
Scientific Annals of Computer Science vol.17, 2007

“Alexandru Ioan Cuza” University of Iaşi, Romania

Approximation for Batching via Priorities1

Wolfgang BEIN2, John NOGA3, Jeffrey WIEGLEY4

Abstract

We consider here the one-machine serial batching problem under
weighted average completion. This problem is known to be NP-hard
and no good approximation algorithms are known. Batching has wide
application in manufacturing, decision management, and scheduling
in information technology.

We give an approximation algorithm with approximation ratio of 2;
the algorithm is a priority algorithm, which batches jobs in decreasing

order of priority. We also give a lower bound of 2+
√

6

4
≈ 1.1124 on

the approximation ratio of any priority algorithm and conjecture that
there is a priority algorithm which matches this bound. Adaptive
algorithm experiments are used to support the conjecture. An easier
problem is the list version of the problem where the order of the jobs
is given. We give a new linear time algorithm for the list batching
problem.

1A preliminary version appeared in the conference proceedings of the Forty-First

Hawai’i International Conference on System Sciences.
2Center for the Advanced Study of Algorithms, School of Computer Science, University

of Nevada Las Vegas, NV 89154, USA, email: bein@cs.unlv.edu. Research conducted

while on sabbatical from the University of Nevada, Las Vegas. Sabbatical support from

UNLV is acknowledged.
3Department of Computer Science, California State University, Northridge, CA 91330,

USA, email: jnoga@csun.edu,
4Department of Computer Science, California State University, Northridge, CA 91330,

USA, email: jeffw@csun.edu

1

1 Motivation and Background

Batching problems play an important role in Information Technology. We
consider the batching problem where a set of jobs J = {Ji} with processing
times pi > 0 and weights wi ≥ 0, i = 1, . . . , n, must be scheduled on a
single machine, and where J must be partitioned into batches B1, . . . ,Br.
All jobs in the same batch are run jointly and each job’s completion time
is defined to be the completion time of its batch. We assume that when
a batch is scheduled it requires a setup time s = 1. The goal is to find
a schedule that minimizes the sum of weighted completion times

∑
wiCi,

where Ci denotes the completion time of Ji in a given schedule5. Given a
sequence of jobs, a batching algorithm must assign every job Ji to a batch.
More formally, a feasible solution is an assignment of each job Ji to the mth

i

batch, i ∈ {1, . . . , n}.
For example, Figure 1 shows two schedules for a 5-job problem where

processing times are p1 = 3, p2 = 1, p3 = 4, p4 = 2, p5 = 1 and the weights
are w1 = w4 = w5 = 1 and w2 = w3 = 2. We note that the encircled
values give the sum of the weighted completion times of the two depicted
schedules. For example, the first schedule implies C2 = 7, C3 = 5, and
C1 = C4 = C5 = 14. Thus the sum of weighted completion times of the first
schedule is 7 · 2 + 3 · 2 + 14(1 + 1 + 1) = 66. For convenience we sometimes
write the job data in the form {(p1, w1), (p2, w2), . . . , (pn, wn)}. Thus in the
example we would have written {(3, 1), (1, 2), (4, 2), (2, 1), (1, 1)}.

The problem considered in this paper has the jobs executed sequen-

5Note that this is equivalent to finding a schedule that minimizes average weighted

completion time, as sum of weighted completion times is related to average weighted

completion time by a factor of n.

66

5 7 14

J 4J 5J 1J 2J 3

5 10 14

J 1 J 5 J 3 J 4 J 2 72

Figure 1: A Batching Example (s-batch).

2

J 1 J 5

J 3J 4

J 2

3 8

36

Figure 2: A Batching Example (p-batch).

tially, thus the problem is more precisely referred to as the s-batch problem.
We note that there is a different version of the problem not studied here,
where the jobs of a batch are executed in parallel, known as the p-batch
problem. In that case, the length of a batch is the maximum of the pro-
cessing times of its jobs. Figure 2 gives an example of a p-batch schedule.
Note that in the example C1 = C2 = C4 = 3, C3 = C5 = 8, and thus the
sum of the weighted completion times is 3(1 + 1 + 2) + 8(2 + 1) = 36. We
note that this version of the problem is solved by an O(n log n) algorithm
due to [7]. The s-batch problem studied here is more precisely denoted as
the 1|s-batch|∑wiCi problem in α|β|γ notation. Brucker and Albers [1]
showed that the 1|s-batch|∑wiCi problem is NP-hard in the strong sense
by giving a reduction from 3-PARTITION.

There is a large body of work on batching problems (see e.g. [2, 3,
6, 7, 9, 12]) and batching has wide application in manufacturing (see e.g.
[8, 16, 20]), decision management (see e.g. [14]), and scheduling in infor-
mation technology (see e.g. [10]). More recent work on online batching is
related to the TCP (Transmission Control Protocol) acknowledgment prob-
lem (see [4, 11, 13]). We also note that there are many variants of the
problem, with many different complexity results. For a survey, see chapter
8 of [6]. Still, the 1|s-batch|∑wiCi problem is considered fundamental in
scheduling theory and it is indeed surprising that little is known about its
approximability.

Here we give an approximation algorithm for the 1|s-batch|∑wiCi

problem. In fact, we give two algorithms, one called PseudoBatch, and
the other one called CanonicalBest. For approximation algorithms, it is
natural to consider the jobs according to the order of priorities qi = wi

pi
. If

the jobs are renumbered such that w1

p1
≥ w2

p2
. . . ≥ wn

pn
, we say that the jobs

are in canonical order. An algorithm that schedules the jobs in this order
is called a priority algorithm. Both of our approximation algorithms are

3

51J 1 J 2 J 3 J 4 J 5

4 6 11 14 16

60

12

J 5J 4J 3J 2J 1

48

5 10 14

J 1 J 2 J 3 J 4 J 5

Figure 3: List Batching.

priority algorithms.
We recall that the quality of an approximation is measure in terms of

its approximation ratio ρ: Given an optimization problem P we say that
algorithm AP has approximation ratio ρ if for every instance π ∈ P,

ρ ≤ cost of the solution given by AP for instance π

cost of Minimum for instance π
,

where Minimum is value of a minimum solution. We show that Pseudo-

Batch and CanonicalBest both have approximation ratio ρ = 2. We

also give a lower bound of 2+
√

6
4 ≈ 1.1124 on the approximation ratio of

any priority algorithm and conjecture that CanonicalBest matches this
bound. Adaptive algorithm experiments are used to support the conjecture.

A much easier version of the problem is the list version of the problem
where the order of the jobs is given, i.e., mi ≤ mj if i < j. For example, Fig-
ure 3 shows three schedules for a 5-job problem {(3, 1)(1, 1)(4, 1)(2, 1)(1, 1)}.
The encircled values give the sum of weighted completion times of the sched-
ules to the left.

Brucker and Albers [1] gave a linear time algorithm for the list batching
problem. (Thus, to solve the 1|s-batch|∑wiCi problem, it is sufficient to
know the order of jobs in the optimal solution.) We give an alternative al-
gorithm in this paper. Our algorithm exploits the fact that the problem can
be reduced to a shortest path problem, where the underlying cost matrix is
a totally monotone matrix and thus can use the matrix searching algorithm
of Larmore and Schieber [15] as a subroutine. A matrix A is called totally

4

monotone if for all i < i′ and j < j′, A[i, j] > A[i, j′] implies A[i′, j] >

A[i′, j′]; matrix A is called Monge if A[i, j] + A[i′, j′] ≤ A[i′, j] + A[i, j′].
Clearly, every Monge matrix is totally monotone. We note that the linear
time list batching algorithm is used to implement CanonicalBest in run
time O(n log n).

Our paper is organized as follows: In Section 2 we give our priority
approximation algorithms. Section 3 gives our alternate linear time algo-
rithm for the list batching problem. Section 4 presents the lower bound
on the approximation ratio of any priority algorithm. Section 5 describes
genetic algorithm experiments. Specifically, we give an adaptive algorithm
experiment which supports the conjecture that the approximation ratio of
CanonicalBest matches the lower bound. This section also contains the
description of a genetic algorithm for the 1|s-batch|∑wiCi problem im-
plemented under GAlib, the object-oriented library of Matthew Wall [19]
developed at the Massachusetts Institute of Technology. We conclude with
open problems in Section 6.

2 Approximation Algorithms

We give the following technical lemma, which is also known as the “Smith
Rule” in the area of scheduling.

Lemma 1 Given p1, . . . , pn > 0, w1, . . . , wn ≥ 0 with w1

p1
≥ w2

p2
. . . ≥ wn

pn
and

permutation π. For i = 1, . . . , n let P π
i =

∑i
j=1 pπ(j). Then fπ =

∑
P π

i wπ(i)

is minimized when π is the identity.

Proof: Consider permutation τ , which is not the identity. Then τ has an
inversion j > i with i immediately before j in τ . Let τ ′ be the permutation
with i and j interchanged. We have

fτ ′ − fτ = piwi + (pi + pj)wj − pjwj − (pi + pj)wi

= piwj − pjwi

≤ 0,

since wi

pi
≥ wj

pj
. It follows that fτ ′ ≤ fτ and we are done. 2

5

processing > 1 processing > 1

1.10.2 0.6 0.2 0.30.1

Figure 4: PseudoBatch for p1 = 0.2, p2 = 0.6, p3 = 0.2, p4 = 0.3, p5 =
0.1, p6 = 1.1.

Lemma 2 Let Ci be the completion times of an optimal schedule for the
1|s-batch|∑wiCi problem and let Pi =

∑i
j=1 pj. Then we have

n∑

i=1

wiCi ≥
n∑

i=1

wi(Pi + 1)

Proof: Let permutation σ be the order of the optimal schedule. Then

P σ
i + 1 ≤ Ci.

Due to Lemma 1 we have

n∑

i=1

wiCi ≥
n∑

i=1

wi(P
σ
i + 1) ≥

n∑

i=1

wi(Pi + 1).

2

We now present a simple, parameterized algorithm, PseudoBatch,
for the 1|s-batch|∑wiCi problem. PseudoBatch first reorders the jobs
so that they are in canonical order. Then jobs are assigned to batches in
that order. After receiving Ji, our algorithm has only two choices, namely
whether to assign Ji to the same batch as Ji−1 or not. We use the phrase
“A batches at step i” to mean that algorithm A decides that Ji is the first
job of a new batch, i.e. mi = mi−1 + 1. We use the phrase “current batch”
to denote the batch to which the last job was assigned. Then, when Ji is
received, A must decide whether to add Ji to the current batch, or “close”
the current batch and assign Ji to a new batch. PseudoBatch maintains
a variable P which will be the sum of the processing times of a set of recent
jobs: we call this set the current pseudobatch. When J1 is received, P is
set to 0. After receiving each subsequent Ji, PseudoBatch first adds pi

to P . If P > 1, PseudoBatch batches and also sets P to zero. Thus, the
ith pseudo-batch contains all but the first member of the ith batch, together
with the first member of the (i + 1)st batch, unless i = r. Every job except
J1 belongs to just one pseudo-batch.

6

Figure 4 gives an example for p1 = 0.2, p2 = 0.6, p3 = 0.2, p4 = 0.3, p5 =
0.1 and p6 = 1.1.

Theorem 1 PseudoBatch has an approximation ratio of 2.

Proof: As before let Ci be the completion times of an optimal schedule
for the 1|s-batch|∑wiCi problem. Let Ĉi denote the completion times of
the jobs when algorithm PseudoBatch is run on the instance and let mi

be the number of batches created by the algorithm. Clearly we have

Ĉi ≤ Pi + mi + 1

and
(mi − 1) ≤ Pi.

Thus,
Ĉi ≤ 2Pi + 2.

By Lemma 2 we have

n∑

i=1

wiĈi ≤ 2
n∑

i=1

wi(P
σ
i + 1)

≤ 2
n∑

i=1

wiCi.

2

Let CanonicalBest be the algorithm which puts the jobs in canonical
order and the linear time algorithm of the next section (or the algorithm
of [1]) to get the optimal list batching schedule under the canonical order.
Clearly we have:

Theorem 2 CanonicalBest has an approximation ratio of 2.

Proof: Algorithm PseudoBatch has approximation ratio of 2 and is a
priority algorithm. Given an instance of the problem, algorithm Canoni-

calBest produces a schedule with weighted average completion no worse
than algorithm PseudoBatch. 2

7

Job 1 Job 3 Job 4

Job 1 Job 3 Job 4Job2 Job 5

Job2 Job 5

cij

Figure 5: Reduction of the List Batching Problem to a Path Problem.

3 An Alternate Linear Algorithm for List Batch-

ing

We now turn to the run time of Algorithm CanonicalBest. As mentioned
earlier, Brucker and Albers [1] gave a linear time algorithm for the list
batching problem. We give here a simple alternate algorithm here. The
algorithm is similar to their algorithm but it utilizes, as a subroutine, the
well-known linear time matrix searching algorithm of Larmore and Schieber
[15].

To this end let us assume that the jobs are 1, . . . , n and are given in this
order. One can then reduce the list batching problem to a shortest path
problem in the following manner: Construct a weighted directed acyclic
graph G with nodes i = 1, . . . , n (i.e. one node for each job) and add
a dummy node 0. There is an edge (i, j) iff i < j. (See Figure 5 for a
schematic.) Let edge costs ci,j for i < j be defined as

ci,j = (
n∑

ℓ=i+1

wℓ)(s +

j
∑

ℓ=1

pℓ), (1)

where s = 1 is the batch setup time. We briefly note:

8

Lemma 3 The matrix C = (ci,j) defined in (1) is Monge for all choices
of pi, wi ≥ 0. Furthermore values can be queried in O(1) time after linear
preprocessing.

Proof: Let Wi =
∑i

ν=1 wν and Pi =
∑i

ν=1 pν be the partial sum of the
pi and wi values. Then we have

c[i, j] = ci,j = (Wn − Wi)(s + Pj)

For i < i′ and j < j′

c[i, j] + c[i′, j′] − c[i′, j] − c[i, j′]

= (Pj′ − Pj)(Wi′ − Wi)

≥ 0.

2

Returning now to the discussion of the reduction, it is easily seen (see
[1] for details) that the cost of path < 0, i1, i2, . . . , ik, n > gives the

∑
Ciwi

value of the schedule which batches at each job i1, i2, . . . , ik. Conversely,
any batching with cost A corresponds to a path in G with path length A.

A shortest path can be computed in time O(n2) using the following
dynamic program:

Let
E[ℓ] = cost of the shortest path from 0 to ℓ,

then
E[ℓ] = min

1≤k<ℓ
{E[k] + ck,l} with E[0] = 0, (2)

which results in a table, in which elements can be computed row by row
(see Figure 6.)

In other words, the dynamic program computes the row minima of the
(n − 1) × (n − 1) matrix E, where

E[ℓ, k] =

{
E[k] + c[k, ℓ] if ℓ < k

∞ else
(3)

with ℓ = 2, . . . n and k = 0, . . . , n − 1.

Lemma 4 The matrix E = (Eℓ,k) defined in (3) is Monge.

9

��

��

��

������

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

min

min

min

min

E[2]

E[3]

E[4]

Figure 6: Dynamic Programming Tableau.

Proof: Monge is preserved under addition and taking the minimum. 2

As it turns out all row minima can be computed in linear time using
the algorithm of Larmore and Schieber, which is also known as the Larsch

algorithm [15]. To execute the Larsch algorithm we need only that the
matrix E satisfy the following conditions:

1. For each row index ℓ of E, there is a column index γℓ such that for
k > γℓ, Eℓ,k = ∞. Furthermore, γℓ ≤ γℓ+1.

2. If k ≤ γℓ, then E[ℓ, k] can be evaluated in O(1) time provided that the
row minima of the first ℓ rows are already known.

3. E is a totally monotone matrix.

If these conditions are satisfied, the Larsch algorithm then calculates
all of the row minima of E in O(n) time. (See also [5]).

Condition 1 is clear from the fact that in matrix E all infinities are in
the upper triangle of the matrix.

We turn to Condition 2. Condition 2 describes the online protocol
underlying the computation of the dynamic programming tableau. It states
that an element in column k is “knowable” once the row minimum of row
k is revealed. Figure 7 illustrates this. For example, once the minimum of
row 4 (that is, the value for E[4]) is known then the values of column 4 are
available, since these values are of the form E[4]+c[., .]. Furthermore, these
values can be queried in O(1) time due to Lemma 3.

Condition 3 follows from Lemma 4.

10

c12+E[1]

c13+E[1]

c14+E[1]

c23+E[2]

c24+E[2]c34+E[3]

E[3]

E[2]

E[4]

Row 2

Row 3

Row 4

Column 1 Column 2 Column 3 Column 4

Figure 7: The “Online” Protocol of the Tableau.

Since CanonicalBest requires the priorities to be sorted first, in sum-
mary we have:

Theorem 3 Algorithm CanonicalBest has run time O(n log n).

4 A Lower Bound for Priority Algorithms

We now give a lower bound of 2+
√

6
4 ≈ 1.1124 on the approximation ratio of

any priority algorithm. To show the lower bound, consider a problem which
consists of exactly two jobs. There are two orders of the jobs possible.
With each order there are two ways to batch the problem; either a single
batch consisting of both items or two single batches, each containing one
of the items. Since the order of jobs within a batch is irrelevant, two of
the possibilities are identical and thus a total of three possibilities exist for
Optimum, and CanonicalBest.

Given now a problem {(p1, w1), (p2, w2)} we assuming equal priorities
w1

p1
= w2

p2
= 1 it can be shown that {(p1, w1), (p2, w2)} = {(1, 1 + ǫ), (1 +√

6, 1+
√

6)} maximizes C = Ccan

Copt
. We note the value ǫ, is used to break the

tie and force CanonicalBest to choose an order different than Optimum;
however, ǫ will tend to 0.

11

We use square brackets [] to denote a batch. Now consider:

[{(1, 1 + ǫ), (1 +
√

6, 1 +
√

6)}] (4)

C = (1 + p1 + p2)(w1 + w2)

= (1 + 1 + ǫ + 1 +
√

6)(1 + 1 +
√

6)

= (3 +
√

6 + ǫ)(2 +
√

6)

≈ 24.25

[{(1, 1 + ǫ)}][{(1 +
√

6, 1 +
√

6)}] (5)

C = (1 + p1)w1 + (2 + p1 + p2)w2

= (1 + 1 + ǫ)1 + (2 + 1 + 1 +
√

6)(1 +
√

6)

= (2 + ǫ) + (4 +
√

6)(1 +
√

6)

≈ 24.25

[{(1 +
√

6, 1 +
√

6)}][{(1, 1 + ǫ)}] (6)

C = (1 + p2)w2 + (2 + p2 + p1)w1

= (1 + 1 +
√

6)(1 +
√

6) +

(2 + 1 +
√

6 + 1)(1 + ǫ)

= (2 +
√

6)(1 +
√

6) + (4 +
√

6)(1 + ǫ)

≈ 21.80

Optimum chooses order (6) as it gives lowest cost possible. Canoni-

calBest is forced to choose between (4) or (5) due to the slight increase of
the priorities of (1, 1 + ǫ), caused by ǫ, ordering that job first. Both choices
have the same cost. Thus:

C ≥ Ccan

Copt

≥ (3 +
√

6 + ǫ)(2 +
√

6)

(2 +
√

6)(1 +
√

6) + (4 +
√

6)(1 + ǫ)

As ǫ tends to 0, we have

C ≥ 2 +
√

6

4
≈ 1.1124.

12

5 Adaptive Algorithm Experiments

In the previous section we have exhibited a solution which gives the worst
approximation ratio for CanonicalBest when there are two jobs. The
question remains whether a more difficult problem exists considering a larger
number of jobs. We conjecture that this is not the case. In this section we
will give results of computer experimentation that support this conjecture.

To explore problem spaces consisting of more than two jobs an evolu-
tionary algorithm was developed. Individuals consisted of a single problem
with an arbitrary number of jobs i, where 2 ≤ i ≤ 6. Jobs were limited
to six because the optimal solution was obtained by exhaustive search. For
an individual, the number of jobs and the job data represent the genetic
makeup of that individual. The fitness function f(x) used to evaluate the
suitability of individual x for inclusion in successive evolutions is simply the
CanonicalBest competitive ratio of the individual’s problem.

The algorithm is seeded with a single individual consisting of at least
one job. Any individual with a single job will always have f(x) = 1.0;
mutation is used to quickly produce individuals with two or more genes
with f(x) > 1.0. The evolutionary environment sustains a total of µ = 50
parents. Using a simple deterministic selection process, all pairs of parents
were mated to produce λ = µ2 = 2500 offspring. Of the resulting population
of µ + λ = 2550, the strongest 50 were retained for the next generation.

In evolutionary algorithms, offspring are typically the product of mu-
tation and crossover of their parents; however in our search we only relied
on mutations. Mutations of a parent consisted of processing the parent’s
jobs (genes); any single job had a probability of φmut = 0.1 of producing
a mutation; otherwise it was simply copied to the child. Several types of
mutations were applied. Mutations affected either the weight or processing
time of a job.

• With probability 0.25 values could be scaled by a random amount
with the intention of introducing random variability thereby landing
on new neighborhoods of the landscape.

• Values could double (probability 0.25) or values could be halved (prob-
ability 0.25) in order to quickly converge on instances that relied on
small or large values of a particular job in relation to others.

• With probability 0.25 values could also change by small amounts for
the case that a job could be made harder by very small tweaks to the

13

Gen f(x) Problem

49 1.109481 {(1.01, 0.40), (3.20, 1.26)}
144 1.109964 {(1.01, 0.40), (3.20, 1.26)}
284 1.111070 {(0.99, 0.39), (3.20, 1.26)}
1969 1.111199 {(0.99, 0.39), (3.20, 1.26)}
5705 1.111338 {(0.99, 0.39), (3.20, 1.26)}
9283 1.111842 {(1.00, 0.40), (3.20, 1.26)}
10487 1.111890 {(1.00, 0.40), (3.20, 1.26)}
10971 1.111920 {(1.00, 0.40), (3.20, 1.26)}
17910 1.111956 {(1.00, 0.40), (3.20, 1.26)}
26522 1.111957 {(1.00, 0.40), (3.20, 1.26)}

Table 1: Improvements During Random Seeded Case.

current design. (This is a bit similar to use of ǫ in Section 4).

Finally, with probability 0.1 we applied an additional change to the
child, where the number of jobs was changed with probability 0.5 to increase
and with probability 0.5 to decrease by one job. Decreases were performed
by the deletion of a random job with equal probability. Addition of a job
was introduced by either adding a random job, or by duplicating one of the
already present jobs with equal probability. Change was avoided if it would
produce job sizes outside of the allowable range.

When the algorithm is seeded with {(1.0, 1.0)} the resulting evolution
was uninteresting. At generation 5 an individual was arrived at consist-
ing of {(1.00, 1.00), (4.00, 4.00)}, where f(x) = 1.1111. From this time up
until at least generation 18813, µ consisted of 50 clones of this individ-
ual and appeared to remain stable despite the existence of a known, more
difficult problem (Section 4). Similarly, when seeded with that problem,
{(3.45, 3.45), (1.00, 1.00)} , µ immediately converged on 50 clones of this
individual, with no variation at all, up until at least generation 20553. No
other, more difficult, problem is found.

When seeded with a random job of {(0.33, 0.54)} things were a bit more
interesting. The early generations showed a more diverse µ consisting of six
unique individuals; all with f(x) = 1.0. In generation 49 the individual of
{(1.01, 0.40), (3.20, 1.26)} was found with f(x) = 1.109481 and µ consisted
of 50 copies. Later generations showed further small improvements. A
sampling of that evolution is illustrated in Table 1.

14

Parent 1 184 637
︸︷︷︸

|25 random slice 637

Parent 2 352718|64 add underlined

Child 218637|45 child is a valid permutation

Figure 8: Example of an Ordered Crossover.

All the improvements appear to be the result of the small tweaks mu-
tations, other mutations failing to produce competitive individuals. No
further improvement was found as of generation 72233.

We now turn to an unrelated implementation under GAlib, the object-
oriented library of Matthew Wall [19] developed at MIT. Because it is pos-
sible to give an optimal schedule in linear time if the order is fixed (as
described in Section 3) in the 1|s-batch|∑wiCi, it is natural to consider a
genetic algorithm where the search space is the set of permutations. Then
each individual’s fitness – its weighted average completion – can be evalu-
ated in linear time.

We have to define mutation and crossover. A mutation simply swaps
two arbitrary elements of the permutation. For the crossover it is impor-
tant to devise a mechanism that retains some features of the original two
individuals in such a meaningful way that results in two new permutations.
In the ordered crossover first used by Prins (see [17]), one takes a random
subsequence of the first parent’s permutation and insert it directly into
the child. As described in Figure 8, the child is then completed by taking
material from the second second parent’s permutation, where elements are
inserted into the child in the order they occur in that parent, starting after
the second cut location, and ignoring elements already inserted from the
first parent.

All experiments had the following parameters in common:

• Population Size: 1000

• Number of Generations: 5000

• Number of jobs: 100

• Crossover probability: 0.85

• Mutation probability: 0.005

15

The results were compared with the (conservative) lower bound of
Lemma 2 and our results consistently gave solutions within a ratio of ρ =
1.59. The detailed results of these experiments are in [18].

6 Conclusions

We have given a priority approximation algorithm for the 1|s-batch|∑wiCi

problem. We have also shown that no priority algorithm can have approx-

imation ratio less than 2+
√

6
4 . As we have pointed out, we conjecture that

algorithm CanonicalBest matches this lower bound. However, it is an
interesting open research problem to prove the correctness of this conjecture.

Note that the lower bound of 2+
√

6
4 holds only for priority algorithms.

It is current research to investigate if there is a lower bound even if this
assumption is dropped, or to give a polynomial approximation scheme in
case such a lower bound does not exist.

We note that a version of the algorithm PseudoBatch is useful for
online batching problems and we given results for the online case in [4].

Acknowledgments

Wolfgang Bein conducted this research while visiting the University of
Texas at Dallas during sabbatical leave from the University of Nevada, Las
Vegas. Sabbatical support from UNLV is acknowledged. The authors thank
Charles Shields of the University of Texas at Dallas for valuable comments
and suggestions.

References

[1] S. Albers and P. Brucker. The complexity of one-machine batching
problems. Discrete Applied Mathematics, 47:87–10, 1993.

[2] P. Baptiste. Batching identical jobs. Mathematical Methods of Opera-
tion Research, 52:355–367, 2000.

[3] P. Baptiste and A. Jouglet. On minimizing total tardiness in a serial
batching problem. Operations Research, 35:107–115, 2001.

[4] W. Bein, L. Epstein, L. Larmore, and J. Noga. Optimally competi-
tive list batching. In Algorithm Theory - SWAT 2004, volume 3111 of
LNCS, pages 77–89. Springer, 2004.

16

[5] W. Bein, M. Golin, L. Larmore, and Y. Zhang. The Knuth-Yao
quadrangle-inequality speedup is a consequence of total-monotonicity.
Transactions on Algorithms. to appear.

[6] P. Brucker. Scheduling Algorithms. Springer Verlag, 2004.

[7] P. Brucker, A. Gladky, H. Hoogeveen, M. Kovalyov, C. Potts, T. Taut-
enhahn, and S. van de Velde. Scheduling a batch processing machine.
Journal of Scheduling, 1(1):31–54, 1998.

[8] P. Brucker and J. Hurink. Solving a chemical batch scheduling problem
by local search. Annals of Operations Research, 96:17–38, 2000.

[9] P. Brucker, M. Y. Kovalyov, Y. M. Shafransky, and F. Werner. Batch
scheduling with deadline on parallel machines. Annals of Operations
Research, 83:23–40, 1998.

[10] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-
demand video server with batching. In Proceedings of the second ACM
international conference on Multimedia, pages 15–23. ACM, 1994.

[11] D. R. Dooly, S. A. Goldman, and S. D. Scott. On-line analysis of the
TCP acknowledgment delay problem. Journal of the ACM, 48(2):243–
273, 2001.

[12] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms
for single-machine scheduling. In Proc. 5th Conf. Integer Programming
and Combinatorial Optimization (IPCO), pages 404–414, 1996.

[13] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowl-
edgment and other stories about e/(e-1). Algorithmica, 36(3):209–224,
2003.

[14] R. Kuik, M. Salomon, and L. N. van Wassenhove. Batching decisions:
structure and models. European journal of operational research, 75:243–
263, 1994.

[15] L. Larmore and B. Schieber. On-line dynamic programming with ap-
plications to the prediction of rna secondary structure. Journal of
Algorithms, 12:490–515, 1991.

17

[16] C. N. Potts and L. N. Van Wassenhove. Integrating scheduling with
batching and lot-sizing: A review of algorithms and complexity. The
Journal of the Operational Research Society, 43:395–406, 1992.

[17] C. Prins. Competitive genetic algorithms for the open-shop scheduling
problem. Technical report, Ecole des Mines de Nantes, 1999.

[18] L. Raymond. Heuristics for batching jobs under weighted average com-
pletion time. Master’s Thesis, University of Nevada, Las Vegas, 2006.

[19] M. Wall. GAlib: A C++ Library of Genetic Algorithm Com-
ponents. Cambridge, Massachusetts, version 2.4 edition, 1996.
http://lancet.mit.edu/ga/.

[20] G. Zhang, X. Cai, C. Y. Lee, and F. Wong. Minimizing makespan on
a single batch processing machine with nonidentical job sizes. Naval
Research Logistics, 48:226–240, 2001.

18

