
Scientific Annals of Computer Science vol. 28 (2), 2018, pp. 237–267

doi: 10.7561/SACS.2018.2.237

A Precise Characterisation of Step Traces and
Their Concurrent Histories

Ryszard Janicki1, Jetty Kleijn2 and Lukasz Mikulski3

Abstract

Step traces are an extension of Mazurkiewicz traces where each equiva-
lence class (trace) consists of sequences of steps instead of sequences of
atomic actions. Relations between the actions of the system are defined
statically, as parameters of a concurrent step alphabet. By allowing
only some of the possible relationships between actions, subclasses of
step alphabets can be derived in a natural way. Properties of these
classes can then be investigated in terms of invariant structures, i.e., the
relational structures that represent the causal invariants that underlie
the corresponding step traces.

In this paper, we refine an earlier classification of subclasses of
step alphabets and add eight new subclasses to this hierarchy. We
divide these eight classes into three families on basis of the absence of
a specific behavioural relation and then characterise the corresponding
invariant structures.

Keywords: step alphabet, trace of step sequences, simultaneity, seri-
alisability, interleaving, classification, invariant structure

1 Introduction

Step traces [4] are an extension of the classical Mazurkiewicz traces, a basic
and well-established model to represent concurrent behaviour [1, 12, 13, 14].

1Department of Computing and Software, McMaster University, Hamilton, ON, L8S
4K1, Canada, Email: janicki@mcmaster.ca

2LIACS, Leiden University, P.O.Box 9512, NL-2300 RA Leiden, The Netherlands,
Email: h.c.m.kleijn@liacs.leidenuniv.nl

3Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń,
Chopina 12/18, Poland, Email: lukasz.mikulski@mat.umk.pl

238 R. Janicki, J. Kleijn, L. Mikulski

Whereas a Mazurkiewicz trace is an equivalence class of sequences of action
names that can be seen as representing all (sequential) observations of a
run of a concurrent system, a step trace consists of step sequences. Such
sequences are a concatenation not of single occurrences of actions, but rather
of steps, i.e., sets of one or more actions that occur (or are observed as
occurring) simultaneously. Some recent examples of the application of step
traces can be found in computational biology [18], digital graphics [17], and
model checking [10].

For Mazurkiewicz traces, the equivalence of sequences is based on a
binary independence relation stating which pairs of actions are independent
and thus can be observed in any order. Also the equivalence of step sequences
forming a step trace is based on binary relations between a system’s actions.
First of all, there is simultaneity indicating that two actions may occur
together in a step; secondly, serialisability specifies possible execution orders
for potentially simultaneous actions; thirdly, interleaving declares for actions
that cannot occur simultaneously that no specific ordering is required. The
latter two relations can also be captured in terms of a single sequentialisability
relation, see [4, 7]. This then leads to a notion of a step alphabet consisting of
a finite set of symbols (action names) and two binary relations, simultaneity
and sequentialisability.

The sequences forming a Mazurkiewicz trace, share an underlying
acyclic structure based on the dependencies between their actions that
are common to all elements of the trace. This dependence graph defines
through its transitive closure a labelled partial order which can be seen as the
(invariant) causality structure of the concurrent run captured by the trace [19].
Moreover, each partial order is the intersection of all its linearisations, i.e.,
saturations of the partial order that preserve the acyclicity. This latter
property (Szpilrajn’s property [20]) forms the link between the elements of a
trace and its associated partial order: the linearisations of the partial order
correspond exactly to the sequences forming the trace.

For step traces, obviously, more general dependence and causal struc-
tures are needed to describe the invariant relationships between action
occurrences. The relational structures studied in [2, 3] and used in [4] to
describe the causality in step traces, have — instead of a single strict partial
order (causality) relation — two relations: a ‘not later than’ relation to
represent weak causality (i.e., before or in the same step) and a ‘mutual
exclusion’ mutex relation for pure interleaving (not allowed in the same
step but not necessarily causally ordered). Order structures are (labelled)

A Precise Characterisation of Step Traces and
Their Concurrent Histories 239

relational structures satisfying certain additional properties, in particular
a generalised acyclicity property. Moreover, the saturated versions of an
order structure (i.e., the maximal extensions that respect this acyclicity
property) correspond to step sequences. As demonstrated in [2, 3] there is a
closure operator that, when applied to an order structure, yields an invariant
structure. Invariant structures are order structures which can be considered
as generalised partial orders in the sense that they satisfy a generalised
Szpilrajn’s property: each invariant structure is the intersection of all its
saturations. In [4], it is moreover demonstrated how to capture the intrinsic
dependencies in a step sequence (over a given step alphabet). Furthermore,
equivalent step sequences generate the same dependence structure; every
step sequence corresponds to a saturated version of its dependence structure;
and, finally, all step sequences obtained by saturating a dependence structure
are equivalent. Hence we may conclude that, in the context of step traces,
dependence structures and invariant structures are the counterparts of the
dependence graphs and partial orders of Mazurkiewicz traces.

As argued in [4], and following [8], invariant structures represent the
most general concurrent histories satisfying Szpilrajn’s property. So, step
alphabets and step traces with their simultaneity and sequentialisability
relations, are the most general in terms of their underlying order structures.
On the other hand, the definition of step alphabets almost automatically
leads to a hierarchy of step alphabets, depending on which combinations
of simultaneity and sequentialisability are allowed. In [7], eight subclasses
of step alphabets are distinguished. These include a class corresponding
to Mazurkiewicz traces; step alphabets that combine the independence
relation of Mazurkiewicz traces with step sequences (and simultaneity is
the same as serialisability), and a class of step alphabets that leads to
comtraces [9, 11]. For five of them, their corresponding invariant order
structures have been characterised. In this paper, we apply a finer distinction
and complete the picture by introducing eight more subclasses. We briefly
discuss their semantical meaning and then single out three specific ones for
further investigation.

The paper is organised as follows. After some preliminaries, we formally
introduce step traces in Section 3. Next, in Section 4, we present the
extended hierarchy of subclasses of step alphabets. In Section 5 we discuss
general order structures and provide an axiomatic charaterisation of invariant
structures and explain how they can also be obtained through closure of
order structures. We demonstrate how to associate with each step trace a

240 R. Janicki, J. Kleijn, L. Mikulski

unique order structure, the closure of which is the invariant structure of the
trace. In Section 6 we divide the new subclasses of step alphabets into three
families and characterise for each of these families the corresponding class
of invariant structures. Finally in the concluding Section 7, we summarise
what has been done and what is still to be done.

2 Preliminaries

In this section, we introduce basic terminology and notation that will be
used later in this paper.

Given a binary relation R ⊆ X ×X, we denote the inverse of R by R−1;
its symmetric closure is Rsym = R∪R−1. Relation R is a strict partial order
relation if it is irreflexive and transitive; R is a total order if it is a strict
partial order relation such that Rsym = (X ×X) \ idX . Here idX denotes
the identity relation over X. We define R0 = idX and Rn = Rn−1 ◦ R,
for all n ≥ 1. Then: R+ =

⋃
i≥1R

i and R is acyclic if R+ is irreflexive;

R∗ =
⋃
i≥0R

i = R+ ∪ idX ; R� = R+ \ idX = R∗ \ idX is the irreflexive

transitive closure of R; and R~ = R∗ ∩ (R∗)−1 is the largest equivalence
relation contained in R∗.

A labelled partial order 〈∆, R, `〉 consists of a finite set ∆, a strict

partial order relation R on ∆, and a labelling ∆
`−→ Σ where Σ is a finite set

of labels. We refer to ∆ as the domain of the partial order. As we will deal
only with labelled partial orders and strict partial order relations, we will
mostly speak simply of partial orders and partial order relations.

Throughout the paper, Σ 6= ∅ is a finite alphabet of actions, S = 2Σ\{∅}
is the set of all steps, and S∗ is the set of step sequences u = A1 . . . Ak with
Aj ∈ S for 1 ≤ j ≤ k. If k = 0, then u is the empty step sequence. A step
containing a, b and c is denoted by (abc) rather than {a, b, c}.

Let u = A1 . . . Ak ∈ S∗ be a step sequence. For each action a ∈ Σ, let
#(a, u) denote the number of occurrences of a in u. Then occ(u) = {〈a, i〉 |
a ∈ Σ∧1 ≤ i ≤ #(a, u)} is the set of action occurrences of u. We let posu(α)
denote the position of action occurrence α = 〈a, i〉 ∈ occ(u) in u, formally
defined as the smallest index j ≤ k such that the number of occurrences of a
within A1 . . . Aj is exactly i. Note that in case u is the empty step sequence,
we have #(a, u) = 0, for all a ∈ Σ, and occ(u) = ∅.

Let EQ be a finite set of equations on step sequences, with each equation
being of the form u = v, where u, v ∈ S∗ are both nonempty. Then EQ
defines a relation ≈ on step sequences comprising all pairs 〈tuw, tvw〉 such

A Precise Characterisation of Step Traces and
Their Concurrent Histories 241

that either t, w ∈ S∗, and u = v or v = u is an equation in EQ , or u and v
are both the empty sequence. Then ≡=≈∗ is the equivalence relation on S∗
induced by EQ .

3 Step Traces

Now we are ready to define step traces as equivalence classes of step sequences
induced by equations based on two relations between actions: simultaneity
(sim) and sequentialisability (seq). The first defines pairs of potentially
simultaneous actions, i.e., pairs of actions that may occur together in a step.
Note that sim does not enforce simultaneity; two actions that form a pair in
sim may occur simultaneously, but they do not have to. The second relation,
sequentialisability specifies pairs of actions whose simultaneous occurrence
in a step means that they may also occur one after another in the order
given and whose occurrences may be swapped in a step sequence (provided
sequentialisability is symmetric for them).

A step alphabet is a triple θ = 〈Σ, sim, seq〉, where sim, seq ⊆ Σ× Σ are
irreflexive; moreover, sim and seq \ sim are symmetric. The family of all
step alphabets will be denoted by Θ. Simultaneity defines Sθ = {A ⊆ Σ |
A 6= ∅ ∧ (A × A) \ idΣ ⊆ sim}, the set of (legal) steps over θ. The set
SSEQθ = S∗θ consists of all step sequences over θ. Sequentialisability, on the
other hand, identifies pairs of actions which can be interleaved and defines
ways in which steps can be serialised. This leads to the following equations
over θ, where A,B ∈ Sθ:

AB = BA if A×B ⊆ seq ∩ seq−1 (interleaving),
AB = A ∪B if A×B ⊆ sim ∩ seq (serialisability).

Note that it follows from the irreflexivity of sim and seq, that the sets A
and B in these equations are disjoint.

Example 1 Consider θ0 = 〈{a, b, c, d, e, f}, sim, seq〉, a step alphabet with
its simultaneity and sequentialisability relations as given in Figure 1 where
each undirected edge stands for two arrows in opposite directions. The
step alphabet θ0 generates, e.g., the interleaving equations ad = da and
d(ac) = (ac)d; it also generates the serialisability equations (ac) = ac,
(ac) = ca, and (ab) = ba. However, (ab) = ab is not an equation over θ0,
since (a, b) 6∈ seq. �

242 R. Janicki, J. Kleijn, L. Mikulski

sim =

a b

c

de

f seq =

a b

c

de

f

Figure 1: The step alphabet θ0.

These equations define a relation ≈ such that for two nonempty step
sequences u, v we have u ≈ v if there exist w, t ∈ S∗ and A,B ∈ S satisfying,
respectively: (i) u = wABt and v = wBAt and AB = BA; or (ii) u = wABt
and v = w(A ∪B)t or v = wABt and u = w(A ∪B)t, and AB = A ∪B.

Let ≡=≈∗. The equivalence classes of ≡ that contain a step sequence
from SSEQθ are the step traces over θ. We denote by STRθ the set of all
step traces over θ. It is important to observe at this point that all step
sequences forming a step trace are sequences of legal steps over θ, thus
each such sequence is an element of S∗θ i.e., if τ ∈ STRθ then τ ⊆ SSEQθ.
The trace containing u ∈ SSEQθ will be denoted by JuK. For a step trace
τ = JuK ∈ STRθ, where u is a step sequence over θ, we use occ(τ) = occ(u)
to denote the set of action occurrences in τ (note that this is well-defined,
as all step sequences in τ have the same set of action occurrences).

Example 2 The step alphabet θ0 is as before in Example 1. Thus we have
that f and b can occur as a step (fb) and be sequentialised to the equivalent fb,
but not to bf ; and similarly for b and a. Since f and a are neither related
by sim nor seq we thus obtain the first step trace J(fb)aK over θ0 in the list
below. The elements of the other step traces can be found in the same way,
using sim and seq.

J(fb)aK = {(fb)a, fba, f(ba)} JadfK = {adf, afd, daf}
JacfK = {acf, caf, (ac)f, afc, a(cf)} Jd(bc)K = {d(bc), dcb, cdb}
J(abc)K = {(abc), c(ab), (bc)a, cba} J(ace)K = {(ace)}
JacdK = {acd, adc, cad, cda, dac, dca, (ac)d, d(ac)} .

�

A Precise Characterisation of Step Traces and
Their Concurrent Histories 243

4 Subclasses of Step Alphabets

Recall that step alphabets are triples θ = 〈Σ, sim, seq〉 and that sim and
seq \ sim are symmetric. Consequently, seq \ sim = seq−1 \ sim and seq \
(sim ∪ seq−1) = seq−1 \ (sim ∪ seq) = ∅. In Figure 2 we sketch the partition
of Σ× Σ in the form of a Venn diagram.

sim

seq

seq−1

Figure 2: The relations defined by a step alphabet.

In [7], subfamilies of step traces have been investigated based on a
classification of step alphabets, defined by assuming that one or more of
the relations sim \ seq, seq \ sim, and sim ∩ seq are empty. This led to eight
classes of step alphabets. In this paper, we extend this classification by
refining the partition of Σ× Σ. First, we distinguish six additional possible
relationships between pairs of actions.

The six relations are the following:

• strong simultaneity : ssi = sim \ (seq ∪ seq−1),

• semi-serialisability : sse = seq \ seq−1,

• weak dependence: wdp = seq−1 \ seq,

• concurrency : con = sim ∩ seq ∩ seq−1,

• interleaving : inl = seq \ sim,

• rigid order : rig = (Σ× Σ) \ (sim ∪ seq).

244 R. Janicki, J. Kleijn, L. Mikulski

As argued in [4], these relations have a clear semantical meaning. Strong
simultaneity, ssi, allows a pair of actions to be executed simultaneously, but
disallows to sequentialise them when they occur in a step. The relation sse,
semi-serialisability, allows a pair of simultaneously executed actions to be
executed sequentially in the order given, but not in the reverse order. Weak
dependence, wdp, is the reverse of semi-serialisability, while the concurrency
relation, con, allows actions to be executed simultaneously as well as in any
order. The relation inl allows to swap occurrences of actions. Note that,
as illustrated in Figure 2, seq \ sim = (seq ∩ seq−1) \ sim and ‘interleaving’
here refers to individual occurrences of actions, whereas the interleaving
equations in Section 3 on the other hand, are based on seq∩ seq−1 and relate
to the swapping of complete steps. The last relation, rigid order rig, allows
neither simultaneity nor changing the order of actions.

The technical usefulness of distinguishing such relations has been demon-
strated e.g., in [15], where comtraces (i.e., step traces over step alphabets
with an empty inl relation) are considered. The investigation of the other
five relationships has led to an alternative compact version of the invariant
structures representing the causal invariants that underlie step traces, based
on projections of a step trace on binary subalphabets. In [6], this decompo-
sition is used in an efficient procedure to check whether a labelled invariant
order structure is the invariant structure of a step trace and to synthesize
suitable step alphabets.

Example 3 Consider once more the step alphabet θ0 from Example 1. The
corresponding partition of {a, b, c, d, e, f} × {a, b, c, d, e, f} is illustrated in
Figure 3. �

Again we build our classification by assuming for each subclass that
one or more of these six possible relations are empty. Before discussing
these classes, however, we simplify the picture a bit. We do not consider
the case that rig = ∅, as idΣ ⊆ rig due to the irreflexivity of sim and seq.
Furthermore sse = seq \ seq−1 = ∅ if and only if wdp = seq−1 \ seq = ∅.
Hence the cases that only one of these relations is empty, do not occur. In
what follows we will not refer to sse anymore and always use wdp.

All this leads to sixteen relevant subclasses of step alphabets as out-
lined next. The subscripts indicate which relations are empty. Thus, for
example, Θinl∪con comprises all step alphabets such that inl ∪ con = ∅. The
corresponding areas in the diagram are rendered in a lighter shade of grey.

A Precise Characterisation of Step Traces and
Their Concurrent Histories 245

ssi =
a b

c

de

f

sse =
a b

c

de

f

wdp =
a b

c

de

f

con =
a b

c

de

f

inl =
a b

c

de

f

rig =
a b

c

de

f

Figure 3: The partition of step alphabet θ0.

• Θ is the family of all step alphabets.

• Θwdp comprises alphabets where serialisabil-
ity is symmetric.

• Θssi comprises alphabets where every step
with two elements may be split.

• Θcon comprises alphabets where steps com-
mute only through interleaving.

• Θinl comprises alphabets without true in-
terleaving. Alphabets in Θinl (after
dropping the empty relation inl) are
also known as comtrace alphabets [8].

• Θwdp∪ssi comprises alphabets with serialisabil-
ity rich enough to split every step in
each possible way.

246 R. Janicki, J. Kleijn, L. Mikulski

• Θwdp∪con comprises alphabets with only inter-
leaving.

• Θssi∪con comprises alphabets where every step
with two elements may be split only
in a unique way and commuting is
only through interleaving.

• Θwdp∪inl comprises alphabets with symmetric
serialisability and without true inter-
leaving.

• Θssi∪inl comprises alphabets without true in-
terleaving, where every step with two
elements may be split.

• Θcon∪inl comprises alphabets without commu-
tativity.

• Θwdp∪ssi∪con comprises alphabets which do not al-
low steps with two or more elements
and know no serialisablity either. Al-
phabets in Θssi∪wdp∪con after dropping
the empty sim relation, correspond to
Mazurkiewicz concurrency alphabets
with inl as their independence rela-
tion.

• Θwdp∪ssi∪inl comprises alphabets without inter-
leaving equations, but serialisability
is rich enough to split and reorder
steps in every possible way. Al-
phabets in Θssi∪wdp∪inl correspond to
Mazurkiewicz concurrency alphabets
for step sequences.

• Θwdp∪con∪inl comprises alphabets which generate
step traces consisting of a single step
sequence.

A Precise Characterisation of Step Traces and
Their Concurrent Histories 247

• Θssi∪con∪inl comprises alphabets without commu-
tation where every step with two ele-
ments may be split.

• Θwdp∪ssi∪con∪inl comprises alphabets defining step
traces consisting of a single sequence.

Figure 4 shows all subclasses. The alphabets in Θwdp∪ssi∪con∪inl and
Θwdp∪con∪inl are of little interest. Those in Θ, Θinl, Θwdp∪ssi, Θwdp∪con,
Θwdp∪ssi∪con and Θwdp∪ssi∪inl are the ones that were studied in [7]. The
eight others are as new subclasses, our subject of investigation in the next
section.

5 Invariant structures

The relational structures or = 〈∆,
,<, `〉 underlying the order theoretic
treatment of step traces are determined by a finite set ∆, two binary rela-

tions
 and < on ∆, and a labelling ∆
`−→ Σ. The elements of ∆, called the

domain of or , represent events (occurrences of actions) which are labelled
by the name of their corresponding action. The relation
 is called the
mutex relation and, intuitively, x
 y indicates that x and y did not occur
simultaneously. The second relation < is weak causality : if x < y, then x did
not occur later than y (in other words x was before or simultaneous with y).
All this implies that if both x
 y and x < y, then x occurred before y and
we will denote this also as x ≺ y. We write ≺ for
 ∩ < and refer to this
relation as (strong) causality.

A relational structure or = 〈∆,
,<, `〉 is an order (relational) structure
if it is (i) separable, meaning that
 is symmetric, < is irreflexive, and

 ∩ <~= ∅ (which implies that
 is also irreflexive); and (ii) label-ordered,
meaning that any two distinct events x and y such that `(x) = `(y) are
related by both
 and <sym . Note that in this way we obtain a nice graphical
representation of an order structure (with ∆ as nodes,
/< as two types of
edges/arcs and ` as a function which assigns labels to nodes). Intuitively,
separability guarantees that any two elements that are in a cycle of weak
causalities (<) cannot be mutually exclusive (
).

The class of all order structures will be denoted by OR.

248 R. Janicki, J. Kleijn, L. Mikulski

Θ

Θwdp Θinl Θssi Θcon

Θwdp∪inlΘwdp∪ssi Θinl∪ssiΘwdp∪con Θinl∪conΘssi∪con

Θwdp∪inl∪ssi Θwdp∪inl∪con Θwdp∪ssi∪con Θinl∪ssi∪con

Θwdp∪inl∪ssi∪con

Figure 4: Hierarchy of the sixteen subclasses of step alphabets. When two
classes are linked, the one higher up encompasses the lower one. The grey
polygons show the three families of subclasses studied in Section 6.

There is a natural way (based on set theoretical inclusions) to order
and intersect relational structures over the same ∆ and with the same `. We
write or1 ≤ or2 whenever or1 = 〈∆,
1,<1, `〉, or2 = 〈∆,
2,<2, `〉, and

1⊆
2 and <1⊆<2 (in other words or2 is an extension of or1). Moreover,
or1 ∩ or2 = 〈∆,
1 ∩
2,<1 ∩ <2, `〉. We can now identify maximal
elements w.r.t. ≤. These maximal order structures are referred to as
saturated (relational) structures. The intuition behind this name is that
adding any additional edge/arc to the graph representation of a saturated
structure would destroy its separability. It is important to notice at this
point that saturated structures correspond to step sequences (see e.g., [4]).

A relational structure ir = 〈∆,
,<, `〉 is an invariant (relational)

A Precise Characterisation of Step Traces and
Their Concurrent Histories 249

structure if it satisfies, for all x, y, z, z′ ∈ ∆, each of the following axioms:

x 6< x (I1)
x 6= y ∧ x < z < y =⇒ x < y (I2)

x
 y =⇒ y
 x 6= y (I3)
x ≺ z < y ∨ x < z ≺ y =⇒ x
 y (I4)

z
 y ∧ z < x < z =⇒ x
 y (I5)
z
 z′ ∧ x < z < y ∧ x < z′ < y =⇒ x
 y (I6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (I7)

The class of all invariant structures will be denoted by IR.

The axiomatic characterisation of invariant order structures (for the
unlabelled case) was introduced originally in [2, 3]. Like in [4], here we
add axiom (I7) to capture label-orderedness. Note that by axiom (I2), if
x 6= y, x <∗ y, and x
 y, then x ≺ y. Hence instead of explicitly requiring
label-orderedness, we use the more compact formulation of axiom (I7).

Invariant structures are order structures (see [4, 7]). Actually, every
order structure can be ‘closed’ by adding pairs to their mutex and weak
causality relations to obtain the unique invariant structure that has the same
set of saturated extensions. Intuitively, to obtain an invariant structure from
an order structure, one should apply the implications in the axioms (I2)
and (I4)-(I6) until these axioms are satisfied. Note that, because of the
label-orderedness of order structures, axiom (I7) is satisfied from the start.
Also the axioms (I1) and (I3) are satisfied initially and adding relations
according to (I2) and (I4)-(I6) will preserve (I1) and (I3) thanks to the
irreflexivity of <, the symmetry of
, and separability.

However, the closure of an order structure can also be described by
defining a new mutex and a new weak causality relation directly in terms
of the original relations of the order structure. Axiom (I2) is then satisfied
by the standard irreflexive and transitive closure of the weak causality
relation < of the order structure. Simultaneously guaranteeing the three
axioms(I4)-(I6) for the mutex relation is however more involved. In the
closure mapping defined below, the first component of the new mutex relation
contains the original mutex relation and guarantees axiom (I5). Combining
axiom (I6) with the transitive closure of weak causality gives rise to the
new cross relation. It is not difficult to see that cross also guarantees that
axiom (I4) will hold.

The order structure closure OR
or2ir−−→ IR is a mapping, for every structure

250 R. Janicki, J. Kleijn, L. Mikulski

or = 〈∆,
,<, `〉 ∈ OR, defined by:

or2ir(or) = 〈∆,<~ ◦
 ◦ <~ ∪ crosssym ,<�, `〉

where cross = {〈x, y〉 | ∃z, z′ : z
 z′ ∧ x <∗ z <∗ y ∧ x <∗ z′ <∗ y}.

5.1 Step Traces and Invariant Structures

Given a step alphabet θ = 〈Σ, sim, seq〉, the dependencies between the
events underlying a step sequence in SSEQθ are given by the mapping

SSEQθ
sseq2orθ−−−−−→ OR which is defined, for all u ∈ SSEQθ, by sseq2orθ(u) =

〈occ(u),
,<, `〉 where for all α, β ∈ occ(u) with posu(α) = k, posu(β) = m:

α
 β if 〈`(α), `(β)〉 /∈ sim ∩ seq ∧ k < m
or 〈`(α), `(β)〉 /∈ sim ∩ seq−1 ∧ k > m

α < β if 〈`(α), `(β)〉 /∈ seq ∩ seq−1 ∧ k < m
or 〈`(α), `(β)〉 ∈ sim \ seq−1 ∧ k = m .

(1)

The relational structure sseq2orθ(u) is the dependence structure of u (over θ).
Later in the paper we want to be able to discuss relational structures that are
relational structures associated with step sequences over a specific subclass X
of step alphabets. Hence we define

ORX = sseq2orX(SSEQ) =
⋃
θ∈X

sseq2orθ(SSEQθ).

and IRX = or2ir(ORX).

Finally, for a given step alphabet θ and a step sequence u over θ, order
structure closure (the mapping or2ir) can be used to obtain an invariant
structure for u. As was proven in [3], or2ir(sseq2orθ(u)), the invariant
structure of u (over θ), is not only the same for all step sequences forming
the step trace JuK, but also determines JuK as every saturated extension of
or2ir(sseq2orθ(u)) corresponds to a step sequence equivalent with u and every
step sequence equivalent with u corresponds to a saturated extension of
or2ir(sseq2orθ(u)). Moreover, every invariant structure satisfies a generalised
version of Szpilrajn theorem [20]: it is the intersection of its saturated
extensions.

Example 4 Consider the step alphabet θ0 from Example 1 and Figure 1
and the step sequence u = (ef)dcba over this alphabet. Then occ(u) =

A Precise Characterisation of Step Traces and
Their Concurrent Histories 251

(i)

•f

•e

•
d

•
c

•
b

•
a

(ii)

•f

•e

•
d

•
c

•
b

•
a

Figure 5: Dependence structure (i) sseq2orθ0(u) and invariant structure (ii)
or2ir(sseq2orθ0(u)) of the step sequence u = (ef)dcba for the step alphabet θ0

from Figure 1. The relation
 is depicted using solid (undirected) edges, <
by dashed arcs, and ≺ =
 ∩ < by solid arcs.

{〈a, 1〉, 〈b, 1〉, 〈c, 1〉, 〈d, 1〉, 〈e, 1〉, 〈f, 1〉} with posu(〈a, 1〉)=5, posu(〈b, 1〉)=4,
posu(〈c, 1〉) = 3, posu(〈d, 1〉) = 2 and posu(〈e, 1〉) = posu(〈f, 1〉) = 1.

The dependence structure of u is depicted in Figure 5(i). In this structure
we have for instance 〈f, 1〉
 〈d, 1〉 because 〈f, 1〉 is before 〈d, 1〉 in u, in
other words posu(〈f, 1〉) < posu(〈d, 1〉), while 〈f, d〉 /∈ sim ∩ seq and hence
this ordering of the two occurrences cannot correspond to a simultaneous
occurrence of f and d that was sequentialised.

Similarly we have 〈f, 1〉
 〈a, 1〉; moreover, 〈f, 1〉 < 〈a, 1〉 because 〈f, 1〉
is before 〈a, 1〉 and 〈f, a〉 6∈ seq ∩ seq−1 implying that these occurrences of f
and a cannot be swapped. So we obtain 〈f, 1〉 ≺ 〈a, 1〉.

Note that 〈f, 1〉 < 〈e, 1〉 < 〈f, 1〉 because 〈f, 1〉 and 〈e, 1〉 are in the
same step while (e, f) and (f, e) are in sim \ seq−1.

Next we consider the invariant structure of u obtained from its depen-
dence structure by order structure closure. It is depicted in Figure 5(ii).

We now have 〈f, 1〉 ≺ 〈d, 1〉 instead of only 〈f, 1〉
 〈d, 1〉, because the
closure operator introduces 〈f, 1〉 ≺ 〈d, 1〉 from 〈f, 1〉 < 〈e, 1〉 < 〈d, 1〉 in the
dependence structure.

Another new relation is 〈f, 1〉
 〈b, 1〉. This is added because we have
in the dependence structure 〈f, 1〉 < 〈e, 1〉 ≺ 〈b, 1〉 which implies that 〈f, 1〉
cannot be later than 〈e, 1〉 which in its turn is earlier than 〈b, 1〉; thus having
these occurrences of f and b in the same step is impossible.

Finally, note that because (f, c) ∈ sim ∩ seq, we have no < relationship
nor a
 relationship between the occurrences of f and c in the dependence
structure of u. Order structure closure however adds 〈f, 1〉 ≺ 〈c, 1〉, because

252 R. Janicki, J. Kleijn, L. Mikulski

〈f, 1〉 < 〈c, 1〉 since 〈f, 1〉 < 〈e, 1〉 < 〈c, 1〉 in the dependence structure; and
〈f, 1〉
 〈c, 1〉 since 〈f, 1〉 <~ 〈e, 1〉
 〈c, 1〉 in the dependence structure. �

6 Subclasses of Step Alphabets and
Their Invariant Structures

In this section, we investigate what invariant structures underlie the step
traces defined by the eight new subclasses of step alphabets identified in
Section 4. We divide them into three families as indicated by the grey
polygons in Figure 4.

The step alphabets that belong to the family consisting of Θwdp and
Θwdp∪inl know no weak dependence (nor semi-serialisability sse). It appears
that only those two behave as regular as the classes investigated in [7]. It
turns out that we can characterise the invariant structures associated with
the step traces defined by these step alphabets (actually simplifying the
axiomatisation of general invariant structures).

The second family of step alphabets we discuss, excludes strong si-
multaneity (but allows weak dependence). Exactly half of our eight new
subclasses of alphabets belong to this family. For this family we identify
two properties crucial in the definition of the dependence structures and
invariant structures associated with their step traces.

Thirdly we consider step alphabets which may have non-empty weak
dependence and strong simultaneity relations, but allow no true concurrent
events, i.e., con = ∅. The two subclasses of step alphabets considered
are Θcon and Θcon∪inl. In these cases we establish an additional property for
the dependence structures and invariant structures of their step traces.

6.1 Alphabets Without Weak Dependence

We present the main properties of alphabet classes from this family on the
example of Θwdp.

A step alphabet θ ∈ Θwdp has wdp = ∅, hence
also sse = ∅. As a result, we get the case where all the
remaining relations between actions are symmetric.

Example 5 Consider θ1 = 〈{a, c, d, e, f}, sim, seq〉, a
step alphabet with its simultaneity and sequentialisability relations given
in Figure 6 where each undirected edge stands for two arrows in opposite

A Precise Characterisation of Step Traces and
Their Concurrent Histories 253

directions. Some step traces over θ1 are:

JacfK = {acf, caf, (ac)f, afc, a(cf)} JadfK = {adf, afd, daf}
JcdeK = {cde, dce} J(ace)K = {(ace)}
JacdK = {acd, adc, cad, cda, dac, dca, (ac)d, d(ac)} .

�

sim =

a

c

de

f seq =

a

c

d

f

Figure 6: The step alphabet θ1.

On the level of dependence structures and events, this symmetry implies
that we cannot observe one-direction weak causality by itself. Formally, we
have seq = seq−1 and so sim ∩ seq = sim ∩ seq−1 = sim ∩ seq ∩ seq−1 = con.
Moreover, inl = (Σ×Σ)\ (sim\ seq) = inl. This leads to the following version
of (1):

α
 β if 〈`(α), `(β)〉 /∈ con ∧ k 6= m ,

α < β if 〈`(α), `(β)〉 /∈ con ∪ inl ∧ k ≤ m .
(2)

In other words, two occurrences that are not in the same step are in the
mutex relation if they are not concurrent; and two occurrences are ordered
by < whenever they are not concurrent nor can be interleaved. Hence,
the resulting dependence order structures have the property x < y =⇒
y < x ∨ x
 y. Let us consider ORwdp consisting of all order structures
or = 〈∆,
,<, `〉 that satisfy this additional property.

We propose the following axiomatisation for the corresponding invariant
structures. A relational structure 〈∆,
,<, `〉 belongs to IRwdp if, for all

254 R. Janicki, J. Kleijn, L. Mikulski

x, y, z ∈ ∆:

x 6< x (A1)
x 6= y ∧ x < z < y =⇒ x < y (A2)

x
 y =⇒ y
 x 6= y (A3)
x ≺ z ≺ y =⇒ x
 y (A4)

z
 y ∧ z < x < z =⇒ x
 y (A5)
x < y =⇒ x
 y ∨ y < x (A6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (A7)

Note that only the axioms (A4) and (A6) are new. The other five are
equal to (I1), (I2), (I3),(I5), and (I7), respectively.

Moreover, since axioms (I4) and (I6) are replaced by the more restric-
tive (A4) and (A6), we can simplify the procedure of computing the closure
by changing the involved cross relation into mixed transitivity (based on ≺
and weaker <). In this way we have or2irwdp such that for any or ∈ ORwdp

or2irwdp(or) = 〈∆,<~ ◦
 ◦ <~ ∪ (<∗ ◦ ≺ ◦ <∗)sym ,<�, `〉.

Lemma 1 IRwdp ⊆ IR.

Proof: First of all, recall that (I1)=(A1), (I2)=(A2), (I3)=(A3),
(I5)=(A5), and (I7)=(A7). Hence, we need to prove that (I4) and (I6) are
satisfied for every invariant structure ir ∈ IRwdp.

Let x ≺ z < y. Then, by (A6) z
 y or y < z. In the first case we have
x ≺ z ≺ y, and so, by (A4), x
 y. In the second case we have z < y < z
and x
 z, hence, by (A3) (used twice) and (A5), z
 x, y
 x and finally
x
 y. If x < z ≺ y we proceed similarly. As a result, every ir ∈ IRwdp

satisfy (I4).
Let z
 z′ and x < z < y and x < z′ < y. Then, by (A6), z
 x or

z < x. In the first case we have x ≺ z < y, and so, by (I4), x
 y. In the
second case we have z < x < z and so, by (A6) we get x
 z′. Note that it
is impossible to get z′ < x as in this case we would have z′ < x < z < x < z′

which together with z
 z′ denies separability. Then we have, x ≺ z′ < y
and, by (I4), x
 y. As a result, every ir ∈ IRwdp satisfies (I6), which ends
the proof. 2

Lemma 2 IRwdp ⊆ ORwdp.

Proof: Let ir ∈ IRwdp. By Lemma 1 we have that ir ∈ IR, hence ir ∈ OR.
Moreover, by (A6) ir satisfies the condition x < y =⇒ y < x∨x
 y. Hence
ir ∈ ORwdp. 2

A Precise Characterisation of Step Traces and
Their Concurrent Histories 255

Lemma 3 or2irwdp(ORwdp) ⊆ IRwdp.

Proof: Let or = 〈∆,
,<, `〉 and ir = or2irwdp(or) = 〈∆,
̂, <̂, `〉.
To show (A1), suppose that x <̂ x. But this means x <� x, which is

impossible by irreflexivity of <�.

To show (A2), assume that x 6= y and x <̂ z <̂ y. Then x <� y, since
x <∗ y and x 6= y, and so x <̂ y.

To show (A3), assume that x
̂ y. Then x <~ ◦
 ◦ <~ y or x(<∗ ◦ ≺
◦ <∗)symy. In the first case, by symmetry of <~ and
, y <~ ◦
 ◦ <~ x
hence y
̂ x. In the second case, (<∗ ◦ ≺ ◦ <∗)sym is symmetric as it is
a symmetric closure, hence also y
̂ x. Suppose that x = y, which means
that x <~ ◦
 ◦ <~ x or x(<∗ ◦ ≺ ◦ <∗)symx. In both cases we have
x <∗ y
 z <∗ x, hence y <∗ x <∗ z and y
 z, which means that or is not
separable, giving an obvious contradiction, and so x 6= y.

To show (A4), assume that x ≺̂ z ≺̂ y. Since x ≺̂ z, we have x <� z <� y
and x
̂ z. Hence x <∗ z and x <∗ y. According to the definition of or2irwdp,
there are two cases/reasons for x
̂ z. In the first case we directly have
x <∗ ◦ ≺ ◦ <∗ z. For the second case assume that x <~ t′
 t <~ z and
suppose z <∗ x. Then t′ <∗ x <∗ z <∗ t <∗ z <∗ x <∗ t′ and t′
 t, which
means that or is not separable, giving an obvious contradiction. Hence
z 6<∗ x and x <∗ z. Since or ∈ ORwdp (x < z =⇒ z < x ∨ x
 z), there
exist p, q such that x <∗ p ≺ q <∗ z. As a result, in both cases, we get
x <∗ p ≺ q <∗ z <∗ y and so x
̂ y.

To show (A5), assume that z
̂ y and z <̂x <̂ z. First note that x <~ z.
Moreover, z <~ ◦
 ◦ <~ y or z(<∗ ◦ ≺ ◦ <∗)symy. In the first case,
x <~ z <~ ◦
 ◦ <~ y and so x
̂ y. In the second case, as both x <∗ z
and z <∗ x, we have x(<∗ ◦ ≺ ◦ <∗)symy hence x
̂ y.

To show (A6), assume that x <̂ y, but y ̂6< x. Then x 6= y and x <∗ y
but y <∗ x does not hold. This means, that there exist z, t such that
x <∗ z < t <∗ y and t 6< z. But or ∈ ORwdp, hence z
 t and we have
x <∗ z ≺ t <∗ y. Therefore x
̂ y.

Finally, (A7) follows directly from the label-orderedness of or . 2

Theorem 1
ORΘwdp

⊂ ORwdp ⊂ OR
∪ ∪ ∪

IRΘwdp
⊂ IRwdp ⊂ IR

Proof: Let us consider one by one all the inclusions:

256 R. Janicki, J. Kleijn, L. Mikulski

• IR ⊂ OR follows from the general results proven in [4] and

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR\IR .

• IRwdp ⊂ ORwdp follows from or ∈ ORwdp \ IRwdp and Lemma 2.

• IRΘwdp
⊂ ORΘwdp

follows from or ∈ ORΘwdp
\ IRΘwdp

and the general
results proven in [4].

• ORwdp ⊂ OR follows from the definition of ORwdp and

or ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OR \ ORwdp .

• IRwdp ⊂ IR follows from or ′ ∈ IR \ IRwdp and Lemma 1.

• ORΘwdp
⊂ ORwdp can be proven by taking θ ∈ Θwdp, u ∈ SSEQθ, and

or = sseq2orθ(u). We know that or ∈ OR. Suppose that α, β ∈ occ(u)
and α < β. We consider two cases: posu(α) < posu(β) and posu(α) =
posu(β). In the first case, since wdp = sse = ∅, by (1), 〈`(α), `(β)〉 ∈
rig ∪ sse and so 〈α, β〉 ∈
. In the second case, once more by wdp =
sse = ∅ and (1), 〈`(α), `(β)〉 ∈ sse, hence β < α. Therefore or ∈ ORwdp.
Moreover, we note that

or ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORwdp \ ORΘwdp

.

• IRΘwdp
⊂ IRwdp follows from or ′′ ∈ IRwdp \ IRΘwdp

, ORΘwdp
⊆ ORwdp and

Lemma 3.

Moreover, note that or ∈ ORwdp \ IR and or ′ ∈ IR \ ORwdp which justifies
that IR and ORwdp are not related. Similarly, there is no inclusion between
IRwdp and ORΘwdp

since or ∈ ORΘwdp
\ IRwdp and or ′′ ∈ IRwdp \ ORΘwdp

. 2

In addition, we give three properties that fully justify the proposed
characterisation for the invariant structures associated with Θwdp. The first
one shows that invariant structures satisfying the set of proposed axioms
are precisely those invariant structures that satisfy the defining property of
ORwdp: x < y =⇒ y < x ∨ x
 y. The second shows that all dependence
structures of step sequences compatible with any step alphabet from Θwdp

A Precise Characterisation of Step Traces and
Their Concurrent Histories 257

are precisely those satisfying the defining property of ORwdp. And, most
importantly, there are no fake invariant structures in IRwdp, meaning that the
invariant structures over any alphabet from Θwdp are precisely those that can
be obtained as invariant structures for any step alphabet and simultaneously
satisfy the defining property of ORwdp.

Proposition 1 For every relational structure ir = 〈∆,
,<, `〉,

ir ∈ IRwdp ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x < y =⇒ x
 y ∨ y < x) .

Proof: (=⇒) Follows from Theorem 1 and (A6).
(⇐=) Note that (A6) is the additional property; (I1) and (A1), (I2)

and (A2), (I3) and (A3), (I5) and (A5), and (I7) and (A7) are pairs of the
same axioms; while (A4) follows directly from (I4). 2

Proposition 2 For every relational structure or = 〈∆,
,<, `〉,

or ∈ sseq2orΘwdp
(SSEQ) ⇐⇒

(or ∈ sseq2orΘ(SSEQ) ∧ ∀x, y ∈ ∆ : x < y =⇒ x
 y ∨ y < x) .

Proof: (=⇒) Follows from (2). Note that if α < β and k < m then
α
 β. Moreover, if α < β and k = m then β < α.

(⇐=) Suppose that there exists θ ∈ Θ with 〈a, b〉 ∈ wdp (and so
〈b, a〉 ∈ sse). Let us consider seq ∈ SSEQ consisting both a and b. Let
α, β ∈ occu such that `(α) = a and `(β) = b, pos(α) = k and pos(β) = m.
Then, if k < m then α ≺ β; if k ≥ m then β < α, but α 6< β and β 6
 α
which gives contradiction with the assumption that ∀x, y ∈ ∆ : x < y =⇒
x
 y ∨ y < x). As a result, in every or ∈ Θθ all occurrences labelled
by a have to causally preceded all occurrences labelled by b and one can
consider θ′ which is θ with 〈a, b〉 ∈ rig instead of 〈a, b〉 ∈ wdp. Note that
u ∈ SSEQθ′ , and sseq2orθ(u) = sseq2orθ′(u). Hence or ∈ sseq2orΘwdp

(SSEQ).
2

Proposition 3 For every relational structure ir = 〈∆,
,<, `〉,

ir ∈ IRΘwdp
⇐⇒ (ir ∈ IRΘ ∧ ∀x, y ∈ ∆ : x < y =⇒ x
 y ∨ y < x) .

Proof: (=⇒) Follows directly from Lemma 3.
(⇐=) Let θ ∈ Θ be a step alphabet with 〈a, b〉 ∈ wdp (and so also 〈b, a〉 ∈ sse).
Let us consider u ∈ SSEQ containing both a and b, and ir = or2ir(or), where

258 R. Janicki, J. Kleijn, L. Mikulski

or = sseq2or(u). Let α, β ∈ occ(u) such that `(α) = a and `(β) = b,
pos(α) = k and pos(β) = m. We consider three possible orders of k and m.
In the second and third cases we proceed by contradiction excluding one of
two possible conclusions given by the property that defines ORwdp (namely
∀x, y ∈ ∆ : x < y =⇒ x
 y ∨ y < x).

If k < m then, by (1), α ≺or β hence also α ≺ β.

If k > m then β <or α and hence also β < α. Note that, by the
assumption, α < β or β
 α. Suppose that α < β. Then α <∗or β and there
exist δ, γ such that α <∗or γ <or δ <∗or β with pos(δ) < pos(γ) which is in
contradiction with (1). Hence if k > m then β ≺ α.

If k = m then β <or α and naturally β < α. Note that, by the
assumption, α < β or β
 α. Suppose that β
 α, then, by the definition
of or2ir, β <~or γ
or δ <~or α or β crosssym α, where cross = {〈x, y〉 |
∃z, w : z
or w ∧ x <∗or z <∗or y ∧ x <∗or w <∗or y}. In the first case we get
pos(γ) = pos(β) = pos(α) = pos(δ), hence u /∈ SSEQθ (we cannot observe
mutex between events in the same step). In the second case we also get
pos(x) ≤ pos(z) ≤ pos(y) = pos(x) and pos(x) ≤ pos(w) ≤ pos(y) = pos(x)
and so pos(z) = pos(w) and u /∈ SSEQθ. Therefore, if k = m then β < α < β.

Finally, we get α ≺ β if k < m, β ≺ α if m < k and β < α < β if m = k,
hence referring to (1) one can consider θ′ which is θ with 〈a, b〉 ∈ ssi instead of
〈a, b〉 ∈ wdp. Note that u ∈ SSEQθ′ , and sseq2orθ(u) = sseq2orθ′(u). Hence
ir = or2irwdp(sseq2orθ′(u)), which completes the proof. 2

6.2 Alphabets Without Strong Simultaneity

In this subsection we consider step alphabets from Θssi, Θssi∪con, Θssi∪inl, and
Θssi∪con∪inl.

These alphabets know no strong simultaneity, but
may nevertheless still have indivisible steps – as a result
of cycles comprising weakly dependent and simultane-
ous events. However, there are no indivisible steps of
size two. We briefly present the main properties of
alphabet classes from this family for the example of Θssi.

Example 6 Consider θ2 = 〈{a, b, c, d, f}, sim, seq〉, a step alphabet with
simultaneity and sequentialisation relations given in Figure 7. Some step

A Precise Characterisation of Step Traces and
Their Concurrent Histories 259

traces over θ1 are:

JfbaK = {fba, (fb)a, f(ab)} JadfK = {adf, afd, daf}
JacfK = {acf, afc, caf, (ac)f, a(cf)} Jd(bc)K = {d(bc), dcb, cdb}
JacdK = {acd, adc, cad, cda, dac, dca, (ac)d, d(ac)} .

�

sim =

a b

c

d

f seq =

a b

c

d

f

Figure 7: The step alphabet θ2.

The assumption of an empty ssi relation gives an almost unnoticable
simplification of (1):

α
 β if 〈`(α), `(β)〉 /∈ con ∪ sse ∧ k < m ,
or 〈`(α), `(β)〉 /∈ con ∪ wdp ∧ k > m ,

α < β if 〈`(α), `(β)〉 /∈ con ∪ inl ∧ k < m ,
or 〈`(α), `(β)〉 ∈ sse ∧ k = m .

(3)

Since < observed in a single step is implied by sse on the level of actions,
the current dependence structures satisfy the property x < y =⇒ y 6< x. Let
us consider ORssi consisting of all order structures or = 〈∆,
,<, `〉 that
satisfy this additional property.

Since by (I2) we would add backward <-links in the case of events
that form a <-cycle, this newly proposed property cannot be added to
the axiomatisation of invariant structures. We can try and replace it by
x < y < x =⇒ ∃t x < t < y. This, however, while reducing the set of
considered invariant structures, cannot be used to simplify the remaining set
of axioms. Conversely, we need to keep all seven axioms (I1)-(I7) calling them
(B1)-(B7) and add another one of a different nature (with an existential
quantifier). A relational structure 〈∆,
,<, `〉 belongs to IRssi if, for all

260 R. Janicki, J. Kleijn, L. Mikulski

x, y, z, z′ ∈ ∆:

x 6< x (B1)
x 6= y ∧ x < z < y =⇒ x < y (B2)

x
 y =⇒ y
 x 6= y (B3)
x ≺ z < y ∨ x < z ≺ y =⇒ x
 y (B4)

z
 y ∧ z < x < z =⇒ x
 y (B5)
z
 z′ ∧ x < z < y ∧ x < z′ < y =⇒ x
 y (B6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (B7)
x < y < x =⇒ ∃t x < t < y (B8)

The closure operation cannot be simplified and we leave or2irssi = or2ir.
Moreover, similarly to the case of Θwdp, IRssi ⊆ IR and or2irssi(ORssi) ⊆ IRssi

(see Lemma 1 and Lemma 3).

However, IRssi 6⊆ ORssi. To justify this statement, let us consider
Σ = {a, b, c}, step alphabet θ = 〈Σ, (Σ× Σ) \ idΣ, {(a, b), (b, c), (c, a)}〉 from
Θssi, and a step sequence (abc) over this alphabet. By (3), the dependence
structure of (abc) is an order structure or ∈ ORssi with empty
 and
x < y < z < x, where `(x) = a, `(y) = b and `(z) = c. However,
ir = or2irssi(or) gives us also x < z < y < x. Hence we have x < y < x and
so ir /∈ ORssi. One can verify that ir ∈ IRssi, which ends the reasoning giving
a non-trivial counterexample.

As a result, we obtain a diagram like the one in the statement of
Theorem 1:

ORΘssi
⊂ ORssi ⊂ OR

∪ ∪
IRΘssi

⊂ IRssi ⊂ IR

Note that the separation of the additional properties defining depen-
dence structures and invariant structures are the counterparts of the three
propositions stated for Θwdp. To sum up, for every relational structure
or = 〈∆,
,<, `〉,

or ∈ IRssi ⇐⇒ (or ∈ IR ∧ ∀x, y ∈ ∆ : x < y < x =⇒ ∃tx < t < y)

and

or ∈ sseq2orΘssi
(SSEQ) ⇐⇒
(or ∈ sseq2orΘ(SSEQ) ∧ ∀x, y ∈ ∆ : x < y ⇐⇒ y 6< x) ,

A Precise Characterisation of Step Traces and
Their Concurrent Histories 261

but

or ∈ IRΘssi
=⇒ (or ∈ IRΘ ∧ ∀x, y ∈ ∆ : x < y ⇐⇒ ∃tx < t < y) .

The proof of the first equivalence stated above for or ∈ IRssi is similar
to the proof of Proposition 1. Also the proof of the second equivalence given
for or ∈ IRssi is very close to the proof of Proposition 2. The proof of the
third statement, an implication when or ∈ IRΘssi

is similar to the proof of the
left-to-right implication in Proposition 3. The reverse implication however,
does not always hold, as we demonstrate next.

Let us consider the invariant order structure ir ∈ IRΘ of the step
sequence (abc)cabc over the same step alphabet from Θssi as before: θ =
〈Σ, (Σ × Σ) \ idΣ, {(a, b), (b, c), (c, a)}〉 where Σ = {a, b, c}. Then ir has
domain ∆ = {a1, a2, b1, b2, c1, c2, c3} with `(xi) = x (see Figure 8).

a

b

c

c a b c

Figure 8: The invariant order structure ir of the step sequence (abc)cabc
with the underlying occurrences ordered from left to right.

Suppose that θ′ ∈ Θ is such that ir is an invariant structure over θ′.
Since b1 and c1 are in a weak causality cycle, it must be the case that (b, c)
is in the simultaneity relation of θ′. Moreover, b2 ≺ c3 and this relationship
is not introduced by closure. Hence (b, c) /∈ sse and (b, c) /∈ con. Since
c2 < a2 and a2 < b2 (and those relationships cannot be introduced by
closure), we know that (c, a) ∈ sse and (a, b) ∈ sse. As a result in any
dependence structure we have c1 < a1 and a1 < b1 but a1 6< c1 and b1 6< a1.
Therefore c1 < b1 cannot be introduced by closure and needs to be present
in the dependence structure. Finally, (b, c) /∈ wdp and the only remaining

262 R. Janicki, J. Kleijn, L. Mikulski

possibility is (b, c) ∈ ssi which means that θ′ /∈ Θssi. This shows that the last
implication indeed cannot be reversed.

6.3 Alphabets Without True Concurrency

Next we turn to the subclasses of Θcon and Θcon∪inl. As we show on the
example of Θcon, in these cases we are able to provide a nice additional prop-
erty for both dependence structures and invariant structures. However, this
property does not describe the extraction of invariant structures. The reason
is similar to the situation described in the previous subsection. Information
collected from more than one pair of events labelled in a specific manner,
might individually mimic appropriate behaviour, but be inconsistent when
considered together.

A step alphabet θ ∈ Θcon has con = ∅. As a result,
every pair of events in a run is related (either causally
or by mutex). From the point of view of all related
order structures, there exists an arc or edge between
any pair of nodes.

Example 7 Consider θ3 = 〈{a, b, d, e, f}, sim, seq〉, a step alphabet with its
simultaneity and sequentialisation relations given in Figure 9 where each
undirected edge stands for two arrows in opposite directions. Some step
traces over θ3 are:

JfbaK = {fba, (fb)a, f(ab)} JadfK = {adf, afd, daf}
Ja(ef)K = {a(ef)} JbdeK = {bde} .

�

sim =

a b

de

f seq =

a b

de

f

Figure 9: The step alphabet θ3.

A Precise Characterisation of Step Traces and
Their Concurrent Histories 263

In the case of an empty con relation we obtain the following simplification
of (1):

α
 β if 〈`(α), `(β)〉 /∈ sse ∧ k < m ,
or 〈`(α), `(β)〉 /∈ wdp ∧ k > m ,

α < β if 〈`(α), `(β)〉 /∈ inl ∧ k < m ,
or 〈`(α), `(β)〉 ∈ ssi ∪ sse ∧ k = m .

(4)

The property that every pair of events is related can be formally ex-
pressed as x 6= y =⇒ x < y∨y < x∨x
 y. We investigate ORcon consisting
of all order structures that satisfy this property.

We can use this property to reduce the number of invariant structures.
However, it cannot be used to simplify the remaining axioms. A relational
structure 〈∆,
,<, `〉 belongs to IRcon if, for all x, y, z, z′ ∈ ∆:

x 6< x (C1)
x 6= y ∧ x < z < y =⇒ x < y (C2)

x
 y =⇒ y
 x 6= y (C3)
x ≺ z < y ∨ x < z ≺ y =⇒ x
 y (C4)

z
 y ∧ z < x < z =⇒ x
 y (C5)
z
 z′ ∧ x < z < y ∧ x < z′ < y =⇒ x
 y (C6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (C7)
x 6= y =⇒ x < y ∨ y < x ∨ x
 y (C8)

The closure operation cannot be simplified and we leave or2ircon = or2ir.
Similar to the case of alphabets from Θwdp (see Lemma 1, Lemma 2,

Lemma 3, and Theorem 1), we obtain IRcon ⊆ IR, IRcon ⊆ ORcon and
or2ircon(ORcon) ⊆ IRcon, which leads to

ORΘcon ⊂ ORcon ⊂ OR
∪ ∪ ∪

IRΘcon ⊂ IRcon ⊂ IR

Moreover, for every relational structure or = 〈∆,
,<, `〉,

or ∈ IRcon ⇐⇒ (or ∈ IR ∧ ∀x, y ∈ ∆ : x 6= y ⇐⇒ x < y∨y < x∨x
 y)

and

or ∈ sseq2orΘcon
(SSEQ) ⇐⇒

(or ∈ sseq2orΘ(SSEQ) ∧ ∀x, y ∈ ∆ : x < y ∨ y < x ∨ x
 y) ,

264 R. Janicki, J. Kleijn, L. Mikulski

b d a c b

Figure 10: The invariant structure ir of bdacb with the underlying occur-
rences ordered from left to right.

but

or ∈ IRΘcon =⇒ (or ∈ IRΘ ∧ ∀x, y ∈ ∆ : x < y ∨ y < x ∨ x
 y) .

Again, as in the case of Θssi, the last implication in the reverse di-
rection does not hold. This can be seen as follows. Consider the step
alphabet θ = 〈Σ, sim, seq〉 with Σ = {a, b, c, d}, sim = (Σ × Σ) \ idΣ, and
seq = {(a, b), (b, a), (d, a), (a, c), (c, b), (b, d)}. Let ir ∈ IRΘ be the invari-
ant structure over θ of the step sequence bdacb. Then ir has domain
∆ = {a1, b1, b2, c1, d1} with `(xi) = x (see Figure 10).

Suppose that θ′ ∈ Θ is such that ir is an invariant structure over θ′.
Note that events b1 and a1 as well as a1 and b2 are related by <. On the
other hand, they cannot all be present in the same step (there are two
instances of action b). Hence, by (1), (a, b) /∈ rigθ′ and (a, b) /∈ inlθ′ , as in
both situations we would observe b1
 a1
 b2. Similarly, (a, b) /∈ simθ′ , as
in this situation we would observe b1
 a1 or a1 < b1. Finally, (a, b) /∈ wdpθ′
and (a, b) /∈ sseθ′ as in those situations we would observe b1
 a1 or a1
 b2.
As a result, we get that (a, b) ∈ conθ′ and θ′ /∈ Θcon.

7 Conclusion

In this paper we have proposed a new classification of step alphabets. As
the distinctions between the different subclasses are more detailed in this

A Precise Characterisation of Step Traces and
Their Concurrent Histories 265

paper, this has resulted in an extension of the classification in [7] from eight
to sixteen classes. The identification of the various classes is based on a
partition of the basic relations between actions into six meaningful relations
and then assuming that some of these do not occur (are empty). The eight
new subclasses have been divided into three families and we have described
some prominent additional features of their associated order structures.

The research in this paper yields a comparison of (families of) subclasses
of step alphabets in terms of behaviour (potential relations between events)
and properties of their associated dependence and invariant structures. This
comparative study is however not yet complete and should still be extended
to all sixteen classes by identifying a characteristic property for each of
them. We anticipate that more investigations in this direction will lead to
more insight in their practical potential. After all, also in the case of the
four classes investigated in [7], some well known and useful trace models of
concurrent systems could be identified.

Another aspect touched upon in this paper, but not yet entirely ex-
ploited, is related to the synthesis of step alphabets (see, e.g., [6, 16]).
Properties of invariant structures that can be realised by particular step
alphabets might be used in the procedure of revealing the concurrent struc-
ture of a process or system under investigation. Requiring membership of a
specific class of the step alphabet to be synthesised, would then be a possible
design choice.

Acknowledgements

This research was partially supported by the Discovery NSERC grant of
Canada No. 6466-15.

We thank the reviewers for their positive feedback and the many sug-
gestions which have helped us to improve the organisation of the paper and
the presentation of our results.

Above all, we are grateful to Maciej Koutny, our friend and colleague,
for his inspiration and contribution to our joint research efforts. Since he is
not a co-author this time, we can for once dedicate a paper to him.

References

[1] V.Diekert and G.Rozenberg (eds.). The Book of Traces. World Scientific,
Singapore, 1995. doi:10.1142/9789814261456.

http://dx.doi.org/10.1142/9789814261456

266 R. Janicki, J. Kleijn, L. Mikulski

[2] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Causal Structures for
General Concurrent Behaviours. CEUR Workshop Proceedings, 1032,
pages 193–205, 2013.

[3] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Characterising
Concurrent Histories. Fundamenta Informaticae, 139(1), pages 21–42,
2015. doi:10.3233/FI-2015-1224.

[4] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Step
Traces. Acta Informatica, 53(1), pages 35–65, 2016. doi:10.1007/

s00236-015-0244-z.

[5] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Alphabets of Acyclic
Invariant Structures. Fundamenta Informaticae, 154(1–4), pages 207–
224, 2017. doi:10.3233/FI-2017-1562.

[6] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Invariant Structures
and Dependence Relations. Fundamenta Informaticae, 155(1-2), pages
1–29, 2017. doi:10.3233/FI-2017-1574.

[7] R. Janicki, J. Kleijn, M. Koutny, and L. Mikulski. Classifying Invariant
Structures of Step Traces. Journal of Computer and System Sciences,
In Press, available online 2017. doi:10.1016/j.jcss.2017.05.002.

[8] R. Janicki and M. Koutny. Structure of Concurrency. Theoretical Com-
puter Science 112(1), pages 5–52, 1993. doi:10.1016/0304-3975(93)
90238-O.

[9] R.Janicki and M.Koutny. Semantics of Inhibitor Nets. Inf. Comput.
123(1), pages 1–16, 1995. doi:10.1006/inco.1995.1153.

[10] A. Laarman. Stubborn Transaction Reduction. In: A.Dutle, C.A.Muñoz,
and A.Narkawicz, editors, NASA Formal Methods Symposium, Lecture
Notes in Computer Science, vol. 10811, pages 290–298. Springer, Berlin,
2018. doi:10.1007/978-3-319-77935-5_20.

[11] D.T.M. Le. On Three Alternative Characterizations of Combined
Traces. Fundamenta Informaticae 113(3), pages 265–293, 2011. doi:

10.3233/FI-2011-609.

[12] A. W. Mazurkiewicz. Concurrent Program Schemes and Their In-
terpretations. DAIMI Rep. PB 78, Aarhus University (1977). doi:

10.7146/dpb.v6i78.7691.

http://dx.doi.org/10.3233/FI-2015-1224
http://dx.doi.org/10.1007/s00236-015-0244-z
http://dx.doi.org/10.1007/s00236-015-0244-z
http://dx.doi.org/10.3233/FI-2017-1562
http://dx.doi.org/10.3233/FI-2017-1574
http://dx.doi.org/10.1016/j.jcss.2017.05.002
https://doi.org/10.1016/0304-3975(93)90238-O
https://doi.org/10.1016/0304-3975(93)90238-O
https://doi.org/10.1006/inco.1995.1153
https://doi.org/10.1007/978-3-319-77935-5_20
https://doi.org/10.3233/FI-2011-609
https://doi.org/10.3233/FI-2011-609
https://doi.org/10.7146/dpb.v6i78.7691
https://doi.org/10.7146/dpb.v6i78.7691

A Precise Characterisation of Step Traces and
Their Concurrent Histories 267

[13] A. W. Mazurkiewicz. Trace Theory. In: W. Brauer, W. Reisig, and G.
Rozenberg, editors, Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Lecture Notes in Computer
Science, vol. 255, pages 278–324. Springer, Berlin, 1987. doi:10.1007/
3-540-17906-2_30

[14] A.W. Mazurkiewicz. Basic Notions of Trace Theory. In: J.W. de Bakker,
W.P. de Roever, and G. Rozenberg, editors, REX Workshop Lecture
Notes in Computer Science, vol. 354, pages 285–363. Springer, Berlin,
1988. doi:10.1007/BFb0013025.

[15] L. Mikulski. Algebraic Structure of Combined Traces. Logical Methods
in Computer Science 9(3:8), 2013. doi:10.2168/LMCS-9(3:8)2013.

[16] A. Muscholl. Automated Synthesis of Distributed Controllers. In: Au-
tomata, Languages, and Programming - 42nd International Colloquium,
ICALP, Lecture Notes in Computer Science 9135, pages 11–27, Springer,
2015. doi:10.1007/978-3-662-47666-6_2.

[17] A. Nagy and A. Arif. Trajectories and Traces on Non-Traditional
Regular Tessellations of the Plane. In: Combinatorial Image Analysis,
Lecture Notes in Computer Science 10256, pages 16–29, Springer, 2017.
doi:10.1007/978-3-319-59108-7_2.

[18] L. Paulevé. Goal-Oriented Reduction of Automata Networks. In:
International Conference on Computational Methods in Systems Biology,
pages 252–272, 2016. doi:10.1007/978-3-319-45177-0_16.

[19] V.R.Pratt. Modeling Concurrency With Partial Orders. Int. J. Parallel
Program 15(1), pages 33 – 71, 1986. doi:10.1007/BF01379149.

[20] E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundam. Math. 16,
386–389, 1930. doi:10.4064/fm-16-1-386-389.

c© Scientific Annals of Computer Science 2018

https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/BFb0013025
https://doi.org/10.2168/LMCS-9(3:8)2013
https://doi.org/10.1007/978-3-662-47666-6_2
https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-319-45177-0_16
https://doi.org/10.1007/BF01379149
https://doi.org/10.4064/fm-16-1-386-389

	Introduction
	Preliminaries
	Step Traces
	Subclasses of Step Alphabets
	Invariant structures
	Step Traces and Invariant Structures

	Subclasses of Step Alphabets and Their Invariant Structures
	Alphabets Without Weak Dependence
	Alphabets Without Strong Simultaneity
	Alphabets Without True Concurrency

	Conclusion

