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Cholestasis is a major hepatic disease in infants, with increasing morbidity in recent
years. Accumulating evidence has revealed that the gut microbiota (GM) is associated
with liver diseases, such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular
carcinoma. However, GM alterations in cholestatic infants and the correlation between
the GM and hepatic functions remain uninvestigated. In this study, 43 cholestatic
infants (IC group) and 37 healthy infants (H group) were enrolled to detect GM
discrepancies using 16S rDNA analysis. The diversity in the bacterial community
was significantly lower in the IC group than that in the H group (P = 0.013). After
determining the top 10 abundant genera of microbes in the IC and H groups,
we found that 13 of them were differentially enriched, including Bifidobacterium,
Bacteroides, Streptococcus, Enterococcus, and Staphylococcus. As compared with
the H group, the IC group had a more complex GM co-occurrence network featured
by three core nodes: Phyllobacterium, Ruminococcus, and Anaerostipes. In addition,
the positive correlation between Faecalibacterium and Erysipelatoclostridium (r = 0.689,
P = 0.000, FDR = 0.009) was not observed in the IC patients. Using the GM
composition, the cholestatic patients can be distinguished from healthy infants with
high accuracy [areas under receiver operating curve (AUC) > 0.97], wherein Rothia,
Eggerthella, Phyllobacterium, and Blautia are identified as valuable biomarkers. Using
KEGG annotation, we identified 32 functional categories with significant difference in
enrichment of the GM of IC patients, including IC-enriched functional categories that
were related to lipid metabolism, biodegradation and metabolism of xenobiotics, and
various diseases. In contrast, the number of functions associated with amino acid
metabolism, nucleotide metabolism, and vitamins metabolism was reduced in the
IC patients. We also identified significant correlation between GM composition and
indicators of hepatic function. Megasphaera positively correlated with total bilirubin
(r = 0.455, P = 0.002) and direct bilirubin (r = 0.441, P = 0.003), whereas γ-glutamyl
transpeptidase was positively associated with Parasutterella (r = 0.466, P = 0.002) and
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negatively related to Streptococcus (r = −0.450, P = 0.003). This study describes the
GM characteristics in the cholestatic infants, illustrates the association between the GM
components and the hepatic function, and provides a solid theoretical basis for GM
intervention for the treatment of infantile cholestasis.

Keywords: infantile cholestasis, 16S rRNA, hepatic function, bacterial biomarkers, co-abundance network

INTRODUCTION

Cholestasis is a major hepatic disease in infants, with increasing
incidence, with nearly one in every 2,500 individuals being
affected (Fischler and Lamireau, 2014). Numerous studies have
reported that infantile cholestasis (IC) can be caused by infection
of the liver (e.g., hepatitis A, B, and C viral infection, Epstein-Barr
virus infection, and cytomegalovirus infection) (Delemos and
Friedman, 2013; Fawaz et al., 2017), abnormal structure of the
biliary tract (e.g., biliary atresia and choledochal cyst) (Hoerning
et al., 2014; Fawaz et al., 2017), hereditary diseases (e.g.,
Alagille syndrome, progressive familial intrahepatic cholestasis,
and Aagenaes syndrome) (Hartley et al., 2013; Fawaz et al., 2017),
and metabolic disorders [e.g., abnormal amino acid metabolism
(Reichardt and Woo, 1991), abnormal carbohydrate metabolism
(Phaneuf et al., 1991), and abnormal lipid metabolism (Vance,
2006)]. This disease can further injure hepatocytes, leading to
hyperbilirubinemia (Brumbaugh and Mack, 2012), cirrhosis (Li
et al., 2017) and may be fatal. As a key feature of IC, bile acids
(BAs) closely interact with gut microbiota (GM) through the
gut-liver axis (Li et al., 2017; Tripathi et al., 2018).

Previous research indicates that the GM participates in BA
enterohepatic circulation and affects the secretion of BAs (Long
et al., 2017; Tripathi et al., 2018). Bile salt hydrolases (BSH)
are enzymes derived from the GM, which metabolize primary
BAs into secondary BAs that, in turn, activate the synthesis of
primary BAs through farnesoid X-activated receptor (FXR) and G
protein-coupled BA receptor 1 (TGR5) in enterocytes (Long et al.,
2017; Schneider et al., 2018). BAs also affect GM composition by
controlling the PH of the gut environment, repressing the growth
of pathogens and maintaining the balance of the GM (Islam et al.,
2011).

To date, the association between GM alteration and hepatic
diseases, including alcoholic fatty liver disease (ALD) (Cassard
and Ciocan, 2017), non-alcoholic fatty liver disease (NAFLD)
(Li et al., 2018), cirrhosis (Chen et al., 2011), and hepatocellular
carcinoma (HCC) (Garrett, 2015), has been mainly studied in
adults, whereas reports of studies in infants with immature
GM are rare (de Muinck and Trosvik, 2018). Currently, the
characteristics of GM in infants with IC and their association with
hepatic function remain uninvestigated.

In this study, we enrolled a total of 43 IC patients and 37
healthy infants to investigate the roles of GM in the IC patients.
In addition, to characterize the GM of the patients, we aimed
to: (I) evaluate bacterial correlation and their contribution to
hepatic function; (II) identify GM biomarkers for non-invasive
diagnosis of IC; (III) elucidate GM discrepancy among patients
with IC owing to different causes. These findings enhance our
understanding of the pathogenic mechanism of dysbiotic GM,

and provide a solid theoretical basis for GM intervention for the
treatment of IC.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of The Third
Hospital of Hebei Medical University under the registration
number 2017-009-1. All the infants’ parents provided written
informed consent, and volunteered to allow their children to
participate in the investigation for scientific research.

Participant Enrollment
The IC infants in this study were enrolled from the Third
Hospital of Hebei Medical University, Children’s Hospital
of Hebei Province, and Second Hospital of Hebei Medical
University if they satisfied the following criteria: (I) age below
3 years; (II) levels of γ-glutamyl transpeptidase (GGT) were
higher than 40 U/L, or the levels of total bilirubin (TBIL) were
higher than 20 µmol/L (Cholestasis, 2015). In addition, the
patients who met the following criteria were excluded from
the study: (I) If their mother suffered from diabetes, high
blood pressure, or chronic liver disease during the pregnancy;
(II) If their mother had been continually exposed to drugs or
probiotics during pregnancy or lactation; (III) If the patients
suffered from allergic diseases (e.g., food allergy, eczema, and
allergic gastroenteritis); (IV) If the patients had been exposed to
antibiotic, probiotic, or proton pump inhibitors 4 weeks before
fecal sample collection.

Healthy infants were selected from among the subjects if
they passed infantile physical examinations of Third Hospital
of Hebei Medical University and met the following standards:
(I) The candidate should be younger than 3 years old; (II) The
candidate should not have a history of allergic diseases (e.g., food
allergy, eczema, and allergic gastroenteritis); (III) The candidate
should not have had diarrhea 2 weeks prior to the study; (IV)
The candidate should not have been administered any antibiotic,
probiotic, or proton pump inhibitors 4 weeks prior to the study.
Finally, 37 healthy infants (H group) and 43 cholestatic infants
(IC group) were enrolled for the study between December 2016
and January 2018 (Table 1).

Sample Collection
Fresh stools from the IC patients were collected in the morning
after their admission to the hospital, and fresh stools from the
healthy subjects were collected during their physical examination.
The blood samples were collected from the participants, and

Frontiers in Microbiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 2682

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02682 July 23, 2020 Time: 13:26 # 3

Guo et al. GM Characters in IC Patients

TABLE 1 | Background information of participants.

Healthy (n = 37) Infantile cholestasis (n = 43) P-value

Gender 0.967

Male 23 28

Female 14 15

Age (mo) 12.03 ± 8.75 2.25 ± 1.79 0.000

Feeding pattern 0.041

Breastfeeding 25 31

Formula feeding 2 8

Mixed 10 4

Delivery pattern 0.011

Natural delivery 31 29

Cesarean section 6 23

Indicators of hepatic function

TBA (1–10 µmol/L)∗ 5.76 ± 2.43 146.71 ± 217.20 0.000

TBIL (3–20 µmol/L)∗ 8.39 ± 4.38 133.60 ± 86.05 0.000

DBIL (2–6 µmol/L)∗ 3.08 ± 1.16 90.46 ± 56.12 0.000

TP (60–80 g/L)∗ 65.70 ± 4.78 56.01 ± 8.33 0.000

CHOL (0–5.2 mmol/L)∗ 4.31 ± 0.46 3.43 ± 0.96 0.000

ALT (5–40 U/L)∗ 14.30 ± 3.81 284.22 ± 354.20 0.000

AST (5–35 U/L)∗ 24.27 ± 4.13 357.73 ± 467.64 0.000

GGT (7–40 U/L)∗ 16.89 ± 4.43 212.39 ± 180.72 0.000

∗TBA, total bile acids; TBIL, total bilirubin; DBIL, direct bilirubin; TP, total protein; CHOL, total cholesterol; ALT, serum alanine aminotransferase; AST, aspartate
aminotransferase; GGT, γ -glutamyl transpeptidase.

hepatic function was examined using the blood autoanalyzer
(Beckman Coulter AU5800, Brea, CA, United States). The clinical
indices for the assessment of hepatic function consist of total
bile acids (TBA), total bilirubin (TBIL), direct bilirubin (DBIL),
total protein (TP), total cholesterol (CHOL), serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
γ-glutamyl transpeptidase (GGT) (Supplementary Table S1).

DNA Extraction, Library Construction,
and Sequencing
Bacterial DNA was extracted from stools using the E.Z.N.A. R©

Soil DNA Kit (Omega BioTek, Norcross, GA, United States)
according to the manufacturer’s protocols. The V3–V4 region
of the 16S rRNA gene was amplified by primers 338F and
806R, using the PCR kit (TransGenAP221-02, Peking). The
quality of the PCR product was determined (Qubit, Thermo
Fisher Scientific, Singapore), and it was then prepared for library
construction (TruSeq DNA PCR-Free kit, Illumina, San Diego,
CA, United States). Then the eligible libraries were paired-end
sequenced as 300 (nt) reads using the MiSeq platform (Illumina,
San Diego, CA, United States). The raw reads were uploaded
to the NCBI Sequence Read Archive (SRA) Database (Accession
Number: SRP151718).

Taxonomical Annotation
Raw reads were filtered if they contained more than 10 low-
quality (<Q20) bases, or a 15-base adapter contamination owing
to a self-edited program. The paired reads were connected into
tags on the basis of an overlap of at least 50 bases. Then, the tags
were clustered into Operational Taxonomic Units (OTUs) with

97% similarity using the USEARCH (v7.0.1090) program. After
the elimination of the chimeras, the OTUs were aligned to the
RDP 16S rRNA databases (trainset 16/release 11.5) (Cole et al.,
2014) and their corresponding taxonomic positions were defined.
The Shannon index was calculated using the “vegan” package in
R (version 3.4.1).

PERMANOVA Analysis
The impact of physical indices (e.g., gender, age, delivery
pattern, and feeding pattern) on GM distributions was
assessed using Permutational Multivariate Analysis of Variance
(PERMANOVA) (Tang et al., 2016) with 9,999 permutations and
Euclidean distances (package “vegan” in R).

Selection of Biomarkers and Validation
Test
For biomarker identification, a two-step schema was adopted.
First, a random forest model (Liaw and Wiener, 2002) was
constructed for the discrimination between the H and IC groups,
and candidate biomarkers were selected on the basis of the
Gini values and optimal variation numbers (using the R package
“random-Forest”). Second, the GM between the two groups was
compared using the Wilcoxon rank-sum test (using “wilcox.test”
in R). Candidate biomarkers with a significant adjusted difference
(P < 0.05, FDR < 0.05) were selected as final biomarkers for
cholestatic patients.

All the samples were randomized into two sets (one training
set and one testing set). The training set was used to construct
a random forest model and the test set was used to validate
final biomarkers. The accuracy of biomarkers for screening of
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cholestatic infants was estimated using area under the curve
(AUC) values with five repeats (using the R package “pROC”).

Functional Prediction and Enrichment
Gut microbiota functions were predicted on the basis of 16S
rRNA OTUs profiling using PICRUST with default setting
(Langille et al., 2013). KEGG Orthology (KO) abundances were
calculated for each sample, and the abundances of functional
categories on level III of the KEGG database were detected.
The differentially enriched categories between the H group and
the IC group were identified using the Wilcoxon rank-sum test
(P< 0.05). The associations between the KEGG pathways and the
clinical indices were estimated with Spearman coefficient using
“cor” in R.

Statistical Analysis
The Wilcoxon rank-sum test (using “wilcox.test” in R) was
used to detect differentially enriched genera between the H and
IC groups (P < 0.05). The Spearman correlation analysis was
executed on the genus level, and the relationships whose r-values
were higher than 0.6 or lower than −0.6 were retained. The
co-occurrence networks were visualized using the Cytoscape
software (v2.2.0) (Shannon et al., 2003). For the 43 IC patients
and the 37 healthy infants, the relationships between the GM
and eight clinical indices were evaluated using the Spearman
coefficient. The statistical results from the Wilcoxon rank-
sum test and Spearman correlation analysis were adjusted with
the Benjamini and Hochberg method (FDR < 0.05) using
“p.adjust” in R.

RESULTS

Sample Characteristics and Data Output
A total of 37 healthy infants (H group) and 43 cholestatic infants
(IC group) were enrolled for stool sample collection (Table 1).
Among the IC patients, 5 had cholestasis due to cytomegalovirus
hepatitis, 9 had cholestasis due to biliary atresia, and the rest
of the patients were diagnosed without any discernible cause
(Supplementary Table S1). 16S rRNA sequencing of the samples
and the connection of high-quality pair-end reads finally yielded
17,889 ± 5,012 (mean ± SD) tags, which ranged from 4,863
to 25,213. The number of OTUs ranged from 112 to 244 for
the H group and from 54 to 245 for the IC group. After RDP
database alignment, 93 genera of 7 phyla were identified from
the samples, and the feeding pattern of the infants had an
impact on the difference in GM between the H and IC groups
(P = 0.009, PERMANOVA analysis, Supplementary Table S2).
All the samples predominantly showed the following genera:
Bifidobacterium, Bacteroides, Enterococcus, Blautia, Roseburia,
and Faecalibacterium (Figure 1A). Principal component analysis
(PCA) showed that the samples from the IC group clustered
together and were separated from the H group (Figure 1A).
Moreover, the IC patients exhibited a significantly lower diversity
in the bacterial community: the average value of the Shannon
index was 2.222 ± 0.790 for the IC group and 2.669 ± 0.753 for
the H group (P = 0.013, Figure 1B).

IC and H Groups Showed Discrepancy in
GM Structure, and GM Biomarkers Were
Identified for Screening of IC Infants
Among the top 10 abundant genera found in the IC and H
groups, 13 were differentially enriched (Figure 2A). Streptococcus
(10.449 ± 13.479%, P = 0.002, FDR = 0.002), Enterococcus
(8.301 ± 20.546%, P = 0.003, FDR = 0.003), Staphylococcus
(3.520 ± 11.728%, P = 0.000, FDR = 0.000), Megasphaera
(0.443 ± 0.755%, P = 0.018, FDR = 0.018), Phyllobacterium
(1.401 ± 4.770%, P = 0.000, FDR = 0.000), and Megamonas
(0.841 ± 3.248%, P = 0.0124, FDR = 0.013) were found
to be enriched in the IC infants. Conversely, the relative
abundance of Bifidobacterium (14.006 ± 21.753%, P = 0.000,
FDR = 0.000), Bacteroides (5.699 ± 9.514%, P = 0.026,
FDR = 0.026), Blautia (0.788 ± 1.313%, P = 0.000, FDR = 0.000),
Faecalibacterium (2.482 ± 8.204%, P = 0.041, FDR = 0.041),
Roseburia (1.215 ± 2.270%, P = 0.017, FDR = 0.018), Anaerostipes
(0.143 ± 0.296%, P = 0.000, FDR = 0.000), and Collinsella
(0.351 ± 1.412%, P = 0.000, FDR = 0.000) was reduced in the
IC group (Figure 2A).

The GM co-occurrence networks were constructed for the
H and IC groups, respectively, and the cholestatic infants
showed a greater complexity in networks (Figure 2B). For
healthy infants, Ruminococcus was the core node of the
network, and enrichment of Faecalibacterium was positively
associated with Erysipelatoclostridium (r = 0.689, P = 0.000,
FDR = 0.009). Such a correlation was not observed in the IC
group. Instead, the IC group contained three novel positive
correlations between Bacteroides and Ruminococcus (r = 0.611,
P = 0.000, FDR = 0.048), Staphylococcus and Phyllobacterium
(r = 0.672, P = 0.000, FDR = 0.048), Megamonas, and Prevotella
(r = 0.638, P = 0.000, FDR = 0.015) (Figure 2B). Phyllobacterium,
Ruminococcus, and Anaerostipes were the core nodes of co-
occurrence in the network for the IC group.

Using the Random forest classifier, 28 biomarkers were
identified to differentiate IC infants from healthy infants
(Figure 3A) with high accuracy (AUC > 0.97, Figure 3B).
Among them, Rothia (Gini = 4.480), Eggerthella (Gini = 4.399),
Phyllobacterium (Gini = 2.637), and Blautia (Gini = 2.172)
were found to be the four genera with the highest Gini
values, and helped in distinguishing between the two
groups.

GM Functional Categories Were
Differentially Enriched Between the H
and IC Groups
Using KO distributions of GM in all the infants, 32 differentially
enriched KEGG functional modules between the IC and H
groups were identified (Figure 4). The enriched functional
categories in the IC patients included “Lipid metabolism”
(P = 0.000, FDR = 0.000), “Glycan biosynthesis and
metabolism”(P = 0.000, FDR = 0.000), and “Xenobiotics
biodegradation and metabolism” (P = 0.000, FDR = 0.000)
(Figure 4). Contrastingly, the abundance of “Amino acid
metabolism” (P = 0.000, FDR = 0.000), “Nucleotide metabolism”
(P = 0.000, FDR = 0.000), and “Metabolism of cofactors and
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FIGURE 1 | Principal component analysis (PCA) distribution and bacterial diversity in IC and healthy infants. (A) Using PCA analysis, the samples from the IC group
were clustered together, and they were separated from those of the H group. The GM of the participants predominantly included Bacteroides, Bifidobacterium, and
Enterococcus. (B) The diversity in the bacterial community was significantly lower in the IC infants (2.222 ± 0.790) than that in the H group (2.669 ± 0.753)
(P = 0.013).

FIGURE 2 | Discrepancy in GM components and networks between the IC and H groups. (A) A total of 13 taxa are differentially enriched between the IC and H
groups. Streptococcus, Enterococcus, Staphylococcus, Megasphaera, Phyllobacterium, and Megamonas are enriched in the IC infants, whereas the numbers of
Bifidobacterium, Bacteroides, Blautia, Faecalibacterium, Roseburia, Anaerostipes, and Collinsella are lower than those in the H group. One, two, and three asterisks
stand for the P-value lesser than 0.05, 0.01, and 0.001, respectively. (B) The GM co-occurrence network was constructed for the IC and H groups, respectively. The
purple and red edges stand for the positive and negative correlations, respectively. The diameter of the circle is proportional to the relative abundance. The bacterial
network in the IC group is more complicated than that in the H group, and some correlations in the H group are disrupted.
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FIGURE 3 | Gut microbiota (GM) biomarkers help to differentiate between the IC and H groups. (A) Following optimal variation numbers were indicated by random
forest classifiers, 28 GM biomarkers were examined for the IC group as compared with those for the H group. Their Gini values are shown in the picture. (B) The
accuracy of biomarkers was verified using cross-validation, and their AUC values were calculated. The ROC curves were drawn with five repeats by different colors.

FIGURE 4 | Distribution of KEGG level II pathways in the IC and H groups. Relying on the functional classifications of the KEGG database, the enriched pathways
were determined for the IC and H groups, and the functional categories between these two groups were compared. P-values are indicated by asterisks on the top
(one, two, and three asterisks stand for a P-value smaller than 0.05, 0.01, and 0.001, respectively). In addition, level I classification of these KEGG functional
categories is suggested by different colors on the right.

vitamins” (P = 0.000, FDR = 0.000) was reduced, and more
bacterial genes participated in the hosts “Digestive system”
(P = 0.000, FDR = 0.000) and “Excretory system” (P = 0.000,
FDR = 0.000) in the IC group (Figure 4). We also found
that the IC-enriched functional modules were associated
with the occurrence of diseases, including infectious diseases
(P = 0.000, FDR = 0.000), metabolic diseases (P = 0.000,

FDR = 0.000), cardiovascular diseases (P = 0.000, FDR = 0.000),
neurodegenerative diseases (P = 0.000, FDR = 0.000), and even
cancer (P = 0.000, FDR = 0.000). Additionally, the GM of the IC
group showed enrichment in “Signal transduction” (P = 0.000,
FDR = 0.000), “membrane transport” (P = 0.000, FDR = 0.000),
and “Cellular processing and signaling” (P = 0.000, FDR = 0.000)
(Figure 4).
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Taxonomic and Functional Composition
of the GM Were Correlated With Hepatic
Function
Pairwise correlations between GM genera and eight clinical
indicators of hepatic function were estimated in healthy infants
(Figure 5A). AST negatively and positively correlated with
Enterococcus (r = −0.356, P = 0.031) and Parasutterella
(r = −0.330, P = 0.046). Negative associations between GGT
and Acinetobacter (r = −0.458, P = 0.004), AST and Rothia
(r = −0.332, P = 0.045) were also found. In contrast, the
relationships between the GM components and the hepatic
functional indices were also constructed for the 43 cholestatic
infants, and altered associations were observed (Figure 5D).
For instance, Oscillibacter negatively correlated with AST
(r = −0.322, P = 0.0350), whereas it was positively associated
with TP (r = 0.352, P = 0.021). Streptococcus was also negatively
associated with ALT (r = −0.342, P = 0.025) and GGT
(r = −0.450, P = 0.0026). Positive correlations were found

between Megasphaera and indicators of hepatic synthesis [TBIL
(r = 0.455, P = 0.002), and DBIL (r = 0.441, P = 0.003)]. In
addition, Parasutterella positively correlated with GGT (r = 0.466,
P = 0.002).

The associations between the GM functional categories and
the hepatic function were also investigated (Figures 5B,E). For
healthy infants, TBIL positively correlated with “Metabolism
of other amino acids” (r = 0.373, P = 0.023) and “Glycan
biosynthesis and metabolism” (r = 0.413, P = 0.011) (Figure 5B).
TP was negatively associated with the bacterial function
“Replication and repair” (r = −0.351, P = 0.034), and “Signaling
molecules and interaction” (r = −0.349, P = 0.035). In the
IC group, the functional items “Metabolism of terpenoids and
polyketides” and “Energy metabolism” negatively correlated
with TBIL (r = −0.489 and r = −0.515, respectively) and
DBIL (r = −0.486 and r = −0.458, respectively), and both of
them positively correlated with TP (r = 0.350 and r = 0.370,
respectively) (Figure 5E). Positive associations were identified
between “Membrane transport” and indicators of hepatic

FIGURE 5 | Relationships between GM and hepatic function, and associations among indicators of hepatic function. Spearman correlation analysis was performed
between GM components and eight indicators of hepatic function, and the results for the H and IC groups are shown in panels (A,D), respectively. The relationships
between the GM functional categories and the hepatic function are shown for healthy infants (B) and IC patients (E). In these pictures, orange and blue colors stand
for the positive and negative relationships, respectively. One, two, and three asterisks stand for a P-value smaller than 0.05, 0.01, and 0.001, respectively. In panels
(C,F), the significant relationships (r > 0.5 or r < –0.6, P < 0.05) among different indicators of hepatic function are shown for the H and IC groups.
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synthesis [TBIL (r = 0.372, P = 0.005) and DBIL (r = 0.372,
P = 0.014)]. In addition, AST positively correlated with ALT
(r = 0.590, P = 0.000), and TBIL was positively associated with
DBIL (r = 0.672, P = 0.000) (Figures 5C,F).

No Apparent GM Difference Was
Detected Between IC Cohorts With
Different Causes
The IC patients were sorted on the basis of clinical causes for
their condition: biliary atresia (BA-IC cohort) or cytomegalovirus
hepatitis (CMV-IC cohort). These two cohorts exhibited no
significant difference in bacterial diversity (2.259 ± 0.912
and 1.956 ± 0.962 for the BA-IC and CMV-IC cohorts,
respectively, Supplementary Figure S1A). We did not detect
any significant differences in GM composition (Supplementary
Figure S2B).

With decreasing GGT levels, the distribution of the diversity
in the bacterial community, top 5 genera, and hepatic functional
indicators were determined for the 43 IC patients (Figure 6).
Special incidence was found although the GM-liver associations
were illustrated. With low abundance of Bifidobacterium
(0.391%) and Bacteroides (0.181%), the levels of GGT (324U/L)
were found to be high in IC5; however, the concentrations of TBA
(3.2 µmol/L) remained normal (Figure 6).

DISCUSSION

In this study, we mainly elucidated the discrepancy in
GM between the IC patients and the healthy infants.
Between the two groups, we observed lower diversity in the

bacterial community in the IC patients, which is probably
associated with the reduced inflow of BAs (Fischler and
Lamireau, 2014) and GM dysbiosis (Islam et al., 2011).
Although significant differences in age, delivery pattern,
and feeding pattern were detected between the IC and H
groups (P < 0.05), inter-group GM discrepancy was mainly
attributed to the feeding pattern after PERMANOVA analysis
(Supplementary Table S2), and the results also emphasized
the impact of diet on GM components (Sonnenburg et al.,
2016).

Analysis of GM composition showed low proportions
of Bifidobacterium, Bacteroides, and Faecalibacterium in IC
patients. Long et al. (2017) study reported that Bifidobacterium
and Bacteroides could secrete BSH enzymes, which liberate
conjugated bile acids and facilitate BA enterohepatic circulation.
Furthermore, Bifidobacterium (Odenwald and Turner, 2017)
and Faecalibacterium (Miquel et al., 2013) could reinforce the
barrier integrity of epidermal cells (Odenwald and Turner,
2017), and repress systemic inflammation reactions through the
production of SCFAs (Li et al., 2017). The low abundance of
Bifidobacterium and Bacteroides partly explained the high GGT
levels and severe liver injury in IC5. In addition, increased
Streptococcus numbers in IC patients might raise the levels of
TNF-α, IL-6, and IFN-γ, and hence, contribute to systematic
inflammations (Jiang et al., 2015). Similarly, in adult patients
with cholestatic liver disease, the IC patients showed an
increased number of Enterococcus; however, overrepresented
Lactobacillus and Fusobacterium were not found in the
infantile patients (Sabino et al., 2016), which also suggested a
different dysbiotic pattern in infants and adults with related
diseases.

FIGURE 6 | Distribution of GM components and hepatic function in all IC patients. All IC patients were sorted into groups based on decreasing GGT concentrations.
The distribution of bacterial diversity and top 5 genera in each sample is shown on the left. Levels of eight hepatic indicators are indicated by the histograms on the
right.

Frontiers in Microbiology | www.frontiersin.org 8 November 2018 | Volume 9 | Article 2682

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02682 July 23, 2020 Time: 13:26 # 9

Guo et al. GM Characters in IC Patients

Differentiated GM composition in IC patients also contributes
to its unique co-occurrence network. For instance, a novel
positive association between Ruminococcus and Bacteroides was
discovered in the IC patients. As Ruminococcus can generate
ursodeoxycholic acid (UDCA) to remiss cholestasis (Lee et al.,
2013), decreased Bacteroides in IC patients suggest a reduction
in Ruminococcus numbers, which might further aggravate
cholestasis. Another core node for IC patients, Anaerostipes was
found to contribute to host health improvement by producing
SCFAs (Strati et al., 2016), which warranted further investigation
in its potential associations with IC. These results suggest that the
dynamic changes in GM co-occurrence networks in IC infants
correspond to their health status.

Based on GM discrepancy, 28 GM biomarkers were identified
for the diagnosis of IC with high precision. As the major
biomarkers, Eggerthella can produce ω muricholic acid (ωMCA),
which can be processed for deoxycholic acid (DCA) synthesis
(Long et al., 2017), and participates in inflammation and insulin
signaling (Wahlstrom et al., 2016). Therefore, GM biomarkers
provided a promising approach for non-invasive diagnosis of IC.

A functional comparison between the H and IC groups
revealed differential nutrient metabolism in the GM of IC
patients. In the IC patients, more undigested lipids accumulate
in the large intestine upon reduction in levels of BAs (Fischler
and Lamireau, 2014), and become an important energy source for
GM. This hypothesis explained the increase in relative abundance
of lipid metabolic modules in IC patients. In addition, elevated
levels of functional categories in biodegradation of xenobiotics
might be related to the overgrowth of pathogens (Islam et al.,
2011) due to the decrease in influx of BAs (Fischler and
Lamireau, 2014). Previous research suggests that gut pathogens
can be inhibited by BAs through spore germination (Sorg and
Sonenshein, 2010) and by regulating vegetative cells (Buffie
et al., 2015). With a reduction in the influx of BAs, the
increase in number of pathogens might promote toxin secretion,
aggravate GM dysbiosis, and injure the immune system (Abt
et al., 2016), which also explained the increasing risks of
infectious diseases, metabolic diseases, cardiovascular diseases,
and neurodegenerative diseases in IC patients.

Discrepancies in relationships between GM and indicators of
hepatic functions were further seen in IC infants. Megasphaera
disrupts metabolic functions of the liver (suggested by TBIL
and DBIL), via an unknown mechanism (Lv et al., 2016),
which supports their positive correlation in IC patients.
Correlating positively with inflammatory cells, Parasutterella
triggers inflammatory responses (Chen et al., 2018), and
positively correlates with indicators of hepatic injury (suggested
by GGT). In healthy infants, such relationships were not found
as the GM component was shaped by other factors than BAs,
such as diet (Sonnenburg et al., 2016), delivery pattern (Rutayisire
et al., 2016), and ethnicity (Gupta et al., 2017). Without apparent
GM differences among IC patients with different causes for
their condition, we suspect that similar GM alterations are
driven by the reduced influx of BAs (Fischler and Lamireau,
2014). GM intervention can be adopted to ameliorate hepatic
burdens and IC symptoms through the liver-BAs-microbiota
associations.

This study presents data for GM alterations in IC patients,
provides GM biomarkers for IC diagnosis, and describes the
associations between bacterial commensals and hepatic function.
However, there are some limitations to the research: (I) A greater
number of IC patients with different causes for their condition
should be enrolled; (II) GM biomarkers should be validated in
populations of different ethnicities. In further studies, additional
work is required, such as: (I) A large-cohort study needs to be
performed to test the identified biomarkers; (II) Alterations in the
microbiome and metabolite alterations in the GM of IC patients
need to be investigated; (III) Changes in the immune system
and its correlation with GM need be determined. In summary,
this research provides a better understanding of the pathogenesis
of IC, and emphasizes the therapeutic potential of GM in IC
intervention.
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