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ABSTRACT
Background. Prostate cancer (PC) diagnostics and treatment often present a challeng-
ing task due to cancer subtype heterogeneity and differential disease progression in
patient subgroups. Hence, the critical issue is finding a reliable and sensitive diagnostic
and prognostic PCmarker, especially for cases of biopsieswith lowpercentages of cancer
cells. Isoform A of myosin 1C was shown to be expressed in PC cells and responsible
for their invasive properties, however, its feasibility for diagnostic purposes remains to
be elucidated.
Methods. To verify the role of myosin 1C isoform A mRNA expression as a putative
prostate cancer marker we performed RT qPCR normalized by three reference genes
(GAPDH, YWHAZ, HPRT1) on PC3, RWPE-1, LNCaP and 22Rv1 cell lines.Myosin 1C
isoform A detection specificity was confirmed by immunofluorescence staining, cancer
and non-cancer prostate cell lines were immunophenotyped by flow cytometry.
Results. Median normalized mRNA expression level of myosin 1C isoform A in PC
cells (PC3 and 22Rv1) is two orders of magnitude higher compared to RWPE-1 cells,
which functionally correspond to benign prostate cells.Myosin 1C isoformAexpression
allows PC cell detection even at a dilution ratio of 1:1000 cancer to non-cancer cells.
At the protein level, the mean fluorescence intensity of myosin 1C isoform A staining
in PC3 nuclei was only twice as high as in RWPE-1, while the immunophenotypes of
both cell lines were similar (CD44+/CD90-/CD133-/CD57-/CD24+-).
Conclusions. We report a distinct difference in myosin 1C isoform A mRNA levels in
malignant (PC3) and benign (RWPE-1) prostate cell lines and suggest a combination
of three reference genes for accurate data normalization. For the first time we provide
an immunophenotype comparison of RWPE-1 and PC3 cells and demonstrate that
RT qPCR analysis of MYO 1C A using appropriate reference genes is sufficient for PC
detection even in low-abundance cancer specimens.
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INTRODUCTION
Prostate cancer is one of the most frequent cancer types in men and the second most
common factor of cancer-related morbidity in the Western world (Siegel, Miller & Jemal,
2015). Usually, prostate cancer occurs in an indolent form, however some subtypes can be
aggressive and require immediate treatment. Sensitive diagnostic tools are critical for early
metastatic prostate cancer detection, as early diagnosis ensures better clinical outcomes
(Kawachi et al., 2007; Swanson et al., 2006). Multiple screening studies have revealed a
number of potential prostate cancer-specific markers, but their diagnostic feasibility and
prognostic value remain controversial (Esfahani, Ataei & Panjehpour, 2015; Hoogland,
Kweldam & Van Leenders, 2014; Mohammed, 2014; Thompson, 2006). Today the most
common clinical test for prostate cancer is prostate-specific antigen (PSA) level evaluation
(Thompson, 2006), but this method meets severe limitations. First, PSA is detected in
about 50% of benign prostate hyperplasia cases, and PSA-negative cases of prostate cancer
also occur. Second, PSA levels can be altered by different infections of the urinary tract
and by various drug treatments (Barry, 2001; Thompson et al., 2006) and thus cannot be
considered a reliable diagnostic marker.

The novel promising markers that fit the criteria of reliability and sensitivity have been
proposed over the years (Amaro et al., 2014). Among them, a rare isoform of motor protein
myosin 1C named myosin 1C isoform A (Ihnatovych et al., 2012) has been described as a
specific marker of prostate cancer cells (Ihnatovych, Sielski & Hofmann, 2014). In contrast
to isoforms B and C that are ubiquitously expressed in normal tissues, myosin 1C isoformA
is only present at low levels in pancreas, kidney, adrenal gland and a subset of adipose tissues
(Sielski et al., 2014). In cancers, specific elevation of myosin 1C isoform A expression levels
were described for prostate cancer cell lines and for TRAMP murine model that closely
resembles the human prostate cancer pathogenesis (Shappell et al., 2004). Most recently,
this isoform was found to have a function in the motility and secretion stimulating the
invasive properties of metastatic prostate cancer cells (Maly et al., 2017) These data strongly
support a role of myosin 1C isoform A as a putative diagnostic marker for prostate cancer.

One of the most time and cost-effective approaches to myosin 1C isoform A relative
expression assessment in cancer and non-cancer specimens is quantitative polymerase
chain reaction (RT-qPCR). Accurate normalization of qPCR data is a prerequisite that
allows obtaining reliable quantitative data, while biased normalizationmay yield inaccurate
results (Dheda et al., 2005). Several approaches to reference gene choice had been proposed
over the years (Pfaffl et al., 2004; Vandesompele et al., 2002) have significantly improved
data analysis for clinical sample sets (Potashnikova, Gladkikh & Vorobjev, 2015; Schmidt
et al., 2006; Wotschofsky et al., 2011). Various combinations of reference genes, including
ACTB, GAPDH, ALAS-1, HPRT1, RPL13A, SDHA, TBP, and B2M were evaluated for
qPCR data normalization on prostate tissue samples and cell lines (Mori et al., 2008; Tsaur
et al., 2013; Zhao et al., 2018). As a universal combination of reference controls for all
targets and experimental conditions does not exist (Vandesompele et al., 2002), picking the
cell- or tissue-specific set of genes is an essential step for any individual application.
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In this study, we validate the optimal combination of reference genes for myosin 1C
isoform A expression assessment in both normal and cancer prostate cells and define a
limit of detection for myosin 1C isoform AmRNA expression using RTqPCR. Based on the
literature, we selected from the frequently used housekeeping genes a set for quantitative
analysis of myosin 1C isoform A expression in 3 prostate cancer lines (LNCaP, 22Rv1, and
PC3) and RWPE-1 cell line corresponding to benign adult human prostate. Sequentially,
we defined a limit of detection of myosin 1C isoform A mRNA in a mixture of cancer and
non-cancer prostate cells and proved the specificity of myosin 1C isoform A expression
at protein level. Our data strongly support a hypothesis of myosin 1C isoform A being a
specific and sensitive marker of prostate cancer and provide a reliable and cost-effective
method of myosin 1C isoform A assessment in malignant and benign prostate cells.

MATERIAL AND METHODS
Cell lines
One normal prostate epithelial cell line (RWPE-1), prostate cancer cell lines LNCaP,
22Rv1 and PC3, A431 epidermoid carcinoma, A549 lung carcinoma, and non-cancer
3T3 fibroblasts were obtained from American Type Culture Collection (ATCC,
http://www.atcc.org, Manassas, VA, USA). RWPE-1 cells were cultured in DMEM (Paneco,
Russia), with 4.5 g/L glucose, containing 10% FBS (Gibco, Carlsbad, CA, USA), 1%
gentamycin and supplemented with 0.05 mg/ml bovine pituitary extract (BPE) and 5
ng/ml human recombinant epidermal growth factor (EGF). Cancer cell lines and 3T3
fibroblasts were cultured in DMEM/F12 (Paneco, Russia) supplemented with 10% of FBS,
1% gentamycin and L-glutamine. Cells were grown in a humidified atmosphere with 5%
CO2 at 37 ◦C.

RNA extraction and cDNA synthesis
Total RNA extraction was performed with RNeasy Mini Kit (Qiagen, Valencia, CA, USA)
according to the manufacturer’s instructions, RNA samples were treated with DNAse I
(Fermentas). RNAconcentrationsweremeasured onNanophotometer (Implen,Germany),
and RNA purity was confirmed by A260/280 and 260/230 ratios. 1 µg of total RNA was
taken into the reverse transcription reaction with iScript Advanced cDNA synthesis kit
(Bio-Rad, Hercules, CA, USA) according to manufacturer’s protocol.

RT qPCR
Real-time qPCR experiments were performed on CFX96 Touch cycler (Bio-Rad, Hercules,
CA, USA). All samples were processed in triplicate. One sample of cDNA put into each
PCR run served as an inter-run calibrator for uniting data into one experiment. Primer
details are provided in Table S1. All amplicon sequences included at least one exon-exon
junction to avoid DNA amplification. Primers were purchased from Synthol (Russia).
Primer specificity was confirmed by melting curve analysis and detection of products
with predicted length on 1.5% agarose gel electrophoresis. Amplification efficiency E was
calculated as E = [10(−1/slope)−1], using the slope of the semi-log regression plot of
Cq versus log input of cDNA. Each reaction was performed in triplicate. The reaction
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and cycling conditions were performed as described elsewhere (Potashnikova, Gladkikh &
Vorobjev, 2015).

The Ct values were determined for real-time PCR curves by setting the threshold at 5
SD for each run. Relative cDNA quantity was calculated as

Q=Ec(q)min−C(q)n,

where E—PCR efficiency, C(q)n—averaged triplicate C(q) value for each sample,
C(q)min—minimal average C(q) value for the gene in the experimental set.

Results were analyzed using geNorm (Center of Medical Genetics, Ghent University
hospital, geNorm version 3.5, 2002) and NormFinder (Molecular Diagnostic Laboratory,
Department of Clinical Biochemistry, Aarhus University Hospital, Denmark, 2004).

Immunofluorescence
Mouse monoclonal antibody against N-terminal peptide of myosin 1C isoform A was
described in Ihnatovych et al. (2012) (Ihnatovych et al., 2012). For myosin 1C isoform A
visualization, cells were fixed with 4% paraformaldehyde in PBS, pH 7.2, for 15min at 4 ◦C,
washed three times with PBS, permeabilized with 0.1% Triton X100 and 0.1% Tween 20 in
PBS for 1 h at room temperature, stained with first antibodies (1:150 dilution), then with
second anti-mouse antibodies conjugated with Cy2 (Sigma-Aldrich, St. Louis, MO, USA)
(dilution 1:100) and DAPI (Sigma-Aldrich, St. Louis, MO, USA) for nucleus visualization.
Specimens were mounted in Mowiol 488 (Sigma-Aldrich, St. Louis, MO, USA). Fixed cells
were imaged onNikonTiE fluorescentmicroscope under PlanApo 60×/1.4 objective (phase
contrast). Images were recorded byHamamatsu ORCA FLASH2 digital camera, using FITC
(Ex. 450–490 nm; Em. 510–540 nm) and DAPI (Ex. 340–380 nm; Em. 435–485 nm) filter
sets. Preparation conditions and exposure time was kept constant for all specimens used.

Image analysis
Data were analyzed using ImageJ software (NIH, Bethesda, MD, USA). Quantitative
measurements were performed on the unprocessed original 16-bit B/W images. To perform
the analysis of mean fluorescence intensity values, we picked the small image regions of
the same area inside the nucleus, in the cytoplasm and outside the cell (these values were
taken for the signal-to-noise ratio), calculated the average fluorescence intensity values and
performed signal to noise correction. Fluorescent images were processed using ImageJ and
finalized with Adobe Photoshop (Adobe Systems, San Jose, CA, USA) software.

Flow cytometry
PC3 and RWPE-1 cells (at approx. 50% confluence) were detached using trypsin then
consecutively washed with 10% FBS-medium and PBS. Detached cells were stained for
flow cytometry in PBS according to antibody manufacturers’ protocols (15 min at +4 ◦C,
in the dark). Antibody details were as follows: anti-CD44-BV421 (clone BJ10, BioLegend),
anti-CD90-BV510 (clone 5E10, BioLegend), anti-CD133/1-PE (clone AC133, Miltenyi
Biotec), anti-CD57-PerCp-Cy5.5 (clone HNK-1, BioLegend), anti-CD24-APC-H7 (clone
ML5, BD). Cells were washed with PBS and analyzed using a 6-laser FACSAria SORP
instrument (BD Biosciences, USA).
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Median fluorescence intensity (MFI) values were obtained fromFACSDiva 6.1.3 software
for each surface marker under study in the overall PC3 and RWPE-1 cell populations. The
overall cell populations were gated based on light scatter properties and median signal
intensities were exported for them. Immunophenotypes of the model cell lines were
monitored several times throughout cell passaging. Average MFIs and their SDs were
calculated for surface markers from different passage data.

Data analysis
Statistical data and graphs were obtained using GraphPad R© Prism (GraphPad Software,
version 5; San Diego, CA, USA). Data were presented asmedians and ranges or as median±
SEM.Differences between data sets were tested with theMann–WhitneyU test, inter-group
differences with p< 0.05 were reported as significant.

RESULTS
Immunophenotype of prostate cell lines
First, PC3 and RWPE-1 model cell lines were immunophenotyped by flow cytometry. Both
cell lines are characterized as CD44+/CD90-/CD133-/CD57-/CD24+- when subcultured
under passage 8 (Fig. 1).

However, some markers (CD44 and CD24) showed high MFI (Mean fluorescence
intensities) variance between passages in both PC3 and RWPE-1 cell lines. This can be
best illustrated by the temporal heterogeneity of CD44 expression during RWPE-1 early
passages (Fig. S1): here we show an increase in a stem cell marker CD44 expression upon
passage 4. A minor CD133-positive subpopulation appears at passage 8, while CD90
remains absent at all passages.

To access the MFI variance, average MFI values for each marker and their SDs were
calculated for both cell lines based on three immunophenotypes fromdifferent passages. For
PC3 cells they were as follows: CD44MFI= 9489.67± 8605.98, CD90MFI= 172± 43.35,
CD133 MFI = 101.67 ± 34.59, CD57 MFI = 78.67 ± 12.58, CD24 MFI = 136.50 ± 57.28.
The average MFI values for RWPE-1 cells were as follows: CD44MFI= 9567.67± 7871.92,
CD90MFI= 176.33± 95.03, CD133MFI= 137.67± 37.63, CD57MFI= 121.67± 32.32,
CD24 MFI = 142.00 ± 50.91.

Both cancer and non-cancer prostate cell lines exhibited the same set of surface markers,
thus flow cytometry as a sole method was not enough to distinguish prostate cancer cells.
For better evaluation of the differences between cancer and non-cancer cells we employed
RT qPCR.

Optimal reference genes for prostate cell lines
The choice of external reference controls for normalization and qPCR data analysis is
critical in case of low mRNA quantities. Reference genes have to be expressed ubiquitously
in normal andmalignant tissue, and their expression should not be affected by experimental
conditions. The reliable set of reference genes has to include high abundance genes
(that correspond to transcriptional levels of MYO1C A isoform in cancer cells) and low
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Figure 1 Immunophenotypes of the model cell cultures RWPE-1 (A–E) and PC3 (F–J) subcultured un-
der passage 8.

Full-size DOI: 10.7717/peerj.5970/fig-1
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Table 1 Ranking order and best reference genes defined by GeNorm and NormFinder.

GeNorm M value NormFinder SV
(stability value)

YWHAZ 0.52 GAPDH 0.08
GAPDH 0.52 HPRT1 0.11
HPRT1 0.75 YWHAZ 0.13
ACTB 0.78 ACTB 0.27
TBP 1.02 SDHA 0.30
UBC 1.08 TBP 0.32
SDHA 1.22 UBC 0.44
ALAS1 1.38 B2M 0.54
B2M 1.75 ALAS1 0.58
RPL13A 1.98 RPL13A 0.61

abundance genes (that correspond to transcriptional levels ofMYO1C A isoform in normal
prostate). A sufficient number of genes for qPCR data normalization also have to be
estimated.

Initial screening confirmed that all candidate genes were expressed in prostate cell lines.
Raw Cq values of the chosen genes indicate that the list of candidates includes genes with
high (HPRT1), moderate (ACTB, TBP, YWHAZ, RPL13A, B2M, ALAS1) and low (UBC,
SDHA, GAPDH) abundance (Fig. S2). qPCR analysis was verified by the presence of a
single sharp peak on the melting curve and a single product band of predicted size on
agarose gel electrophoresis. For all candidate genes, efficiency values ranged between 0.93
and 1.05 and R2 values ranged between 0.992 and 0.999 (Table S2). We also evaluated the
expression of the candidate reference genes for the cells on different passages and showed
that mRNA expression of candidate genes in RWPE-1 and PC-3 lines did not change at
least for 10 passages, as standard deviation of the normalized cDNA quantity for all genes
did not exceed 0.04 (Table S3). Expression stability of the selected genes was determined
with GeNorm and NormFinder algorithms.

In GeNorm, we ranked the selected genes according to their expression stability (M
value). All candidate genes except for B2M and RPL13A passed the 1.5 stability threshold
value proposed by GeNorm. GeNorm ranking order indicated that YWHAZ/GAPDH pair
had the lowest M value (0.52). HPRT1 and ACTB genes also had stability values below 1
(Table 1). Unlike GeNorm, NormFinder does not evaluate paired variances and estimates
the independent stability values (SV). NormFinder ranking established GAPDH as the
most stable single gene across all cell lines under study (SV = 0.08) and HPRT1 as the
second stable gene with SV = 0.11, while YWHAZ had SV = 0.13 (Table 1).

To estimate the optimal number of genes for qPCR data normalization we employed
pairwise variation analysis proposed by GeNorm. Pairwise variations are defined as SD of
log2-transformed expression ratios of any pair of reference genes required for geometric
mean normalization. As shown in Fig. 2, the lowest V values were for V4/V5 for all cell
lines except LNCaP, V4/V5 was also the lowest for the total set, indicating that addition of
the fourth gene to normalization factor (NF) is unnecessary. Put together, our data imply
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Figure 2 Pairwise variation analysis (Vn/n+1) in GeNorm program to determine the optimal number
of reference genes for qPCR data normalization in prostate cancer cells.

Full-size DOI: 10.7717/peerj.5970/fig-2

that a combination of YWHAZ, GAPDH, and HPRT1 serves best for mRNA expression
analysis in the set of prostate cell lines.

mRNA levels of myosin 1C isoform A in malignant and benign
prostate cell lines
To prove the prostate cancer-associated expression of myosin 1C isoform A we analyzed
its expression in prostate cancer cell lines (PC3, LNCaP, and 22Rv1) and compared it to
non-cancer prostate cell line RWPE-1. We confirmed the previous data of Ihnatovych,
Sielski & Hofmann (2014) and showed that relative normalized cDNA quantity of myosin
1C isoform A in prostate cancer cells is at least two orders of magnitude higher than
in non-cancer prostate cells. Medians of relative normalized cDNA quantity in prostate
cancer cell lines varied from 1.938 (PC3) to 3.426 (22Rv1) compared to 0.037 in RWPE-1
cells. Myosin 1C isoform A was not expressed in normal fibroblasts (3T3 cell line, median
normalized cDNA quantity 0.003) and demonstrated low expression levels in non-prostate
cancers, like A431 epidermoid carcinoma (median mRNA expression 0.022) or A549
human lung carcinoma (median mRNA expression 0.011) (Fig. 3, Table 2). Myosin 1C A
isoform expression for PC3 and RWPE-1 did not change significantly for different passages;
relative normalised quantity of myosin 1C isoform a on the 10th passge was 2.012 for PC3
and 0.045 for RWPE-1, respectively.

To evaluate the detection limit of myosin 1C isoform A with real-time qPCR, we
performed a series of dilutions of PC3 cells by RWPE-1 cells as follows: 1:1, 1:3, 1:10, 1:30,
1:100, 1:300 and 1:1,000 (where one part corresponded to 104 PC3 cells). Normalized
relative cDNA quantity of myosin 1C isoform A varied from 1.478 (1:1 mixture) to 0.078
(1:1,000 mixture) compared to 2.389 for pure PC3 cells and 0.021 for pure RWPE-1 cells
(Fig. 4). Thus, qPCR evaluation of myosin 1C isoform A expression can be considered
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Figure 3 Normalized cDNA quantity of myosin 1C isoform A in cancer and non-cancer cell lines, lines
on the plot represent medians.

Full-size DOI: 10.7717/peerj.5970/fig-3

Table 2 Normalized relative cDNA quantity of myosin 1C A isoform in different cell lines.

RWPE-1 PC-3 LNCaP 22Rv1 3T3 A431 A549

Number of values 3 3 3 3 3 3 3
Minimum 0.01185 1.454 0.2891 2.855 0.0012 0.01455 0.009244
25% percentile 0.01185 1.454 0.2891 2.855 0.0012 0.01455 0.009244
Median 0.03716 1.938 0.3597 3.426 0.00254 0.02255 0.01146
75% percentile 0.0427 2.293 0.4567 7.078 0.005478 0.02766 0.03542
Maximum 0.0427 2.293 0.4567 7.078 0.005478 0.02766 0.03542

a sensitive and selective method for prostate cancer detection, even for low quantities of
cancer cells in the specimen.

Protein expression of myosin 1C isoform A is prostate cancer-specific
To confirm that myosin 1C isoform A is a specific marker of prostate cancer at protein
level, we performed immunofluorescence staining of PC3 and RWPE-1 cells using specific
antibodies against myosin 1C isoform A. In PC3 cells we observed the bright staining of
myosin 1C isoform A throughout the cytoplasm and in the nucleus (Fig. 5A), whereas in
RWPE-1 cells the staining was much weaker, although the protein was also located both in
the nucleus and in the cytoplasm (Fig. 5B). Further staining of A549 cells with the antibody
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Figure 4 Normalized cDNA quantity of myosin 1C isoform A in series of PC3 and RWPE-1 mixtures.
lines on the plot represent medians.

Full-size DOI: 10.7717/peerj.5970/fig-4

against myosin 1C isoform A also revealed a weak signal both in the nucleus and in the
cytoplasm (Fig. S3).
For quantitative evaluation of protein expression, we performed mean fluorescence

intensity calculations for myosin 1C isoform A staining in the nucleus and cytoplasm on
58 PC3 cells and 56 RWPE-1 cells. Median MFI of myosin 1C isoform A staining for nuclei
of PC3 cells was 1749.0 compared to 924.9 in RWPE-1 cells (differences were statistically
significant, p< 0.0001). The differences in cytoplasmic staining of myosin 1C isoform A
were less distinct, median MFI of the cytoplasmic signal was 813.5 for PC3 cells and 602.1
for RWPE-1 cells (differences were statistically significant, p< 0.0001) (Fig. S4).

DISCUSSION
The significance of surface cluster of differentiation (CD) markers in establishing cell
origins and cancer-associated aberrations in prostate tissue is well-known. Markers (such
as CD133, CD44, CD90, CD57 and CD24, etc.) are being widely used in diagnostics by flow
cytometry and immunohistochemistry (Liu, Roudier & True, 2004). In our study CD90
was used as a stromal marker (for both normal and malignant prostate tissue (Liu, Roudier
& True, 2004; True et al., 2010; Zhao & Peehl, 2009), CD57—as luminal cell marker (Liu,
Roudier & True, 2004), CD44 and CD133—as epithelial basal stem cell markers (Iczkowski,
2010; Richardson et al., 2004), and CD24—as prostate epithelial cell maturation marker
(Petkova et al., 2013).
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Figure 5 Immunofluorescent anti myosin 1C isoform A staining of PC3 (A) and RWPE-1 (B) cells.
Full-size DOI: 10.7717/peerj.5970/fig-5

The model prostate cancer cell line PC3 used in our study proved to be CD44+ and
CD133-, as shown by other authors (Pellacani et al., 2011; Steponkiene et al., 2011). It also
is CD90- and CD57- in accord with other published data (Liu, 2000; Liu, Roudier & True,
2004). The data on CD24 expression are controversial as some authors report no CD24 on
PC3 cells (Liu, Roudier & True, 2004) and some show varying levels of this surface marker
(Jaworska & Szliszka, 2017; Liu, 2000). Our instance of PC3 cell line also was partly positive
for CD24 and its level varied at different passages (see ‘Results’).

The model benign prostate cell line RWPE-1 used in our study exhibited the
CD44+/CD90-/CD57-/CD133-/CD24+- immunophenotype similar to PC3 cell line. It
demonstrates gradual elevation of CD44 level after passage 3 and a small subpopulation of
CD133+ positive RWPE-1 cells appears at passage 8. This corresponds to the data published
by other authors (Yun et al., 2016), and means that this cell line should be cautiously used
as a reference one.

The overall phenotype of both PC3 and RWPE-1 cell lines provided in Fig. 1 defines
them as low-differentiated (basal –to transitional) cells of epithelial origin. CD44 shows
the highest temporal expression heterogeneity, depending on passage number while CD24
shows the highest intra-population expression heterogeneity in both cell lines. The obtained
data highlights the problem of immunophenotype shifts in putative prostate cell models

Saidova et al. (2018), PeerJ, DOI 10.7717/peerj.5970 11/18

https://peerj.com
https://doi.org/10.7717/peerj.5970/fig-5
http://dx.doi.org/10.7717/peerj.5970


(both normal andmalignant) upon prolonged subculture. Other properties of such models
may also vary and thus need to be monitored during subculture.

While the morphological phenotype and functional properties of RWPE-1 cells
correspond to normal prostate tissue, its immunophenotype varies from early passages
and final immunophenotypes upon prolonged passaging become similar in normal and
malignant cell models (Bello et al., 1997; Jiang et al., 2010; Roh et al., 2008). Hence, the
need for other markers to correlate with tumorigenic potential of prostate cells is obvious.
We propose to employ qPCR assessment of the novel cancer-related molecules once their
correlation with protein levels has been established.

PCR data normalization using a set of reference genes and different mathematical
algorithms has proved to be a valuable methodology in different types of cancer, including
bladder cancer (Zhang et al., 2017), hepatocellular carcinoma (Liu et al., 2013), uterine
cervical cancer (Tan et al., 2017) and cancer cell lines used for in vitro studies (Jacob et
al., 2013). In all cases one has to follow the MIQE guidelines that describe the minimum
information for publication of PCRdata to provide the consistency between the laboratories
and reproducibility of clinical and scientific results (Bustin et al., 2009).

The choice of reliable reference genes remains a challenging issue even within one tissue,
as it depends on the cell source, application type, and sample heterogeneity. Souza et al.
(2013) proposed GAPDH and SDHA genes as an optimal combination for RT qPCR data
normalization in primary culture of prostate cells, Mori et al. (2008) suggested GAPDH
and ACTB as suitable controls for FFPE-embedded prostate tissue, while HPRT1 and TBP
were the most appropriate genes for prostate cancer metastases into the lymph nodes
(Tsaur et al., 2013), thus confirming a prerequisite analysis of external reference control
prior to evaluation of target gene in prostate cancer cells.

Here we report that a combination of three, but not two genes represents the best
combination for normalization using geometric mean even in homogeneous cell line
samples. Using a set of three reference genes (YWHAZ, GAPDH, andHPRT1), we analyzed
myosin 1C isoform A mRNA expression in a set of cancer and non-cancer cell lines and
confirmed the specificity of its expression in prostate cancer cells. Interestingly, the median
expression of myosin 1C isoform A in LNCaP cells was almost six times lower than in
PC3 cells (Table 2). One possible explanation might be that LNCaP cells are derived from
androgen-dependent prostatic adenocarcinoma (Horoszewicz et al., 1980; Yu et al., 2017)
in contrast to androgen-independent PC3 and 22Rv1 prostate carcinomas. Nevertheless,
these cell lines have many other differences including the derivation site (Horoszewicz et al.,
1980; Kaighn et al., 1979), genomic abnormalilties (Seim et al., 2017) and gene expression
profile (Ravenna et al., 2014), the intrinsic reason of Myosin 1C isoform A downregulation
in LNCaP cells and practical implementation of this finding has to be further evaluated.
Thus, myosin 1C isoform A expression should be further evaluated in a set of clinical
samples of androgen-dependent and androgen-independent prostate cancers. However,
myosin 1C isoform A mRNA is a sensitive and reliable marker of cancer prostate cells, as
it allows to detect even 104 tumor cells in a total mixture of 107 cells. While the difference
in mRNA expression of myosin 1C isoform A between PC3 and RWPE-1 cells was almost
two orders of magnitude (about 50 times), a robust evaluation of differences in protein
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expression revealed that MFI intensity of myosin 1C isoform A (which can be used as a
surrogate comparative value for evaluation of protein expression) in PC3 nuclei is almost
two times higher than in RWPE-1 cells, while differences in MFI for cytoplasmic signal
for the same cells was only 1.35 times. Notably, nucleus/cytoplasm MFI ratio was higher
in PC3 cancer prostate cells compared to RWPE-1 cells (2.14 vs. 1.53) consistent with the
previous data on predominantly nuclear localization of myosin 1C isoform A (Ihnatovych
et al., 2012). Ihnatovych, Sielski & Hofmann (2014) showed that the difference in myosin
1C isoform A protein expression between PC3 and RWPE-1 cells was almost eight times
using the semi-quantitative analysis of Western blot data. An established role of regulatory
processes for protein and mRNA expression (Vogel & Marcotte, 2012) can explain the
absence of the direct correlation for mRNA and protein level for myosin 1C A isoform, as
the half-life time and structural modifications of this protein have to be further elucidated.
Single cell analysis with RNA probes and antibodies could give a more specific insight into
this issue and can be regarded as a future perspective for this field.

Taken together, these data confirm the specificity of myosin 1C isoform A expression
in prostate cancer cells both on mRNA and protein level and strongly suggest RT qPCR as
a method of choice for evaluation of myosin 1C isoform A expression on a set of prostate
tissue samples.
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