Balemans
and Van Hul, 2007). These findings are further corroborated by

the association of SNPs of the LRP5 gene with reduced bone
mineral density (BMD) and an elevated risk of osteoporotic
fractures (Schulze et al., 2010). LRP5 and LRP6 also transduce
Wnt signaling in vitro and indicated overlapping roles during
in vivo skeletal patterning (Cui et al., 2011). Although LRP5/6
regulate bone mass, the mechanism by which they do so is yet
to be fully elucidated.

Recent research shows that that gene variation in Wnt-16
has also been linked with decreased BMD and osteoporotic
fractures; Wnt-16 knockout mice have a substantial decrease in
bone thickness (Zheng et al., 2012). The initial phase of skeletal
tissue repair or active bone remodeling is similar to that occurring
during skeletal embryogenesis as skeletal stem cells are shuttled
to either the osteogenic or the chondrogenic route (Bianco and
Robey, 2015). One study reporting on the Wnt involvement in
fracture repair identified upregulation of Wnt5A, β-catenin, FZD,
and numerous target genes following injury (Komatsu et al.,
2010). A later follow-up study demonstrated upregulation of
additional Wnt related markers such as Wnt5B, LRP5, Disheveled
(Dvl), TCF1 and peroxisome proliferator-activated receptor delta
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(PPARD) (Tamura et al., 2010). In contrast, the transcription
factor LEF1 was repressed during the initial phases of bone
repair, and the stage at which maximal bone was formed
(Shahi et al., 2017). However, LEF1 inhibits RUNX2-dependent
activation of OCN in osteoblasts. RUNX2 is the transcription
factor needed for development of the osteoblast. This suggests
that decreased LEF1 expression is necessary for bone repair to
occur (Rahman et al., 2015). As described above, β-catenin has
various roles at different stages of bone repair. In the early phases
following injury, β-catenin regulates the ratio of osteoblasts and
chondrocytes present in the callus which arises from pluripotent
MSCs (Bao et al., 2017). Later in the bone healing process,
β-catenin induces differentiation of osteoblasts and osteoblastic
matrix production (Wang T. et al., 2017). LRP5 and β-catenin
gene expression is upregulated in cells present in the fracture
callus. β-catenin is also expressed in proliferating periosteal
osteoprogenitor cells, chondrocytes, as well as osteoblasts, which
suggests the canonical Wnt signaling pathway is active in both
endochondral and intramembranous ossification (Komatsu et al.,
2010; Lin and Hankenson, 2011; Regard et al., 2012). Recent work
has corroborated this hypothesis; fractured long bones of LRP5
knockout mice are reduced in size, have decreased BMD, and
are biomechanically inferior to the long bones of wild-type (WT)
littermates (Komatsu et al., 2010). Furthermore, administration
of the Wnt antagonist, DKK1 antibody increased the size of the
fractured tissue, as well as its BMD and biomechanical properties.
This illustrates how ablation of the Wnt-LRP5 interaction delays
the reestablishment of biomechanical integrity during bone
repair, and that the canonical Wnt pathway, and specifically the
LRP5 coreceptor, are key components of fracture repair.

The non-canonical Wnt pathways also contribute to
intramembraneous and endochondral ossification following
fracture (Heilmann et al., 2013). Wnt-5a is a non-canonical
Wnt ligand and has been found to play an integral role in
BMP2-mediated osteogenic differentiation (Nemoto et al., 2012).
During osteogenic differentiation, BMPs act to downregulate
Wnt signaling via sclerostin and Dkk-1 (Kamiya et al., 2008;
Zhang et al., 2016b). Absence of the BMP receptor type 1 in
osteoblasts of mice results in decreased levels sclerostin and
Dkk-1 and increased bone mass (Kamiya et al., 2008). The
Wnt-antagonizing effects of BMP led to the suggestion that
Smad1 forms a complex with, and thus sequesters, Dvl (Liu et al.,
2006). However, understanding the balanced interplay between
the BMPs and Wnt ligands are still under intense investigation.

Activation of the Notch pathway inhibits Wnt/β-catenin-
induced osteogenic differentiation (Cao et al., 2017).
Overexpression of the Notch intracellular domain, both
in vivo and in vitro, is associated with reduced Wnt signaling
and impaired osteoblastogenesi (Lin and Hankenson, 2011).
The Hedgehog (Hh) works upstream of the Wnt pathway
sequentially and promote the osteogenic differentiation of MSCs
(James, 2013), and is thus proposed to regulate the early stages
of osteogenic differentiation of MSCs (Beederman et al., 2013).
Inhibition of Wnt signaling reduces Hh-induced osteogenic
activity in both in vitro and in vivo models (Huang et al., 2007).

Wnt signaling is also involved in osteoimmunomodulatory
pathways. Of note, tumor necrosis factor (TNF)-α promotes the

activity Dkk-1 and thus block osteoblast differentiation (Diarra
et al., 2007). Mice overexpressing TNFα have a rheumatoid
arthritis-like destruction of their joints (Baum and Gravallese,
2014). Antibody mediated Dkk-1 neutralization in the TNFα

transgenic mice rescues the joint destruction and even results
in the formation of osteophytes (Diarra et al., 2007). The
balance between skeletal bone formation and resorption and
the interaction between the Wnt pathway and TNFα-induced
inflammatory process, is complex.

There is increasing evidence of crosstalk between the Wnt
pathway and other signaling pathways. For example, Wnt
pathways reciprocally regulate the progranulin growth factor
in frontotemporal dementia (Rosen et al., 2011). Progranulin,
or ‘proepithelin,’ is a newly identified growth factors able to
promote the differentiation of MSCs into chondrocytes as well
as endochondral ossification (Wu et al., 2011). The interplay
between Wnts and progranulin in osteogenesis are a subject of
future investigations.

Wnt signaling found to induce osteogenic differentiation via
changing MicroRNA (miRNA) (Kureel et al., 2018). A number
of different miRNA molecules can promote or inhibit MSC
mediated osteogenic differentiation (Kang and Hata, 2015).
miRNA function to interact with several growth factors and
transcriptional factors such as Runx2 and osterix, at various
stages of osteogenic differentiation (Vimalraj and Selvamurugan,
2013). Several miRNAs specifically interact with Wnt ligands,
with a consequent effect on osteogenesis (Peng et al., 2016);
miR-27 inhibits APC, and thus canonical Wnt signaling
and promotes bone formation (Wang and Xu, 2010), and
miR-335-5p downregulates Dkk-1 and thus promotes osteogenic
differentiation (Zhang et al., 2017).

MESENCHYMAL STEM/STROMAL
CELLS (MSCs) and Wnt SIGNALING IN
BONE DEVELOPMENT AND
HOMEOSTASIS

Mesenchymal stem/stromal cells are multipotent progenitor cells
with that ability to into multiple tissue types, including bone,
cartilage, fat, tendon, and muscle (Klimczak and Kozlowska,
2016). MSC fate and self-renewing potential, transient amplifying
activity is under the influence of the MSC microenvironment
and systemic factors (Crane and Cao, 2014). MSCs populate
various anatomical locations including the bone marrow and
fat, and their impressive differentiation capacity makes them a
favorable therapeutic option (Chanda et al., 2010). The ability
to promote osteogenic differentiation of MSCs, either prior
or post-transplantation, may serve as an effective therapy to
promote bone formation in areas of deficiency (Wagner et al.,
2011). In the 1960s and 1970s, Friedenstein et al. (1970) were
first to describe the rare population (∼0.0001%) of nucleated
cells in the bone marrow which adhere to plastic, form cells
of spindle-shaped morphology, and rise to round-shaped
fibroblastoid colonies (colony-forming unit-fibroblasts or
‘CFU-Fs’). Freidenstein (1990) also demonstrated that the
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bone marrow derived cells have the capacity to differentiate
into bone, cartilage, and/or adipose tissue upon in vivo
transplantation.

The commitment of MSCs down a certain cell lineage
is under the control of a collection of growth factors,
but current understanding of the processes influencing cell
fates is limited (Li et al., 2011). Studies in both mice and
humans show that MSCs can augment bone regeneration
by differentiating into osteoblasts as well as by secreting
osteogenic growth factors and anti-inflammatory cytokines
(Zwingenberger et al., 2013). Granero-Moltó et al. (2009)
transduced MSCs to express firefly luciferase and show that
MSCs migrate toward the fracture site via the CXCR4 receptor
and then promote healing by increasing the cartilage and
bone content of the callus, thus altering its biomechanical
properties. A clinical study reported on the bone-healing
effects of MSCs when used as treatment of defects of long
bones, with beneficial effects still evident 7-years later (Gjerde
et al., 2018). Another clinical study demonstrated the beneficial
effects on injecting MSCs along with bisphosphonates to
treat femoral head core decompression and avascular necrosis
(Gianakos et al., 2016). Injection of an antagonists against
the chemokine CC receptor (CCR1) reveals that this receptors
is an important chemoreceptor directing MSC migration and
osteoblastic differentiation (Gibon et al., 2012). Osteoporosis is
a systemic bone disease largely affecting the elderly population.
Glucocorticoid-induced osteoporosis in rats can be prevented
through systemic administration of allogenic MSCs via their
osteoblastogenic effects. Together these data suggest MSCs
undergo osteoblastic differentiation and promote a more
regenerative inflammatory state, and this may have therapeutic

implications for a number of diseases of the bone (Pajarinen et al.,
2017).

Wnt signaling pathway has a well-established critical role in
promoting osteogenic differentiation of MSCs (Liang et al., 2016).
Additionally, Wnt ligands stimulate osteoblast proliferation and
support osteoblast maturation (Figure 3). The Wnt signaling
pathway is involved in both intramembranous and endochondral
ossification (Zhong et al., 2014). Minear et al. (2010) used
a mouse model to demonstrate that enhanced Wnt signaling
through the delivery of liposomal vesicles containing purified
Wnt-3a protein resulted in accelerated fracture healing due to
increased proliferation and earlier differentiation of skeletal stem
cells/progenitor cells. This highlights the therapeutic potential
of using a biochemical strategy through which proteins can be
used to deliver Wnt ligands, and thus to increase the duration
and strength of the bone healing effect of Wnt signaling.
Previously it has been shown that β-catenin can promote the
progression of MSCs from osteoblastic precursor cells into more
mature osteoblasts and can also suppress the differentiation
of MSCs into adipogenic and chondrogenic lineages (Case
and Rubin, 2010; Ullah et al., 2015). The canonical Wnt
pathway is especially influential in inhibiting the expression of
the major adipogenic inducers, PPARγ and CCAAT/enhancer
binding protein α, to suppress adipogenic differentiation while
upregulating the osteogenic regulators Runx2, Dlx5, and Osterix
(Kang et al., 2007). In addition, non-canonical Wnt signaling
also induces osteogenic differentiation through a different
mechanism (Arnsdorf et al., 2009). The non-canonical ligand
Wnt-5a suppresses PPARγ (Topol et al., 2003) and thus
inactivates chromatins. Although the interplay between these two
independent mechanisms induced by Wnt ligands is still not

FIGURE 3 | Role of Wnt signaling in osteoblasts. (A) Upon binding to its receptor (Frizzled) and co-receptors (LRP5 and LRP6), Wnt activates their signaling
pathway, leading to gene expression (and ultimately protein synthesis and the formation of bone). (B) Wnt antagonists sclerostin and Dkk-1 bind LRP5 and LRP6,
preventing their interaction with Frizzled and resulting in inhibition of gene expression. (C) Loss-of-function mutation in a gene that encodes for a Wnt antagonist
orpharmacological engagement of the antagonist with an inhibitory molecule such as an antibody can lead to inhibition of Wnt antagonism and promote gene
expression.
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totally understood, it is evident that Wnt signaling regulates the
osteogenic differentiation of MSCs (Zhang et al., 2013).

Bone morphogenic proteins (BMPs), mainly BMPs 2, 6,
and 9, are potent growth factors which stimulate MSCs to
undergo differentiation into osteocytes (Scarfi, 2016). There is
substantial crosstalk between BMP and Wnt signaling (Lin and
Hankenson, 2011); different BMPs either enhance or antagonize
Wnt-induced osteogenic differentiation (Itasaki and Hoppler,
2016; Wu et al., 2016), BMP-induced osteogenic differentiation
of MSCs is dependent upon functional Wnt signaling (Tang
et al., 2009), and the Wnt and BMP pathways share common
targets, such as the connective growth tissue factor (Luo et al.,
2004; Si et al., 2006). The osteogenic effects of BMP9 are
enhanced by Wnt-3a and inhibited by β-catenin knockdown or
overexpression of FrzB, which is a Fzd antagonist (Boland et al.,
2004). The ability of BMP2 to induce ectopic bone formation is
antagonized by Dkk-1 overexpression or conditional knockout
of β-catenin (Chen et al., 2007). BMP2 is thought to promote
osteogenic differentiation by increasing the expression of LRP5
and stabilizing β-catenin through the downregulation of β-Trcp
(Zhang et al., 2009).

Overall, the Wnt and additional signaling pathways interact
in an extensive network during osteogenic differentiation
regulated by a variety of molecules. Full characterization of
all these interactions is yet to be completed. Nevertheless, a
better understanding of the intricate trans-pathway crosstalk in
osteogenesis is a necessity in order to develop new therapies able
to act on these signaling pathways for clinical benefit.

OPPORTUNITIES FOR THERAPEUTIC
USE

The ability to control the self-renewal, proliferation, and
differentiation of skeletal stem cells could lead to the possibility
of expanding a small population of adult progenitor cells and
inducing their differentiation in a time sensitive manner to
replenish the function of skeletal and cartilaginous tissue (Kodaka
et al., 2017). Bone regeneration for fracture repair and defect
healing has been a focus of orthopedic surgery (Arvidson et al.,
2011). Internal and external fixation at orthotopic sites is the
standard of care and achieves short-term stabilization, however,
successful long-term stability still requires bone fusion or bone
augmentation (Geisler, 2013). Autogenous bone grafting is a
common technique to repair large-sized skeletal defects (Oryan
et al., 2014), but donor bone is limited in supply and harvesting
can cause significant morbidity at the donor site. Additionally
transplanted grafts are at risk of infection and failure. Allograft
bone may be antigenic and comes with the risk of transmitting
disease (Ishikawa et al., 2010), and biomaterials increase the rate
of infection and often have suboptimal biomechanical properties
(Amini et al., 2012). A cost-effective pharmacologic agent that
can be delivered non-invasively is the ideal therapeutic way to
promote bone repair and regeneration (Zhang et al., 2016a).
Factors BMP-7 (or ‘osteogenic protein 1,’ OP-1) and BMP-2 have
been used with increasing success in preclinical and clinical
trials (Roberts and Rosenbaum, 2012). Supplementation with

these BMPs enhances bone formation, however, they are effective
only in excessive quantities and have short half-lives and thus
short-term bioavailability. Additionally, there are currently no
methods currently able to deliver these proteins allowing their
sustained release, and this has hindered progress to the use of
BMPs in humans (Chen, 2001).

The Wnt pathway is well-characterized and is thus an
attractive therapeutic for bone repair and skeletal homeostasis
(Leucht and Helms, 2015; Gomes et al., 2017). Additionally, a
substantial body of literature has accumulated supporting the role
of Wnt signaling in skeletogenesis and the regulatory functions of
Wnt signaling on stem and skeletal cells (Li et al., 2015). Animal
models of osteoarthritis have implicated Wnt/β-catenin signaling
abnormalities in the changes observed in the cartilage and the
bone, and this suggests that the β-catenin pathway may be a
therapeutic target for osteoarthritis (Kim et al., 2013). Sclerostin,
a SOST gene product expressed by articular chondrocytes
and osteocytes, and inhibits Wnt signaling (Lewiecki, 2014).
Sclerosteosis and van Buchem disease are rare genetic disorders
with low levels of sclerostin and high BMD. Research in animals
suggests that sclerostin may be a potential target for the treatment
of conditions of characterized by low BMD and increased risk
of fractures, such as osteoporosis (Krishnan et al., 2006; Pietrzyk
et al., 2017), and sclerostin is being investigated as a treatment
for post-menopausal osteoporosis (Lewiecki, 2011). Production
of highly specific antibodies to inhibit a ligand or receptor may
help to develop effective therapies that are affordable and can thus
become widely used products Humanized sclerostin monoclonal
antibodies currently being developed include Romosozumab
(AMG 785, CDP-7851; co-developed by Amgen, Thousand
Oaks, CA, United States, and UCB, Belgium) and Blosozumab
(Eli Lilly and Company, Indianapolis, IN, United States).
BPS804 (Novartis, Basel, Switzerland), an antisclerostin agent.
The interactions between Wnt receptors and co-receptors also
represent reasonable therapeutic targets (MacDonald and He,
2012). Dual inhibition of Wnt via the antagonist DKK-1 in
animals treated with sclerostin antibody, results in synergistic
bone formation in rodents and non-human primates, suggesting
that a negative feedback mechanism limits Wnt-driven bone
formation (Florio et al., 2016).

Although there are multiple potential benefits of manipulating
the Wnt signaling cascade, these should be performed with
caution. The Wnt signaling cascade regulates numerous
pathological processes, including the development of cancer
(Van Camp et al., 2014). The transportation of Wnt proteins
to the target is still challenging, since they are hydrophobic
and therefore insoluble in aqueous substances. However, Wnt
has successfully been purified and packaged into liposomes,
circumventing this delivery challenge (Minear et al., 2010).
Incubation of L-Wnt3a can further enhance the survival,
proliferation, and engraftment efficiency of bone marrow cells,
partly by blocking caspase-dependent programmed cell death
(Dhamdhere et al., 2014). Besides, other molecules intervening
on different components of the canonical Wnt signaling pathway
may offer therapeutic potential (Wagner et al., 2011; Zimmerman
et al., 2012). One of these is Lithium, which inhibits GSK3 and
can thereby increase β-catenin, with promising effects on bone
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healing (Freland and Beaulieu, 2012). Further investigation may
reveal additional molecules able to potentiate the bone-healing
effects of the Wnt signaling pathway.

CONCLUSION AND FUTURE
DIRECTIONS

Wnt signaling during bone regeneration and repair involves a
well-organized interaction among various cells and regulatory
factors. The ability of adult bone to scarlessly regenerate
can be impaired resulting in pathological fractures that
become fibrous or fail to unite. The therapeutics developed
to promote bone regeneration have focused on stimulating
MSCs and their osteogenic differentiation. It is increasingly
apparent that Wnt signaling plays a fundamental role during
the embryological development of bone and cartilage and,
in the adult skeleton, regulates bone homeostasis, repair,
and regeneration. The Wnt pathways influence stem cell
proliferation, differentiation, and maintenance. Mutations in
Wnt genes, receptors, and inhibitors can have detrimental
effects on bone formation and turnover, and can result in
skeletal abnormalities. Recent progress in understanding the

critical roles of Wnt/β-catenin signaling in the development
and maturation of skeletal cells has invited opportunities
to develop pharmaceutical agents to treat non-unions and
accelerate fracture repair. Despite the rapid and measurable
accomplishments, the role of the Wnts and Wnt antagonists
on skeletal physiology and regeneration remain to be fully
elucidated. Clinical trials are currently being undertaken to
explore the effects of therapeutic agents manipulating the Wnt
signaling pathway on a number of endocrine and orthopedic
conditions.
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