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We present an approach to assess antibody CDR-H3 loops according to their dynamic

properties using molecular dynamics simulations. We selected six antibodies in three

pairs differing substantially in their individual promiscuity respectively specificity. For two

pairs of antibodies crystal structures are available in different states of maturation and

used as starting structures for the analyses. For a third pair we chose two antibody CDR

sequences obtained from a synthetic library and predicted the respective structures.

For all three pairs of antibodies we performed metadynamics simulations to overcome

the limitations in conformational sampling imposed by high energy barriers. Additionally,

we used classic molecular dynamics simulations to describe nano- to microsecond

flexibility and to estimate up tomillisecond kinetics of captured conformational transitions.

The methodology represents the antibodies as conformational ensembles and allows

comprehensive analysis of structural diversity, thermodynamics of conformations and

kinetics of structural transitions. Referring to the concept of conformational selection

we investigated the link between promiscuity and flexibility of the antibodies’ binding

interfaces. The obtained detailed characterization of the binding interface clearly indicates

a link between structural flexibility and binding promiscuity for this set of antibodies.

Keywords: antibodies, CDR-H3 loop, affinity maturation, molecular dynamics, enhanced sampling, conformational

selection, markov-state model

INTRODUCTION

Antibodies have emerged as essential therapeutic agents in the treatment of cancer and various
other diseases (1). The importance of therapeutic antibodies for the pharmaceutical industry has
increased substantially in the past decade (2). A key challenge in antibody design is tailoring
their binding specificity on the one hand to allow cross-species toxicity tests and on the other
hand to avoid off-target effects (3). The specificity of an antibody, mainly influenced by the
complementary determining region (CDR), plays a key role in antigen recognition and binding
processes (4). The CDR is composed of six hypervariable loops, three formed by each chain, that
shape the paratope, i.e., the antigen binding site of the antibody. Five of the six loops usually adopt
well-characterized canonical conformations, which facilitates reliable structure prediction based on
sequence information (5–8). Yet, the CDR-H3 loop shows substantial variability in sequence and
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structure and hence cannot be described by a canonical structure
model (9, 10). Even compared to other protein loop structures,
the CDR-H3 clearly stands out with its significantly higher
structural diversity (11). Thus, computational modeling of the
CDR-H3 loop is particularly challenging and optimized strategies
are required to predict accurate structures (9, 12). A clear
characterization of structure and dynamics of an antibody
is essential to understand the antigen binding process, the
involved conformational changes and the associated biological
implications (13). Historically, protein-protein interactions such
as antibody-antigen binding were assumed to follow the “lock
and key”(14) mechanism suggesting a rigid complementary
paratope and a rigid antigen (15). However, this “lock and key”
hypothesis has been challenged by the “induced fit”(16) and
the “conformational selection”(17) concepts. While the “induced
fit” binding paradigm argues for structural rearrangements as
response to the binding process, “conformational selection”
follows the idea of an ensemble of pre-existing conformational
states with varying probabilities from which a binding competent
state is selected (17–19).

Both mechanisms have been discussed in current literature
to explain the binding preferences of polyreactive antibodies
(19, 20). Regardless of the underlying binding mechanism, it
has been shown that the binding site of polyreactive monoclonal
antibodies, which bind with low affinity to various structurally
unrelated antigens, is inherently more flexible compared to
high-affinity antibodies (21, 22). Depending on the antigen
present, polyreactive antibodies have been observed to display
varying conformations of their binding site, reflected by a higher
conformational diversity in the CDR (4). Especially the CDR-
H3 loop is known to have a substantial impact on the shape
of the paratope and thus strongly influences antigen binding
(23). However, the role of the CDR-H3 loop for specificity in
antigen-recognition is still debated (24).

The correlation between rigidification and enhanced
specificity is often discussed in terms of conformational selection
(17, 25). A direct connection between promiscuity and flexibility
can be observed in the affinity maturation process (26). In
this process antibodies with increased affinity for antigens are
produced by activated B-cells during the immune response.
Repeated exposure of the same antigen leads to mutations in the
sequence that predominantly cause a rigidification of the antigen
binding site (4, 26). However, in other cases it has been reported
that affinity maturation does not necessarily lead to rigidification
of the CDR-H3 loop (27).

In this study we test the hypothesis that promiscuity might
arise from a multitude of weakly populated conformations, each
of which is able to bind different binding partners. Rigidification
shifts the probability toward a small number of states and
hence reduces the amount of possible binding partners. This
would mean that affinity maturation disfavors sequences that are

Abbreviations: CDR, Complementary determining region; Fab, Antigen binding
fragment; Fv, Variable domain; KIC, Kinematic loop closure algorithm; MD,
Molecular dynamics; MSM, Markov-state model; PCA, Principle component
analysis; PCCA, Perron-cluster cluster analysis; RMSD, Root mean square
deviation; tICA, Time-lagged independent component analysis.

intrinsically flexible and promotes sequences that lead to a single
conformation (28). We present three examples with and without
prior structural information where affinity maturation/reduced
promiscuity leads to a significant rigidification of the CDR-H3
loop (29–31). We chose the antibody pairs with the focus on
the availability of experimental data (information on binding
properties and structural information) and on the CDR-H3 loop
length. We aimed for different lengths of the CDR-H3 loop,
nevertheless preferring rather short loops (<15 residues). The
first pair of antibodies is the ferrochelatase antibody 7G12,
which catalyzes the porphyrin metalation. In complex with
mesoporphyrin the 7G12 antibody forms the Michaelis complex.
The affinity matured 7G12 antibody compared with the naïve
antibody shows the molecular mechanism how the immune
system processes the binding energy to catalyze this metalation
reaction (29). The second pair of antibodies shows antibodies
in different stages of affinity maturation, both evolved from the
same germline precursor to bind the chromophoric antigen 8-
methoxypyrene-1,2,6-trisulfonate (MTPS). The antibodies have
been characterized by their sequence, molecular recognition
and with three-pulse photon echo peak shift spectroscopy to
identify the influence of mutations on plasticity, specificity and
anelasticity (30). The third antibody pair was chosen from a
synthetic library. Birtalan et al. (31) analyzed the contributions
of four amino acids Arg, Tyr, Gly, and Ser to affinity and
specificity in antigen recognition using synthetic antibody
libraries without providing further structural characterization.
The available antibodies were tested against a set of eight antigens
and we chose a pair of sequences with the same CDR-H3 loop
length (10 residues) showing substantial differences in their
affinities to the eight antigens.

METHODS

First Antibody Pair: Affinity Maturation of
Germline Antibody 7G12
Crystal structures (PDB codes: 1N7M, 1NGZ, 1NGY, 1NGW)
(29) for the germline antibody 7G12 and the affinity-matured
antibody 7G12 are available in the Protein Data Bank (PDB) (32)
both with and without the antigen (N-methylmesoporphyrine)
bound. The structures of the antibody variable domains (Fvs)
are illustrated in Figure S1. The main structural differences are
located in the CDR-H3 loop of the naïve antibody between the
bound and the free state, which show a Cα-RMSD of 2.3 Å
(Figures S1,S5). The sequences of the naïve and the matured
antibody Fv differ in six amino acid residues, three mutations
in the heavy and the light chain, each. The only mutation in the
CDR-H3 loop is S97M.

Second Antibody Pair: Affinity Maturation
of 6C8 to 8B10
The second pair of systems are the initially matured antibody
6C8 and the further affinity-matured antibody 8B10 (30). Crystal
structures are available in the PDB (PDB codes: 4NJA and 4NJ9).
The initially matured antibody 6C8 is similar to the germline and
differs only in the single mutation I30N in VL. The sequences of
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the Fv of the initially matured 6C8 and of the further matured
antibody 8B10 differ in five amino acid residue mutations, two
in the light chain and three in the heavy chain. The affinity-
matured 8B10 contains the mutation I100S in the CDR-H3 loop.
This additional serine in the CDR-H3 loop forms water-mediated
hydrogen-bonds with the CDR-L3 loop. The crystal structures
(Figure S6) do not show significant differences in the backbone
conformations (Cα-RMSD 1.4 Å), however the sidechains of the
CDR-H3 loop are more stabilized due to the additional hydrogen
bonds in the matured antibody (30).

Third Antibody Pair: Specific Antibody Fab
246 and Promiscuous Antibody Fab 249
To predict the structure of the Fv region of the CDR-sequences
(Fab 246, Fab 249) (31), the program RosettaAntibody (33–35)
was applied. We assume that the structural modeling works
reliably for five of the six CDR loop regions, i.e., those that
can be characterized by canonical structures (3). The CDR
loops that served as templates for the modeling are listed in
Table S1. For the diversification of the CDR-H3 loop we used
the KIC algorithm implemented in Rosetta to generate 100
loop structures (36, 37). The resulting 100 loop conformations
were clustered using a hierarchical clustering algorithm as
implemented in cpptraj applying a distance cutoff criterion of
3.0 Å (38, 39). The applied clustering scheme resulted in 4
clusters. Four structural models of each system with structural
differences in the CDR-H3 loop were used as starting structures
for metadynamics simulations (Figure S11).

Combined Simulation and Analysis
Protocol for All Six Antibodies
For the two pairs of antibodies where crystal structures
were available, those were used as starting structures for
metadynamics simulations. All structures were prepared in
MOE (Molecular Operating Environment) (40) using the
Protonate3D (41) tool. The C-termini of the antibodies were
capped with N-Methylamine (NME). With the tleap tool of
the AmberTools16 (38) package, the two systems were soaked
into cubic water boxes of TIP3P water molecules (42) with
a minimum wall distance to the protein of 10 Å. Parameters
for all antibody simulations were derived from the AMBER
force field 14SB (43). Each system was carefully equilibrated
using a multistep equilibration protocol (44). To achieve an
extensive but efficient exploration of the conformational space,
well-tempered metadynamics simulations were performed using
GROMACS (45), i.e., plumed 2 (46) software package. In
metadynamics simulations a history-dependent bias potential
is built based on Gaussian functions, which are deposited on
the potential energy surface at already sampled conformations
(47). This leads to an accelerated sampling allowing the system
to escape deep energy minima. Well-tempered metadynamics
(48) adapts the height of the Gaussian functions with simulation
time. Various collective variables (CV) have been tested to
achieve a better description of the conformational space. The
most efficient CVs for our systems were found to be linear
combinations of sine and cosine of the ψ torsion angles (49)

of the CDR-H3 and CDR-L3 loops, which were calculated
with functions MATHEVAL and COMBINE implemented in
plumed 2 (46). As discussed previously, the ψ torsion angle
captures conformational transitions comprehensively (50–52).
The decision to include the CDR-L3 loop is based on previously
observed structural correlation of the CDR-L3 and CDR-H3 loop
(53). The height of the Gaussian was determined according to
minimal distortion of the antibody systems, resulting in 10.0
kcal/mol for the antibodies with structural information and 2.0
kcal/mol for the Fab 246 and Fab 249. Gaussian deposition
occurred every 1,000 steps and a biasfactor of 10 was used.
For all 6 antibodies we collected for each starting structure
1 µs by metadynamics simulations. The resulting trajectories
were aligned to the entire Fv and clustered in cpptraj (38, 39)
using the average-linkage hierarchical clustering algorithm. The
Cα-RMSD of the CDR-H3 loop was used as distance metric
and the same cutoff criterion was applied for each pair of
antibodies. The choice of the distance cutoff is optimized to
obtain a broad cluster distribution within Principle Component
Analysis (PCA) space for each system. For the Fab 246 and
Fab 249 antibody pair we chose 200 cluster representatives
each to compensate for the uncertainty introduced by using
modeled structures. The resulting cluster representatives for
all systems were equilibrated and simulated for 100 ns using
classic MD as implemented in the AMBER16 simulation package
(38). Molecular dynamics simulations were performed in an
NpT ensemble using pmemd.cuda (38, 54, 55). Bonds involving
hydrogen atoms were restrained by applying the SHAKE (56)
algorithm, allowing a time step of 2.0 fs. Atmospheric pressure of
the system was preserved by weak coupling to an external bath
using the Berendsen algorithm (57). The Langevin thermostat
(58) was used to maintain the temperature at 300K during
simulations.

The obtained MD trajectories for each system were analyzed
with PCA and the time-lagged independent component analysis
(tICA) (59) of the Cα CDR-H3 loop atoms using the python
library PyEMMA 2 (60) and employing a lag time of 5
ns. tICA can be used as a dimensionality reduction method
and is a technique to find the slowest-relaxing degrees of
freedom. Compared to PCA, which leads to high-variance linear
combinations of the input degrees of freedom, tICA shows
high-autocorrelation linear combinations of the input degrees
of freedom (61, 62). The tICA space was used for clustering to
generate microstates that build the basis for a MSM. The aim of
the Markov-state models is to define kinetically relevant states, to
estimate the transition times between them and to quantify the
probability of the states (63). Thus, kinetics were estimated by
constructing a Markov-state model (63) employing a lag time of
5 ns using PyEMMA 2. We chose the lag time according to the
implied timescale plot, which shows an approximately constant
behavior of the estimated timescales at lag times over 5 ns (64,
65). We used k-means clustering (60) to define 200 microstates
and the PCCA+ algorithm (66) to calculate macrostates and
estimate their according representative structures. PCCA+ is
a spectral clustering method, which discretizes the sampled
conformational space based on the eigenvectors of the transition
matrix.
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RESULTS

Affinity Maturation of Germline Antibody
7G12
We observed a broader conformational ensemble for the
naïve antibody. To visualize the decreased flexibility of
the matured antibody compared to the naïve antibody a
principle component analysis (PCA) of the CDR-H3 loop was
performed (Figure S2). As described in the methods section,
the metadynamics simulations of the bound and free starting
structure were combined and the naïve and matured antibodies
were clustered separately with a hierarchical average linkage
clustering algorithm (38). The distance criterion was defined
with the aim of having representative structures distributed
over the entire sampled conformational space, covering all free
energy minima as well as transition regions in the PCA space
(Figure S2). This strategy resulted in 102 clusters for the naïve

antibody, while it led to only 7 clusters for the matured antibody
with a distance cutoff criterion of 1 Å for both cases. The
resulting cluster representatives were used as starting structures
to seed classic MD simulations of 100 ns length. To obtain
comparable overall simulation times for both antibodies, for each
of the 7 cluster structures of the matured antibody 12 runs of
100 ns MD simulations with different starting velocities were
performed. We performed PCA combining the coordinates of
both systems (Figure 1) and estimated the probability resulting
from the accumulated 10 µs of classic MD simulations. The
analysis clearly depicts that the structural ensemble of the naïve
antibody has several favorable conformations and a broader free
energy surface, while the matured antibody shows only one
narrow and distinct minimum. Figure 1 further illustrates that
the minimum in the combined PCA space observed for the
matured antibody corresponds to one minimum found within
the ensemble of the naïve antibody. In line with the hypothesis

FIGURE 1 | Conformational space of the naïve (A) and the matured (B) 7G12 antibody with the projection of the crystal structures as diamonds (bound state: dark

blue, free state: cyan). The variances for the PC1 and PC2 are 45 and 20% respectively. Both 10 µs trajectories are projected onto the combined PCA space,

resulting in one distinct and narrower free energy basin for the matured and a shallow and broad free energy surface for the naïve antibody. Projections of

representative structures for each Markov state are depicted as circles color-coded according to the Markov-state model shown in Figure 2.

FIGURE 2 | Markov-state transition timescales for the naïve (A) and the matured (B) antibody. The thickness of the circles represents state probabilities, while the

width of the arrows relates to the strongly varying transition timescales.
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that the prevailing conformation in the matured ensemble is
already present in the naive ensemble, rigidification during the
affinity maturation shifts the probability toward the free energy
minimum representing the matured loop conformation.

Using the MSM scheme described in the methods section
we identify 4 macrostates for the matured antibody and 5
macrostates for the naïve antibody. Transition timescales for
the connected macrostates were calculated and are displayed
in Figure 2. Figure S4 shows representative structures of the
macrostates, highlighting the apparent differences between the
diverse structural ensemble of the naïve antibody and the rigid
matured antibody.

The higher flexibility of the naïve antibody is also reflected
in the higher diversity of representative CDR-H3 loop structures
with a RMSD ranging from 2.0 to 8.0 Å, while the matured
antibody shows a RMSD for the CDR-H3 loops of only 0.5 to 2.3
Å (Figure S5).

Affinity Maturation of 6C8 to 8B10
Using the same procedure as for the investigation of the
affinity maturation of germline antibody 7G12 for clustering
resulted in 99 clusters for the 6C8 antibody and led to 59
clusters for the further matured antibody 8B10 (Figure S7).
Again as described in the methods section, the resulting cluster
representatives were used as starting structures for 100 ns
MD simulations. The projection of the trajectories onto their
combined PCA space (Figure 3) illustrates that the structural
ensemble of the 6C8 antibody shows a substantially higher
diversity, compared to the 8B10 antibody. Estimating the kinetics
we observe significantly faster transitions in 6C8 compared
to the more mature 8B10. These findings are again well in
line with the hypothesis that affinity maturation leads to a
rigidification of the CDR-H3 loop (Figure 4). Figure S9 shows
the macrostate representative structures color-coded according
to the macrostates from the PCCA+ clustering. The higher

FIGURE 3 | Conformational space of the 6C8 antibody (A) and the further matured 8B10 (B) antibody with the projection of the crystal structures as diamonds. The

variances for the PC1 and PC2 are 55 and 14% respectively. The trajectories are projected onto the combined PCA space, illustrating the differences in

conformational diversity. The PCCA+ cluster representatives are illustrated as circles color-coded according to the Markov-state model in Figure 4.

FIGURE 4 | Markov-state model of the 6C8 antibody (A) and the further matured 8B10 antibody (B). The thickness of the circles represents the state probabilities,

while the width of the arrows corresponds to the transition timescales.
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FIGURE 5 | CDR loop sequences (left) and affinities (right) of Fab 246 and Fab 249 CDR-H3 loop. The affinities of the two Fabs were tested against a set of eight

antigens (Insulin, VEGF-Vascular Endothelial Growth Factor, HER2-Human Epidermal Growth Factor Receptor 2, DR5-Death Receptor 5, NAV-Neutravidin,

HGH-Human Growth Hormone, IGF-1-Insulinlike Growth Factor 1, BSA-Bovine Serum Albumin) (31). The numbering of the CDR residues is according to the

nomenclature of Kabat et al. (71).

flexibility of the less matured antibody is reflected in higher
RMSD illustrated in Figure S10.

Specific Antibody Fab 246 and
Promiscuous Antibody Fab 249
Applying the method to the antibody pair Fab 246 and
Fab 249, the projection of the resulting trajectories on their
combined PCA space (Figure 6) shows several distinct minima
for the specific Fab 246. The promiscuous Fab 249 shows a
broader conformational space, reflecting a higher diversity of the
structural ensemble (67) captured in 20 µs.

Based on clustering in the tICA coordinates, the Markov-
state model was estimated to identify the kinetics of the
systems (Figure 7). As not all the microstates are fully connected
by reversible transitions, the largest connected subset of the
microstates is used. The percentage of states used amounts to
90.5% of the microstates for the Fab 246 and 95.5% for the
Fab 249. The high number of connected microstates emphasizes
the high efficiency of the sampling as it connects most of
the highly diverse starting structures. These connected sets,
shown in Figure S13, are used to build the MSMs. Fuzzy
clustering using PCCA+ was used to coarse-grain the 200
microstates into 3 connected macrostates for the specific system
Fab 246 and 4 macrostates for the promiscuous Fab 249.
Transition timescales between the connected macrostates were
calculated and illustrated in Figure 7. The specific system Fab
246 (Figure 7B) shows significantly higher transition timescales
compared to the promiscuous Fab 249 (Figure 7A). The
representative structures of each macrostate are shown in
Figure S15 and the RMSD values displaying the structural
differences of the CDR-H3 loop of the representative structures
are illustrated in Figure S16. The representative structure of state
D of the Fab 246 differs from all the other structures not only
kinetically, but also structurally, and is not connected to the rest
of the ensemble on the timescale captured in 20 µs of classic MD
simulations.

DISCUSSION

In this present study, we describe a protocol to characterize
the structural diversity as well as thermodynamic and kinetic
properties of the CDR-H3 loop using metadynamics in
combination with a large number of short classic molecular
dynamics simulations. While enhanced sampling methods like
metadynamics allow highly efficient conformational sampling,

the distortion of the underlying potential prohibits direct
calculation of kinetic information. Hence, to recover the
accurate kinetics of the observed structural rearrangements,
we used the conformational ensemble captured with
metadynamics to seed classic molecular dynamics (MD)
simulations.

Affinity Maturation of Germline Antibody
7G12
A recent study of the 7G12 antibodies with the focus on the
CDR-H3 loop has shown that affinity maturation seemingly does
not lead to rigidification (27). However on a substantially longer
timescale, we find a significant rigidification as a consequence of
maturation. Figures 1, 2 clearly show that the matured antibody
displays a restricted mobility and has only one distinct minimum
in the free energy surface. In general, flexibility can result from
movements on different timescales (68). Small conformational
changes within a shallow free energy basin can be characterized
in the nanosecond to microsecond timescale, while transitions
between deep minima separated by high kinetic barriers can
take microseconds, milliseconds or longer (69). The timescales
illustrated in Figure 2 and Figure S3 show nano- to microsecond
dynamics for the matured antibody within the single distinct
minimum, while the naïve antibody shows a broader free
energy surface covered in the micro- to millisecond timescale.
The representative structures for the resulting macrostates of
the PCCA+ are shown in Figure S4. The structures of the
naïve antibody (Figure S4, left) display a higher conformational
diversity compared with the matured antibody (Figure S4, right).
The representative structure of state A of the naïve system
is similar to the crystal structure of the bound state. The
representative structures of the macrostates A, B, D and E show
a similar, but relocated loop conformation. The structure of the
state C represents a conformation on the transition between
states A and B and states D and E. The structures of the
matured antibody (Figure S4, right) show only small differences
in the backbone. The loop itself displays the same conformation
in slightly shifted positions for all representative structures. A
summary of all calculated CDR-H3 loop differences between the
crystal structures and representative structures of themacrostates
is shown in Figure S5. For this antibody pair we clearly observe,
that affinity maturation leads to a rigidification on the captured
timescale. The enhanced specificity of the matured antibody is
reflected in reduced flexibility by showing a deep and narrow
free energy basin. This result is also visualized in the observed
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FIGURE 6 | Conformational space of the promiscuous Fab 249 (A) and the specific Fab 246 (B) antibody. Both 20 µs trajectories are projected onto the combined

PCA space, clearly showing that the specific antibody has more distinct and narrower free energy basins, while the promiscuous system shows a shallow and broad

free energy surface. The PCCA+ cluster representatives are illustrated as circles color-coded according to the Markov-state model in Figure 7. The variances for the

PC1 and PC2 are 58 and 13% respectively.

FIGURE 7 | Transition timescales based on a Markov-state model of the promiscuous Fab 249 (A) and the specific Fab 246 (B) antibody. Fab 246 shows significantly

higher transition timescales, which indicate higher free energy barriers, compared with the Fab 249.

timescales, which illustrate that the matured antibody stays in
the same narrow and deep minimum and shows transition in the
nano-second timescale.

Affinity Maturation of 6C8 to 8B10
Adhikary et al. (30, 70) characterized sequence, structure,
and plasticity of antibodies during different stages of affinity
maturation and found smaller motions for the matured antibody.
The characterization of the systems showed that the more specific
8B10 antibody shows reduced dynamics compared with the 6C8
antibody (Figure 3). The 6C8 antibody has a shallower and
broader free energy surface compared with the affinity-matured
8B10 antibody, which shows only one deep minimum and less

conformational diversity (Figure 3B). In Figure 4 the transition
timescales between the different macrostates are illustrated
and in both systems flexibilities on different timescales are
described. The transitions in the 6C8 antibody occur fast, while
the 8B10 antibody shows slower timescales for conformational
rearrangements of the CDR-H3 loop. The longer transition
timescales in the further matured 8B10 antibody are correlated
with deeper free energy basins and higher free energy barriers
(Figure S8). The representative structure of state A of the 6C8
antibody is very close to the crystal structure and is nearly
identical with structure A of the 8B10 antibody. Structurally
the states A, C and D of the 6C8 antibody show a similar
loop conformation. The only difference can be observed in a
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relocation of the loop. In contrast, the representative structure
of the macrostate B shows significant changes in the shape and
the location of the loop compared to the structures of the states
A, C and D. The system 8B10 shows high transition timescales
between the minima A and C reflecting high energy barriers in
the free energy surface. These slow transition timescales between
themacrostates A andC can be explained by significant structural
rearrangements of the CDR-H3 loop and a substantial change
in the hinge angle of the loop. All this observations are also
reflected in the tICA (Figure S8). The structures of state B and
C show only slight differences in the loop shape itself, while the
relocation of the loop, as transition to state A, dominates the
structural diversity. The structural differences for the CDR-H3
loop structures of the 6C8 and the 8B10 antibody are visualized
in Figure S10. The 6C8 antibody shows a broader free energy
surface with lower transition timescales compared to the further
matured 8B10 antibody, which illustrates higher timescales and
higher free energy barriers.

Specific Antibody Fab 246 and
Promiscuous Antibody Fab 249
Also for the last system the transition timescales are significantly
slower for the specific system, Fab 246, while the transitions
between conformational states of the Fab 249 occur much
faster (Figure 7). The representative CDR-H3 loop macrostate
structures show higher deviations in the kink region of the
loop than in the loop itself. The representative structure of
the state D, which shows no reversible transitions to the other
macrostates represents the structure with the highest differences
in loop and kink region. The structural differences of the CDR-
H3 loops are calculated by using two-dimensional RMSD to
compare the structures among each other (Figure S16). Fab 249
shows the highest structural changes in the loops itself, which
means that additional to the relocation of the loop, reshaping
of the CDR-H3 loop for all four macrostate representatives can
be observed. The promiscuous system shows a slightly broader
free energy surface (Figure 6) compared with the specific system.
The main difference between this pair of antibodies, illustrated in
Figure 6, is that the specific antibody shows deeper and narrower
free energy minima, compared with the promiscuous system,
which shows a shallow free energy surface. Due to the fact,
that the specific antibody Fab 246 displays deeper minima in
free energy and higher kinetic barriers, more sampling time
would be required to have fully connected initial microstates
and to be able to calculate transition rates for all four states,
including state D in Figure S14 (cf. microstates in Figure S13).
The specific antibody Fab 246 shows one fast transition between
the macrostates A and B, because they are located in the same
minimum, while the transitions to macrostate C occur on a
significantly longer timescale. The same hypothesis as discussed
in the previous examples, is strengthened here, that higher
specificity is connected with deeper and more distinct free energy
basins, which is reflected in the longer transition timescales
and higher free energy barriers. We observe also here that
enhanced specificity results in reduced flexibility in the CDR-H3
loop.

The results found in this study highlight that sequence-
based or static structural information alone might not be
sufficient to understand and describe antibody binding properties
as, e.g., specificity and promiscuity. Long timescale dynamics
from enhanced and classic MD simulations complement
experimental structural information with reliable estimations of
conformational preferences and state probabilities. A sequence
based study on multispecificity focusing on the CDR-H3 loop,
shows that the introduction of arginine enhances the promiscuity
of antibodies (Figure 5, Figure S12) (31). This finding seems
to be controversial since polar and charged residues are often
found to contribute to specificity by establishing electrostatic
and hydrogen-bonding interactions, which rather enhances the
complex stability (72). In our simulations we observe that the
two neighboring arginine residues next to each other in the Fab
249 show repulsive behavior and thereby increase the flexibility of
the CDR-H3 loop. Also the role of tyrosine is still controversial.
On the one hand, due to its amphipathic and aromatic character
it can make various different interactions and is also known as
a “sticky” residue (73). On the other hand, it has been shown
that specificity and affinity is enhanced in the antigen recognition
process by introducing tyrosine residues in combination with
small residues like glycine and serine (31). The higher content of
glycine residues in the specific antibody is highly surprising, since
glycine is usually known to increase flexibility (74). However, the
position of the glycine residues in the loops and the influence
of other neighboring amino acids may cause the observed
rigidification.

In contrast to this sequence based view, we aim at
understanding promiscuity as a structural property governed by
dynamics. CDR-H3 loop structures are very difficult to predict
because their structures cannot be compared with any other
protein loops found in databases and the CDR-H3 loop is
known to be the most flexible (3, 11, 75, 76). Thus, sampling
efficiency plays a key role in linking specificity and rigidity of
the CDR-H3 loop as many different conformations have to be
covered. For two examples of antibodies before and after the
affinity maturation crystal structures are available and used as
starting points for simulations. The third antibody system is
modeled using the program RosettaAntibody. The reliability
of a structural prediction of the CDR-H3 loop decreases with
increasing number of residues in the CDR-H3 loop (11, 13).
To tackle these difficulties, we used the kinematic loop closure
algorithm (37) additional to the RosettaAntibody to diversify the
starting structures of the CDR-H3 loop. Classic MD simulations
allow to consider not only a static antibody structure, but also
to characterize the dynamic properties and to describe the
CDR-H3 loop as conformational ensemble. Enhanced sampling
techniques are essential to overcome high energy barriers of the
potential energy surface and to more exhaustively describe and
characterize the antibody CDR H3-loop. Metadynamics is only
one of many solutions to face the sampling problem (77, 78). We
employ this technique to gather structures that we use as starting
points to seed a large number of short classic MD simulations
(79). To extract kinetic information from these shorter MD
simulations, a Markov-state model was built that enables to
combine the simulations into a statistical model (64). Figures 2,

Frontiers in Immunology | www.frontiersin.org 8 January 2019 | Volume 9 | Article 3065

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fernández-Quintero et al. Conformational Diversity of the CDR-H3 Loop

4, 7 show our results for long-timescale molecular dynamics
simulation data obtained from short classic MD simulations. In
all three systems the antibodies with higher specificity display
higher kinetic barriers and longer transition timescales according
to the estimated free energy surface. This is in line with the
hypothesis that antibodies become more rigid during affinity
maturation (67). The broad free energy basins of the promiscuous
systems in combination with lower kinetic barriers allow to
adopt more conformational states. In contrast, the rigidity of the
specific systems hinders binding of more diverse antigens (67).
Different studies have been focusing on the question whether
conformational flexibility in germline antibodies is promoted by
their native sequence (28, 76). In silico approaches to design
antibodies mimicking in vivo affinity maturation are in line
with our observations that specific antibodies have a reduced
conformational diversity (28, 76) Somatic hypermutations
contribute to the affinity maturation process by modifying the
shape of the paratope, restricting the mobility of paratope
residues and improving complementarity to the epitope (80).
Descriptions of affinity maturation pathways in combination
with long timescale molecular dynamics simulations lead to the
conclusion that an increase in specificity is directly correlated
with a rigidification of the initially flexible CDR-H3 loop (4).
However, the rigidification of the antibody might be only one
of the many mechanisms involved in the affinity maturation
process. Additional salt bridges and hydrogen bonds as well as an
improved shape complementarity specific to the antigen might
also contribute in the affinity maturation process (81).

CONCLUSION

With the present study, we characterize the CDR-H3 loop in the
binding interface of three pairs of antibodies and link specificity
with rigidity. Antibodies with and without available structural
information were analyzed to show that an approach starting
from sequence information alone can be applied to characterize
antibody CDR-H3 loops as well. We used the program
RosettaAntibody in combination with additional cycles of the
kinematic loop closure algorithm to predict antibody structures,
differing in the CDR-H3 loop. To overcome the limitations
of classic molecular dynamics simulations, we performed
metadynamics simulations and observed a broader and more
efficient exploration of the conformational space. The newly
captured ensemble was clustered using a hierarchical clustering

algorithm. The resulting representative structures are used as
seed structures for a large number of shorter molecular dynamics
simulations to obtain kinetic information. We coarse-grained the
resulting conformations to macrostates and calculated transition
timescales based on Markov-state models for each antibody pair,
respectively. To sum up, we observed that a higher specificity
correlates with distinct free energy basins and slower transition
timescales. The promiscuous or naïve systems show shallow
free energy basins and the transitions between different states
occur much faster than in the specific or matured antibodies.
With our protocol we observe that within these three pairs
of antibodies, the antibodies binding more antigens are more
flexible and have shallower free energy surfaces, which makes
different conformational states accessible on a shorter timescale.
Even though the methods applied are computationally quite
demanding and thus not applicable as a high-throughput
screening technique, advances in GPU computing allow for this
state-of-the art analyses to be applied easily to antibodies of high
significance. Possible applications of our approach might reach
from improvements for protein-protein docking of antibodies
considering conformational ensembles as far as fine tuning of
therapeutic antibodies in terms of their multispecificity.
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