
Scientific Annals of Computer Science vol. 24 (1), 2014, pp. 91–136

doi: 10.7561/SACS.2014.1.91

A Flat Process Calculus for Nested Membrane
Interactions

Chiara BODEI1, Linda BRODO2, Roberto BRUNI3,
Davide CHIARUGI4

Abstract

The link-calculus has been recently proposed as a process calcu-
lus for representing interactions that are open (i.e. that the number
of processes may vary), and multiparty (i.e. that may involve more
than two processes). Here, we apply the link-calculus for expressing,
possibly hierarchical and non dyadic, biological interactions. In par-
ticular, we provide a natural encoding of Cardelli’s Brane calculus, a
compartment-based calculus, introduced to model the behaviour of
nested membranes. Notably, the link-calculus is flat, but we can
model membranes just as special processes taking part in the biological
reaction. Moreover, we give evidence that the link-calculus allows one
to directly model biological phenomena at the more appropriate level
of abstraction.

Keywords: Membrane Interactions, link-calculus, Brane Calculus

1 Introduction

In the last years, many process algebras have been adapted for modelling and
analysing biological systems, by exploiting the similarity between distributed
and concurrent systems and complex biological systems. Species can therefore

1Dipartimento di Informatica, Università di Pisa, Italy, Email: chiara@di.unipi.it
2Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria

dell’Informazione, Università di Sassari, Italy, Email: brodo@uniss.it
3Dipartimento di Informatica, Università di Pisa, Italy, Email: bruni@di.unipi.it
4Department of Theory and Bio Systems, Max Planck Institute of Colloids and Inter-

faces, Potsdam, Germany, Email: davide.chiarugi@mpikg.mpi.de

92 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

be abstractly seen as interacting processes and reactions as actions, thus
helping the modeller to focus on the relationships among the species. As
a dowry, process algebras provide a formal setting for describing biological
phenomena and ready-to-use analysis methodologies and tools.

The symbolic abstraction offered by process algebras is crucial for
managing the complexity of biological mechanisms, especially if it can be
joined to a flexible modelling strategy able to switch between different levels
of abstraction.

We focus here on process calculi that model biological compartments
or membranes and their interactions, and in particular on Brane Calculi
(presented in Section 5), a family of process calculi, introduced by Cardelli
in [8], endowed with dynamically nested membranes, based on location
mobility and awareness. Membrane interactions are described into terms
of synchronisations between pairs of co-actions. Nevertheless, on a closer
view, these apparently dyadic interactions are inherently multiparty. Each
interaction not only involves the two processes triggering the interaction, by
offering the required co-actions, but it also involves one or more membranes,
as supporting actors. Each interaction leads indeed to a new membrane
hierarchy.

To better capture this multiparty nature of interactions, we resort to a
flat calculus, the link-calculus [4] (recalled in Section 3), whose primitives
are designed for describing and coordinating interactions that are multiparty,
i.e. that may involve more than two processes and are open, i.e. the number
of involved processes is not fixed or known a priori by the other partners. The
link-calculus is an extension of the π-calculus, where dyadic interactions
are replaced by a more general synchronisation algebra.

The main difference, with respect to the π-calculus, is that in the
link-calculus communication actions are given in terms of links, that record
the source and the target ends of each hop of interaction. Links can be
indeed combined in link chains that route information across processes from
a source to a destination. Intuitively, an interaction can be imagined like the
composition of a one-dimensional jigsaw puzzle: it requires different pieces to
fit together, where the pieces are the links that, together with the objects of
communication, are offered by each involved action. Links can be joined in
a link chain if they are to some extent “complementary”, i.e. if each process
contributes with links that are not specified by others. According to the
puzzle analogy, different parts of the chain can be composed separately, and,
afterwards, assembled without overlays.

A Flat Process Calculus for Nested Membrane Interactions 93

The link-calculus has been introduced and exploited in [4] to provide an
encoding of Mobile Ambients [9], from which many bio-inspired calculi derive,
included the Brane Calculi. Mobile Ambients and its descendant calculi are
all based on compartmentalisation and on location-awareness. Ambients
are bounded locations representing the mobile computational units in which
agents interact. The link-calculus can naturally capture the spatial aspects
due to ambient nesting and the multiparty essence of ambient interactions.

Supported by the “genetic” resemblance with Mobile Ambients, we
provide an encoding of Brane Calculi in the link-calculus, by following the
line of [4]. Also in the case of Brane Calculi, by using the link-calculus we
can easily handle locality, without introducing any specific operator, just
encoding any membrane compartment as a separate process. Furthermore,
multiparty interactions are naturally rendered.

One of the peculiar features of Brane calculi is the design of different
sets of primitives to capture different biological mechanisms, and to choose
different levels of granularity for the studied biological compartments. We
first encode the MBD version of Brane calculi, and then we introduce similar
encodings for the PEP version of the calculus, and for a subset of the calculus
able to handle the interaction between molecules. Our flat calculus easily
accommodates each new set of primitives. Under this regard, our calculus can
be seen as a sort of universal low-level language for the family of membrane-
based calculi, offering a basic set of interactions able to simply implement
the several more abstract primitives of Brane. This shows the expressivity
of link-calculus, both from the linguistic and biological perspective.

At the same time, we show that the link-calculus can also directly
represent high-level molecular interactions and biological phenomena, by
using exactly the same principles. Actually, an expressivity problem arises
when we consider that, in general, biological interactions, such as reactions,
can involve more than two elements at the time, but are modelled, by
usual biologically-oriented process calculi, as suitable sequences of binary
reactions. With the link-calculus, we do not have this limitation in the
arity of participants in a reaction any longer. We can indeed — as shown in
the next Section — directly model a biological process involving multiparty
interactions in the link-calculus, without passing from another process
algebra. One advantage is a tight operational correspondence between
biological reactions and process reactions: while biological reductions are
often encoded as sequences of interactions in ordinary process calculi, they
can be represented as atomic interactions in the link-calculus. Furthermore,

94 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

in modelling we can choose the abstraction level, depending on the current
interest.

Related Works In [19, 20], there are other proposals for changing the
abstraction level, using the same formalism: the probabilistic model checker
PRISM is indeed applied to simulate biological case studies, both at the
individual level, and at the level of interacting populations of cells. In [19]
also membrane compartments are modelled. To allow the specification
of multi-reactant multi-product reactions in BlenX [16], the work in [13]
proposes an extension to model a sequence of elementary actions as if it were
atomic. More similar in spirit to our work is instead [27], where an extension
of the π-calculus, π@, is introduced that provides an encoding of Brane
Calculi. This calculus is flat, but with dyadic interactions: localisation is
expressed by means of polyadic synchronisation, while atomic operations are
expressed by means of constraints on the order of communications, obtained
with priorities.

Several approaches, among which we recall [17, 22, 24, 5, 6], present
encodings of Mobile Ambients. The main motivation is to provide an LTS
semantics to Mobile Ambients, as a basis for bisimulation congruence. Also,
in [12], the authors present an encoding of the mobile ambients without
communication into a subset of the π-calculus, based on the separation of the
spatial structure of mobile ambients from their operational semantics. While
in all these works ad hoc semantics are introduced, the encoding proposed
in [4], and the one presented here for Brane Calculi are just illustrative
examples of application of our link-calculus.

The basic computer interaction, where a message is sent and received
by two different processes, is dyadic and there is a long tradition in studying
the properties of this kind of interaction. The seminal work [26] that opens
the study of the process algebra for modelling biological processes resorts to
the π-calculus as it is one with a strong established theory. Until now, one
of the main challenges in this area is how translating the classical properties
of distributed systems into biological terms. Nevertheless, from the point of
view of the intrinsic dynamics of biological processes, the interactions are
not dyadic and their formalisation in terms of input-output activities is a
strong simplification.

Our proposal goes in the direction of defining a multiparty calculus
suitable to compose a large variety of biological interactions, different in the
number of their participants and on their level of abstraction (biochemical,

A Flat Process Calculus for Nested Membrane Interactions 95

molecular, cellular, etc.), sufficiently general to easily incorporate most of
the relevant aspects in biology, such as locality, shapes, concentrations, etc.

Structure of the paper. In Section 2, we give a first introduction to the
link-calculus and we show its flexibility in modelling biological interactions,
by giving a model of the Receptor-mediated Endocytosis mechanism. The
example is then resumed and concluded in Section 4, after the formal
introduction of the syntax and operational semantics of the link-calculus
in Section 3. In Section 5, we recall the syntax and operational semantics
of the families of Brane calculi, while in Section 6 we show how to encode
Brane calculi in the link-calculus. In Section 7, we present the link-calculus
encoding of the Brane Calculus description of the Semliki Forest virus [8] as
a concrete example of the translation. Some concluding remarks are drawn
in Section 8.

2 The Receptor-mediated Endocytosis Example

Modelling complex biological phenomena is not a trivial task. Consider,
for instance, the process known as receptor-mediated endocytosis [1], a very
general mechanism that allows living cells to transport specific substances
(ligands) from the external environment to the cytoplasm.

This process, depicted in Figure 1, consists of various steps and involves
the formation of vesicles. The first step occurs on the outer side of the cell
membrane, and is represented by the binding between the ligands and a set
of specialised molecules (receptors), embedded in the cell membrane. The
formation of the ligand-receptor complex (LR) triggers further events close
to the inner side of the cell membrane. First, one molecule of the AP-2
complex5 binds to each LR complex, thus allowing the clustering of the
LR complexes and the subsequent link with a number of proteins called
CLATHRIN. These molecules elicit the invagination of the part of the cell
membrane that resides close to the receptors, and eventually leads to the
formation of a vesicle that contains the LR complex and is coated by an
external layer of AP-2 and clathrin molecules. Then, this vesicle moves
along the cytoplasm towards other vesicles (endosomes). Finally, the vesicle
coalesces with the endosome (fusion), immediately after the dissociation of
the external AP-2-clathrin coat (uncoating).

5The AP-2 complex consists of two large adaptins (α and β2), a medium adaptin (µ2),
and a small adaptin (σ2).

96 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

Figure 1: The Receptor-mediated Endocytosis.

We focus our attention on the first two steps: (1) the binding between
the ligands and a set of specialised molecules (receptors) embedded in the
cell membrane; and (2) the further events close to the inner side of the
cell membrane triggered by the formation of the ligand-receptor complex
(LR): (a) the binding of one molecule of the AP-2 complex (a.k.a. adaptor
complex) to each LR complex, and (b) the following clustering of the LR
complexes and (c), finally, the subsequent link with a number of proteins
called CLATHRIN.

To obtain the overall picture of this process, we need to address two
different abstract levels, usually modelled separately: the level of membranes
and the one of molecules.

The flexibility of the link-calculus is exploited here to model both
molecular and membrane interactions, without resorting to any extension
of the language. This example will also give us the chance to smoothly
introduce our calculus, that will be formally presented in Section 3.

In the first part of the example, there are different possibilities for
modelling the biological interactions, depending on the particular object of

A Flat Process Calculus for Nested Membrane Interactions 97

study; we can choose to model the engulfing of the LIGAND:

(a) as a single multiparty interaction, that involves the cell membrane,
the LIGAND, the RECEPTOR, and the two molecules AP-2 and
CLATHRIN;

(b) or by resorting to two steps, by making explicit the binding between the
ligands, the receptors, and the proteins AP-2, then the ligand between
the ligand-receptor-AP-2 complex and the proteins CLATHRIN;

(c) or by choosing a lower abstract level, not considering membranes, and
only focussing on the underlying chemical reactions.

Here, we follow the second solution (b), and we model the first part of
the example as the two following link-calculus multiparty interactions:

• the interaction among the LIGAND, the RECEPTOR, and the cell
membrane, which is considered as an active participant; and

• the interaction between the complex LIGAND-RECEPTOR and the
proteins AP-2 and CLATHRIN.

In Figure 2, there are the link-calculus specifications of the involved
elements, whose names are written in capital letters, e.g. LIGAND or RE-
CEPTOR, and where the subscript records the name of the compartment
where each element lies (e.g. LIGANDtop represents the element LIGAND
lying at top level in the membrane hierarchy). In membranes also the parent
compartments are recorded as superscripts (as in the previous examples):
e.g. M top

cell is the cellular membrane, lying at the top (of our model).

In traditional process algebras, processes communicate by means of
actions and co-actions that synchronise on the same channel and possibly
exchange data. In link-calculus, interactions are multi-party and can there-
fore involve more than two processes. Actions come with links, i.e. pairs
α\β that record the source and the destination ends of each hop of a com-
munication. At the same time, actions offer a communication tuple 〈~w〉,
whose names can be used either as values (e.g. cell) or as variables (that we
distinguish by underlining them, e.g. xcell). In the cell membrane process, in
the link part (...\...) we specify the binding elements placed on the membrane
(in our case, the external and the internal part of the receptor), while in
the tuple, we specify the two involved localities (top and cell). Instead,
in the link part of the others biological elements, we specify the element

98 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

name, on the left side, and the element name that can be bound to, on the
right side (ElementName\BindingElement). As before, we specify the element
location in the tuple. Each party offers its link and its tuple, and a multi-
party interaction is possible when they can be suitably combined together,
i.e. when:

• links match two by two, e.g. τ\memRec with memRec\receptor; and when

• all the parties agree on the same tuple pattern, by possibly matching
values in corresponding position, and by binding the remaining variables
with the corresponding values, which here represent the names of
their own locations. For instance, in the combination of the tuples
〈top, xmemout , xmemin , xcell〉 and 〈xtop,memout, xmemin , xcell〉, the value
top can be assigned to the variable xtop, while the value memout can
be assigned to the variable xmemout .

Therefore, links are combined in a link chain, like pieces in a jigsaw
puzzle, where each party contributes with its link. More precisely, we can
think about S-shaped tetrominos (see the first link chain produced in our
example in Figure 3), joined together when the labels of the edges match.

The following first transition allows the formation of the ligand-receptor-
AP2 complex, while the second transition produces COMPLEXcell con-
taining the vesicle membrane and the complex ligand-receptor-AP2-clathrin.
The definition of COMPLEXcell is given in Figure 4.

LIGANDtop|M top
cell|RECEPTORcell|AP-2cell|CLATHRINcell

↓ τ\memRecmemRec\receptorreceptor\ap2ap2\τ

M top
cell|LIG-REC-AP2cell|CLATHRINcell

↓ τ\clathrinclathrin\τ

M top
cell|COMPLEXcell

3 The Calculus of Linked Interactions

In the previous section, we intuitively introduce the calculus of linked in-
teractions, (link-calculus for short). Now, we formally introduce its main

A Flat Process Calculus for Nested Membrane Interactions 99

LIGANDtop|M top
cell|RECEPTORcell|AP-2cell|CLATHRINcell

(whole system)

LIGANDtop , τ\memRec〈top, xmemout , xmemin , xcell〉.0
(outside the cell)

M top
cell , recX.(

memRec\receptor〈xtop,memout, xmemin , xcell〉.X
(the cell membrane)

RECEPTORcell , receptor\ap2〈xtop, xmemout ,memin, xcell〉.LIG-REC-AP2cell
(on the cell membrane)

AP-2cell , ap2\τ 〈xtop, xmemout , xmemin , cell〉.0
(within the cell)

CLATHRINcell , clathrin\τ 〈x, cell〉.0
(within the cell)

LIG-REC-AP2cell , τ\clathrin〈cell, y〉.COMPLEXcell

(within the cell)

Figure 2: Model of the formation of the complex
ligand−receptor−ap2−clathrin.

ingredients, and we briefly recall its syntax and semantics (for further details
and examples we refer to [4]). The key feature of this language is that
communication actions are given in terms of links. A link is a pair that
records the source and the target ends of a communication, meaning that
the input available at the source end can be forwarded to the target one.
Links are combined in link chains to describe the way information can be
routed across ends.

Let C be the set of channels, ranged over by a, b, c, ..., and let C ∪{ τ, ∗ }
be the set of actions, ranged over by α, β, γ, ..., where the symbol τ denotes a
silent action, and the symbol ∗ denotes a non-specified action (i.e. a missing
piece of the puzzle according to the analogy proposed before).

A link is a pair ` = α\β : we call α the source end of ` and β the target
end of `. A link ` = α\β is valid if either α, β 6= ∗ or ` = ∗\∗. In the first
case, the link is called solid. The link ∗\∗ is called virtual. We let L be the

100 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

Figure 3: Link Composition seen as Combining Tetrominos with Matching
Labels.

set of valid links. Examples of non valid links are τ\∗ and ∗\a, while both
τ\a and a\b are valid links.

A link chain is a finite sequence s = `1...`n of (valid) links `i = αi\βi
such that:

1. for any i ∈ [1, n− 1],

{
βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ

2. if ∀i ∈ [1, n].αi, βi ∈ { τ, ∗ }, then ∀i ∈ [1, n].αi = βi = τ .

The first condition says that any two adjacent solid links must agree on their
ends: it also imposes that τ cannot be matched by ∗. The second condition
disallows chains made of virtual links only. The empty link chain is denoted
by ε. A non-empty link chain is solid if all its links are so. For example,
τ\aa\b is a solid link chain, while τ\∗a\b∗\τ is not solid.

The link-calculus processes are defined by the following grammar:

P,Q ::= 0 | X | `t.P | P +Q | P |Q | (ν a)P | P [a/b] | recX.P

where ` is a solid link (i.e. ` = α\β with α, β 6= ∗) and t is a tuple of names.

Roughly, processes are built over a standard syntax (with nil process 0,
prefix `t.P , sum P +Q, parallel P |Q, restriction (ν a)P , renaming P [a/b],
recursion recX.P , for X a process variable), but where the underlying
synchronisation algebra is based on link chains.

The calculus is equipped with the name passing mechanism, borrowed
from the (polyadic) π-calculus, but slightly extended. Each link in the
whole chain simply carries the same list of arguments, but with different
(send/receive) capabilities. We assume channel names are admissible values,
i.e. as in π-calculus, we have the possibility to communicate (names of)
means of communication. In the tuple t = 〈~w〉, names can be used either
as values or as variables. To be distinguished, variables are underlined.

A Flat Process Calculus for Nested Membrane Interactions 101

P + 0 ≡ P P +Q ≡ Q+ P (P +Q) +R ≡ P + (Q+R)
P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
(ν n)0 ≡ 0 (ν n)(ν m)P ≡ (ν m)(ν n)P

recX.P ≡ P{recX.P/P} (ν n)(P | Q) ≡ P | (ν n)Q, if n 6∈ fn(P)

Table 1: Congruence rules of the link-calculus.

This mechanism allows, e.g. a form of multi-way communication, where
all peers involved in the link chain can express arguments to be matched,
and provide actual arguments to replace the formal ones of other peers.
In general, the same peer can atomically (i.e. executing one single prefix)
send some values and receive other values. For a tuple t, we let vals(t) and
vars(t) denote the set of values and the set of variables of t, respectively.
We say that a tuple t is ground if vars(t) = ∅. For example, the processes
P = τ\a〈v〉.P ′ and Q = a\τ 〈x〉.Q′ can interact by forming the link chain
τ\aa\τ with P sending the value v to Q (x will be substituted by v in Q′ after
the interaction). As a more general example, processes P = τ\a〈v, y,m〉.P ′
and Q = a\τ 〈x,w,m〉.Q′ can interact by forming again the link chain τ\aa\τ
with P sending the value v to Q (as before), Q sending the value w to P
(y will be substituted by w in P ′ after the interaction) and both P and Q
agreeing over the third argument m of the communication (which is matched
in both tuples).

As usual, (ν a)P binds the occurrences of a in P . Similarly to (ν a),
the prefix `t.P binds the occurrences of the variables vars(t) in P . The sets
of free and of bound names of a process P are defined in the obvious way
and denoted, respectively, by fn(P) and bn(P). Processes are taken up to
alpha-conversion of bound names, and we shall often omit trailing 0, and
empty tuples, e.g. by writing a\b instead of a\b〈〉.0. In the following, given
two set of names S and T , we write S#T as a shorthand for S ∩ T = ∅.

The operational semantics is defined in terms of an LTS, whose states
are link-calculus processes, whose labels are pairs sg of link chains s and
tuples g, and whose transitions are generated by the SOS rules in Table 2,
by relying on the congruence rules in Table 1. In a label of the form sg, if s
is solid, then g must be the empty tuple 〈〉, i.e. it is not possible to observe
the arguments of a completed communication.

We denote by σ = [x1 7→ v1, ..., xn 7→ vn] the substitution that replaces
each xi with vi, and is the identity otherwise, and set vars(σ) = {x1, ..., xn }.
Substitution is defined, as usual, in order to avoid name captures, and can

102 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

` ∈ s g �σ t
(Act)

`t.P
sg−→ Pσ

P
sg−→ P ′

(Lsum)

P +Q
sg−→ P ′

P
sg−→ P ′ a 6∈ g

(Res)

(ν a)P
(ν a)(sg)−−−−−→ (ν a)P ′

P
sg−→ P ′ a ∈ g

(Open)

(ν a)P
(ν a)(sg)−−−−−→ P ′

P [X 7→ recX.P]
sg−→ P ′

(Rec)

recX.P
sg−→ P ′

P
sg−→ P ′ ex (g)#fn(Q)

(Lpar)

P |Q sg−→ P ′|Q

P
sg−→ P ′ Q

s′g′−−→ Q′
ex (g)#fn(Q)
ex (g′)#fn(P)

s • s′ is not solid

(Com)

P |Q sg•s′g′−−−−→ P ′|Q′

P
sg−→ P ′ Q

s′g′−−→ Q′
ex (g)#fn(Q)
ex (g′)#fn(P)

s • s′ is solid
g • g′ is ground

(Close)

P |Q s•s′−−→ (ν ex (g • g′))(P ′|Q′)

P
sg−→ P ′ σ = [b 7→ a]

(Ren)

P [a/b]
(sg)σ−−−→ P ′[a/b]

P ′ ≡ P P
sg−→ Q Q ≡ Q′

(Struct)

P ′
sg−→ Q′

Table 2: SOS Semantics of the link-calculus (rules (Rsum) and (Rpar)
omitted).

be applied to tuples, links, and to processes (see [4] for further details).

We say that g is a full instance of t and write g �σ t if vars(σ) = vars(t)
and g = tσ.

Certain actions of the link chain can be hidden, by restricting the
channel where they take place. Formally, for s = `1...`n, with `i = αi\βi for
i ∈ [1, n], we define the restriction operation (ν a)s by letting6

6This operation and the following ones are not defined in all the cases not explicitly
mentioned.

A Flat Process Calculus for Nested Membrane Interactions 103

(ν a)s , α1\(ν a)(α2
β1

)\...\(ν a)(αn
βn−1

)\βn if α1, βn 6= a

(ν a)(αβ) ,

{
τ
τ if α = β = a

α
β if α, β 6= a

Based on this definition and like in the π-calculus, names in the tuple
can be extruded during the communication. In the labels of transitions, we
need to annotate positions in the tuple to distinguish between arguments
that are taken in input (i.e. they are guessed instances), or that are extruded.
We underline the former ones, while we overline the latter ones. A name can
be extruded when it is not already annotated; after the extrusion, it will be
overlined. Formally, given a link chain s, an (annotated) tuple g, (ν a)(sg)
and (ν a)g are defined as follows:

(ν a)(sg) , ((ν a)s)((ν a)g)

(ν a)〈w1, ..., wn〉 , 〈(ν a)w1, ..., (ν a)wn〉

(ν a)w ,

{
w if w 6= a, a, a
a if w = a

We let ex (g) denote the set of extruded (i.e. overlined) names appearing in
g, and extend the definition of substitution application to overlined names
in the obvious way. We write a ∈ g if the name a appears in the tuple g
(with or without annotation).

Two link chains can be merged if they are to some extent “complemen-
tary”, i.e. if they have the same length, each provides links that are not
specified in the other, and together they form a (valid) link chain. Formally,
for s = `1...`n and s′ = `′1...`

′
n, with `i = αi\βi and `′i = α′i\β′i for any

i ∈ [1, n], we define s • s′ by letting:

s • s′ , (`1 • `′1)...(`n • `′n)
α\β • α

′\β′ , (α•α′)\(β•β′)
α • β ,

{
α if β = ∗
β if α = ∗

Two annotated tuples can be merged when they list exactly the same values
in the same order, and if the values in matching positions are annotated in
some compatible way. Formally, if g = 〈w1, ..., wn〉 and g′ = 〈w′1, ..., w′n〉:

sg • s′g′ , (s • s′)(g • g′)
g • g′ , 〈w1 • w′1, ..., wn • w′n〉

104 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

w • w′ ,


w if (w = w′ = v) ∨ (w = w′ = v)
v if (w = v ∧ w′ = v) ∨ (w = v ∧ w′ = v)
v if (w = v ∧ w′ = v) ∨ (w = v ∧ w′ = v)

The SOS rules in Table 2 resemble the early semantic rules of π-calculus.
The main difference is that we are dealing with a multi-party form of
communication, and, consequently, the “close” rule must be applied when
the communication has been completed.

Rule (Act) allows the process `t.P to offer the tuple t in a communication
on the link `. More precisely, following an early style, the actual tuple to be
communicated must be a full instance of t (see the condition g �σ t): the
communication is that of sg, where variables appearing in t are replaced
in g = tσ by actual parameters. The substitution σ is also applied to the
continuation, after the transition (Pσ).

In rules (Res) and (Open), we leave implicit the side condition (ν a)sg 6=
⊥. Rule (Res) is applicable whenever a 6∈ g, in which case (ν a)g = g 6= ⊥
and thus (ν a)(sg) = ((ν a)s)g. Rule (Open) models the extrusion of a. Note
that, since (ν a)sg 6= ⊥ and a ∈ g, we have that the only possibility for a
to appear in g is without annotations (otherwise (ν a)g = ⊥). Then, by
definition of (ν a)g, all occurrences of a within g are overlined in (ν a)g (to
denote the name extrusion).

In rule (Com), the annotated tuples are “complementary” and can be
merged, by merging both the link chains and the two tuples. Note that we
leave implicit the side condition sg • s′g′ 6= ⊥, because the sg • s′g′ annotates
the label of the conclusion transition. In addition, rule (Com) checks that
(i) the extruded names of one process do not clash with the free names
of the other process (like in ordinary π-calculus), and finally that (ii) the
communication is not completed yet (s • s′ not solid).

Rule (Close) checks differ from the (Com) one, because (Close) is
applicable only when the communication has been fully completed and
cannot be further extended (s • s′ is solid). In this case we must close,
i.e. put back the restriction of all names extruded in the communication
((ν ex (g•g′))). Still, we need to make sure that g•g′ has no unresolved input,
i.e. that all requested values have been issued (g • g′ is ground). Moreover,
the observed label is just s • s′, as explained before. This is similar to the
π-calculus mechanism, according to which the synchronisation of e.g. a〈x〉
and a〈x〉 yields τ and not τ〈x〉.

While rules (Lsum), (Rsum), (Rec) and (Struct) are straightforward,
rules (Lpar) and (Rpar) need just to check that extruded names of one

A Flat Process Calculus for Nested Membrane Interactions 105

process do not clash with free names of the other process (like in ordinary
π-calculus).

For some simple examples of the LTS semantics of link-calculus, we
refer to [4]. Here, we just point out with an example the way in which the
merge of link chains is performed. We recall that the definition of the •
operator requires that the two involved link chains must be of the same
length, and that, by rule (Act) we can arbitrarily add virtual links, in any
position. Let s1 = τ\b, s2 = b\c, and s3 = c\τ be three links, then there are
three possible combinations for applying the • operator:

• we can first define s′1 = τ\b∗\∗∗\∗, s′2 = ∗\∗b\c∗\∗, and compute
s4 = s′1 • s′2 = τ\bb\c∗\∗; then we can define s′3 = ∗\∗∗\∗c\τ , and,
finally, we can compute s = s4 • s′3 = τ\bb\cc\τ ; or

• we can first define s′1 = τ\b∗\∗∗\∗, s′3 = ∗\∗∗\∗c\τ , and compute
s4 = s′1 • s′3 = τ\b∗\∗c\τ ; then we can define s′2 = ∗\∗b\c∗\∗, and finally
we can compute s = s′2 • s4 = τ\bb\cc\τ ; or

• we can first define s′3 = ∗\∗∗\∗c\τ , s′2 = ∗\∗b\c∗\∗, and compute
s4 = s′2 • s′3 = ∗\∗b\cc\τ ; then we can define s′1 = τ\b∗\∗∗\∗; and finally
we can compute s = s′1 • s4 = τ\bb\cc\τ .

We will see in the next sections many medium-sized examples of link-
calculus at work for modelling biological mechanisms and for encoding Brane
Calculi processes.

4 Back to the Receptor-mediated Endocytosis Ex-
ample

Once the calculus has been formally introduced, we can revisit and complete
our example, introduced in Section 2, based on the Receptor-mediated
Endocytosis mechanism.

To formally derive the first transition of the system, we start by deriv-
ing the first part of the synchronisation between the LIGANDtop and the
membrane M top

cell. Note that we have extended the link prefix with virtual
links in order to execute the merging of the two links.

τ\∗memRec\∗∗\∗ • ∗\memRec∗ \∗receptor\∗∗\∗ = τ\memRecmemRec\∗receptor\∗∗\∗ :

106 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

LIGANDtop

τ\∗memRec\∗∗\∗ t−−−−−−−−−−−→ 0 M top
cell

∗\memRec∗ \∗receptor\∗∗\∗ t′

−−−−−−−−−−−−−−−−−→M top
cell

LIGANDtop|M top
cell

τ\memRecmemRec\receptor〈top,memout,memin,cell〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 0|M top
cell

where the tuples of LIGANDtop and of M top
cell, i.e. 〈top, xmemout , xmemin , xcell〉

and 〈xtop,memout, xmemin , xcell〉 match, and, as a result of their combination,

we obtain the tuple 〈top,memout,memin, cell〉. The value top can be assigned
to the variable xtop, while the value memout can be assigned to the variable
xmem. Recall that our semantics is in early style.
Now, we proceed our derivation with the synchronisation with the AP -2cell
molecule:

LIGANDtop|M top
cell

τ\memRecmemRec\∗receptor\∗∗\∗ t′′

−−−−−−−−−−−−−−−−−−→ 0|M top
cell AP -2cell

∗\∗∗\∗∗\ap2∗ \τ t′′′−−−−−−−−−−−→ 0

LIGANDtop|M top
cell|AP -2cell

τ\memRecmemRec\∗receptor\ap2∗ \τ 〈top,memout,memin,cell〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 0|M top
cell|0

where the tuple of the first premise, 〈top,memout,memin, cell〉 matches with
the tuple of the second premise, 〈top,memout,memin, cell〉, and, as a result
of their combination, we obtain the tuple 〈top,memout,memin, cell〉.

The derivation of the transition can be concluded by the interaction
with the RECEPTORcell:

RECEPTORcell
∗\∗∗\receptor∗ \∗ap2\∗〈top,memout,memin,cell〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ LIG-REC-AP2cell

that leads us to the final transition, where the tuple of the first premise,
〈top,memout,memin, cell〉, matches with the tuple of the second premise
〈top,memout,memin, cell〉, and, as a result of their combination, we obtain
the tuple 〈top,memout,memin, cell〉:

LIGANDtop|M top
cell|AP -2cell|RECEPTORcell

↓ τ\memRecmemRec\receptorreceptor\ap2ap2\τ

0|M top
cell|0|LIG-REC-AP2cell

We can now pass to model the second part of the mechanism. We
keep the same modelling style used for the first part, that allow us to
model the creation of a vesicle membrane and its fusion with the endosome
membrane. As a consequence, we focus our attention on the last two

A Flat Process Calculus for Nested Membrane Interactions 107

M top
cell , recX.(. . .

+
τ\complex〈cell, y〉.X

)

(the cell membrane)

COMPLEXcell , complex\τ 〈x, cell〉.(V cellvsl |COMPLEXvsl)
(within the cell)

Vcell
vsl ,

vsl\endosome〈xvsl, xnew〉.0
(the vesicle membrane)

COMPLEXvsl , τ\vsl〈vsl, xnew〉.(AP-2cell|CLATHRINcell|LIG-RECnew)
(within the vesicle)

ENDOSOMEcellendo ,
endosome\τ 〈xvsl, new〉.NEW cell

new

(within the cell)

Figure 4: Encoding of the Second Part of the Receptor-mediated Endocytosis
Example.

108 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

biological interactions needed for the formation of the vesicle (V cell
vsl) and for

the releasing of the AP−2 and CLATHRIN molecules, as shown in Figure 5.

In Figure 4, we give the link-calculus complete code of the example,
where we follow the same modelling style used in Section 2. Here, we model
the formation of the vesicle as the result of a further interaction between the
COMPLEXcell (composed of the LIGAND, the RECEPTOR, and the two
AP−2, and CLATHRIN proteins) and the cell membrane. Then, we model
the uncoating of the vesicle and its fusion with the ENDOSOME as a single
interaction between the membrane vesicle, the COMPLEXvsl (i.e. the same
complex located inside the vesicle), and the ENDOSOME. This last reaction
releases the AP−2 and the CLATHRIN proteins in the cell, and the fusion
between the vesicle and the endosome gives rise to a new membrane inside
the cell: NEWcell

new.

Figure 5: The Receptor-mediated Endocytosis, Second Part.

A Flat Process Calculus for Nested Membrane Interactions 109

Mtop
cell|COMPLEXcell|ENDOSOMEcellendo

↓ τ\complexcomplex\τ

M top
cell|COMPLEXvsl|Vcell

vsl |ENDOSOMEcellendo

↓ τ\vslvsl\endosomeendosome\τ

M top
cell|LIG-RECnew|AP-2cell|CLATHRINcell|0|NEWcell

new

Link-calculus offers a natural and simple encoding of the Receptor-
mediated Endocytosis mechanism, thus encouraging us in investigating the
possible use of link-calculus in directly modelling other biological phenom-
ena.

5 An Overview on Brane Calculi

The Brane Calculi [8] are a family of calculi for describing biological mem-
brane interactions. Membranes are not only containers, by constituting
the boundaries of compartments, but they are also active entities: they
represent the place where processes are located and interact with the sur-
rounding environment. In this section, we briefly recall the Mate/Bud/Drip
(MBD) version of the Brane Calculi [8], in order to show its encoding in the
link-calculus, in the next section.

As described by the following syntax, a membrane system consists of
nested membranes, where each membrane is associated with a membrane
process, that describes its interaction capabilities, in terms of possible
membrane transformations.

P,Q ::= � | P ◦Q | !P | σLP M systems Π
σ, τ ::= 0 | σ|τ | !σ | a.σ membrane processes Σ
a, b ::= maten | mate⊥n | budn | bud⊥n (ρ) | drip(ρ) MBD actions ΞMBD

The basic structure of a system consists of (sub-)system composition, repre-
sented by the monoidal operator ◦ (associative, commutative and with � as
neutral element). Replication ! represents the composition of an unbounded
number of replicas of the same system or membrane process. The system
σLP M is a membrane with content P and interaction capabilities represented
by the process σ.

110 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

(Par) (Brane) (Struct)
P → Q

P ◦R→ Q ◦R
P → Q

σLP M→ σLQM
P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q

P → Q

(Mate) maten.σ|σ0LP M ◦ mate⊥n .τ |τ0LQM→ σ|σ0|τ |τ0LP ◦QM

(Bud) bud⊥n (ρ).τ |τ0Lbudn.σ|σ0LP M ◦QM→ ρLσ|σ0LP MM ◦ τ |τ0LQM

(Drip) drip(ρ).σ|σ0LP M→ ρL�M ◦ σ|σ0LP M

Table 3: Reduction Semantics for Brane Calculi.

The MBD set of actions are inspired by the possible spatial transforma-
tions of biological membranes, such as membrane fusion and splitting. The
former is modelled by the mating operation, the latter both by budding, that
consists in splitting off exactly one internal membrane, and dripping, that
consists in splitting off one empty membrane.

Membrane processes σ consist of the empty process 0, the parallel
composition of two processes, represented by the monoidal operator | with
0 as neutral element, the replication of a process and the prefixes of a
process by an MBD action a. Actions for mating (maten) and budding
(budn) have the corresponding co-actions (mate⊥n and bud⊥n , respectively)
to synchronise with. Here n, which identifies a pair of complementary
actions, is taken by a countable set Λ of names. The actions bud⊥n (ρ) and
drip(ρ) are equipped with an argument ρ that represent a process, i.e. the
actions associated with the membrane created when performing budding and
dripping interactions, respectively. As usual, terms of the Brane Calculus
can be rearranged according to a structural congruence relation ≡, whose
rules (i.e. monoidality of operators ◦ and |) are omitted for brevity (see [8]).
The semantics of the calculus is given by the reduction rules in Table 3.
Besides the standard reduction rule for congruence (Struct), and contextual
propagation of reductions across parallel composition (Par) and membrane
nesting (Brane) (cf. the upper part of Table 3), there are the axioms specific
of MBD (cf. lower part of Table 3).

A Flat Process Calculus for Nested Membrane Interactions 111

Rule (Mate) models the fusion of two parallel membranes. The effect
of a mate synchronisation is twofold: (i) it creates a new membrane; and (ii)
it dissolves the two existing ones. In the rule (Bud) a membrane expels a
child membrane σ|σ0LP M and surrounds it with a new membrane, associated
with the process ρ, where ρ is the parameter of the co-action bud⊥n . Finally,
in the rule (Drip), a membrane creates a new empty membrane associated
with the process ρ, which is the parameter of dripn.

6 From Membranes to Links

6.1 The MBD Brane Calculus

The encoding of the MBD Brane Calculus into the link-calculus follows the
same style of the one provided for Mobile Ambients in [4]. The encoding
relies on the idea that each interaction not only involves the two processes
triggering the interaction, but it also has an impact on the membranes and
processes of the context, that result reconfigured, after the reaction. To take
the implicitly multiparty nature of interactions into account, the encoding
offers a link-calculus counterpart for each actor involved.

More precisely, the rule (Mate) requires a four-party interaction (at
least), involving: 1) the membrane process with the capability maten; 2) the
membrane associated with this process; 3) the membrane process with the
capability mate⊥n ; 4) the membrane associated with this process. The rule
has a double effect: (i) it creates a new membrane, and (ii) it dissolves the two
existing ones. When the two membranes are dissolved, their contents must
be relocated, which may consist of an unbounded (and not known a priori)
number of parallel processes, all therefore involved in the interaction! As in
[4], we adopt here a syntactic solution with no semantic impact on the rest:
we replace the membranes with some sort of blind forwarders (reminiscent
of those in [18]) that leave their contents unaware of the deletion.

The rule (Bud) requires four-party interaction as well, while the rule
(Drip) is simpler, as it only involves a membrane process and its correspond-
ing membrane.

Membranes with Brackets Forwarders impact on the encodings that
have to deal with them, as they represent a marker (a side effect) of when
and where a membrane has been dissolved. Since in the Brane code, no
similar side effect is generated, the correspondence between MBD processes
and their encodings is not direct.

112 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

To simplify our presentation, we directly introduce forwarders in the
syntax of MBD, with no effect whatsoever on the semantics. We only need
to slightly modify the syntax with the possibility to enclose a system P or a
membrane process σ within a pair of parentheses or brackets, as in [4].

P ::= · · · | [P] σ ::= · · · | [σ]

To make the presence of parentheses inessential with respect to the behaviour
of the process, we introduce the additional structural congruence axioms:

P ≡ Q⇒ [P] ≡ [Q] σ ≡ τ ⇒ [σ] ≡ [τ]

Finally, we define the notion of passive context, both for systems (C), and for
processes (S). Passive contexts allow us to adjust the basic reduction rules
to deal with the presence of an arbitrary number of balanced parentheses in
a monoidal composition.

C,D ::= · | [C] | C ◦ P | P ◦ C S,T ::= · | [S] | S|σ | σ|S

and write C(P) to denote the system obtained by replacing the hole · in C
with P . Similarly, we write S(σ) to denote the process obtained by replacing
the hole · in S with σ. Thus we add the following suitable axiom:

(Mate) C(S(maten.σ)LP M) ◦ D(T(mate⊥n .τ)LQM)→ C([S(σ)]|[T(τ)]L[P] ◦ [Q]M) ◦ D(�)

(Bud) T(bud⊥n (ρ).τ)LC(S(budn.σ)LP M)M→ ρL[S(σ)]L[P]MM ◦ T(τ)LC(�)M

(Drip) S(dripn(ρ).σ)LP M→ ρL�M ◦ S(σ)LP M

Furthermore, we introduce the following reduction rule to propagate reduc-
tions across contexts.

(Brac)
P → Q

[P]→ [Q]

In the above rules, we introduce only the contexts involved by the
modifications due to the application of the rules. Note that, thanks to the
use of contexts, we have eliminated some siblings of the interacting systems
and membrane processes, which were necessary in Table 3. More precisely,
σ0 and τ0 of the original rules are now subsumed by S and T, respectively
(in all rules), while the system Q of the original rule (Bud) is now subsumed
by C.

A Flat Process Calculus for Nested Membrane Interactions 113

Structural Encoding The encoding function is defined in Figure 6, and
works similarly to the ones in [7, 4]:

• The hierarchy of membranes is rendered as a flat system of parallel
link-calculus processes, where the inclusion relation is recorded by
interaction channels.

• The encoding JP Km of a process P is parametric with respect to a given
family of channels m that represents the enclosing membrane or, the
topmost compartment top in which the membranes reside. Informally,
each process resides in some “location”, to which it addresses all its
requests about the next actions to perform.

• Each membrane σLP M is encoded by a link-calculus process of the
form Mp

i,j , in parallel with the process Jσ Ki that encodes the associated
membrane processes σ, and with the one JP Kj , encoding the included
process P . Intuitively, Mp

i,j represents the “control or management unit”
of the membrane, a sort of interface that offers a family of channels,
or ports, for each kind of action capabilities. Families of channels are
indeed indexed by subscripts mate, mate⊥, bud, bud⊥ and drip. In
the following, such families are called locations (in Figure 6, families
are written for brevity as m,m′, ... (and the like)). The links of these
channels are composable with the corresponding channels of: (i) the
encoding of the actual membrane process σ, that represent the active
capabilities of the process, (ii) the encoding of the parent membrane,
and (iii) the encoding of the included process P . More precisely, in
Mp
i,j , i is the family of channels shared with Jσ Ki, j is the family of

channels shared with JP Kj , while p is the family of channels shared
with the parent membrane.

• After a fusion, the membrane hierarchy changes: the sub-membranes
of the two fused membranes become siblings, and, as a consequence,
their interaction capabilities change. On the encoding side, this implies
that locations must be updated and that the interactions relative to
the processes originally included in the dissolved membrane must be
redirected. To perform this task, the translated processes make use of
the forwarding mechanism every time a membrane is dissolved. The
forwarding activity is managed by processes of the form Fwdpm, located
between the dissolved membranes and the parent ones.

114 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

J � Km , 0 JP ◦Q Km , JP Km | JQ Km
J !P Km , recX. (JP Km|X) J [P] Km , (ν m′)(Fwdmm′ | JP Km′)

JσLP M Km , (ν m1,m2)(Mm
m1,m2

| Jσ Km1 | JP Km2)

J 0 Km , 0 Jσ | τ Km , Jσ Km | J τ Km
J !σ Km , recX. (Jσ Km|X) J [σ] Km , (ν m′)(Fwdmm′ | Jσ Km′)

Jmaten.σ Km , τ\mmate〈n, x1, x2〉.Jσ Km
Jmate⊥n .σ Km , m

mate⊥ \τ 〈n, x1, x2〉.Jσ Km
J budn.σ Km , τ\mbud〈n, x1, x2〉.Jσ Km
J bud⊥n (ρ).σ Km , m

bud⊥\τ 〈n, x1, x2〉.(J ρ Kx1
|Jσ Km)

J drip(ρ).σ Km , τ\mdrip〈x1〉.(J ρ Kx1
|Jσ Km)

M p
i,j , recX. (ν m1,m2)imate\pmate〈name,m1,m2〉.(Fwdm1

i |Fwdm2
j |X[m1/i,m2/j])

+ pmate\i
mate⊥

〈name, x1, x2〉.(Fwdx1
i |Fwdx2

j)

+ ibud\pbud〈name, x1, x2〉.(X[x2/p])

+ (ν m1,m2)jbud\i
bud⊥
〈name,m1,m2〉.(X[m1/i,m2/j] |X)

+ (ν m1,m2)idrip\τ 〈m1〉.(X[m1/i,m2/j] |X)

Fwdpm , recX. (mmate\pmate〈name, x1, x2〉.X + p
mate⊥ \m

mate⊥
〈name, x1, x2〉.X

+ mbud\pbud〈name, x1, x2〉.X + p
bud⊥ \m

bud⊥
〈name, x1, x2〉.X

+ mdrip\pdrip〈x1〉.X

Figure 6: Structural encoding of Brane in link-calculus.

We only comment on the translation of the reductions (Mate), (Bud)
and (Drip).

As said before, the mate synchronisation is a four-party one. For the
sake of clarity, we focus the discussion on the Brane code below, illustrated
in Figure 7, where we tag the involved membranes and brackets by a, b, c
(see below) to refer them in the text.

maten.σ|σ0LP Ma ◦mate⊥n .τ |τ0LQMb → [σ|σ0]a|[τ |τ0]bL[P]a ◦ [Q]bMc

A Flat Process Calculus for Nested Membrane Interactions 115

Encoding of

the parent

membrane

Jmaten.�|�0 Ka1

Jmate?n .⌧ |⌧0 Kb1

⌧\a1mate
a1mate\mmate

{a1}

{b1}

{a2}

{b2}

Mm
a1,a2

Mm
b1,b2

{m}

{m}

JP Ka2

JQ Kb2

mmate\b
1mate?

b
1mate? \⌧

Figure 7: Illustration of the Mate Synchronisation Encoding: the Source
Process.

First, we note that Jmaten.σ|σ0LP Ma ◦mate⊥n .τ |τ0LQMb Km amounts to

(ν a1, a2, b1, b2)(M
m
a1,a2 |Jmaten.σ Ka1 |Jσ0 Ka1 |JP Ka2 |

Mm
b1,b2 |Jmate⊥n .τ Kb1 |J τ0 Kb1 |JQ Kb2)

• The maten.σ party: the process Jmaten.σ Ka1 provides the link prefix
τ\a1mate〈n, x1, x2〉 that requires the synchronisation with the corre-
sponding link, offered by the translation Mm

a1,a2 of its membrane. Here
the message n is sent, and the names x1, x2 are received (but they are
irrelevant).

• The party Mm
a1,a2 for the membrane a: the translation of the membrane

a holding the maten operation is:

recX. (ν c1, c2)
a1mate\mmate〈name, c1, c2〉.(Fwd c1a1 |Fwd c2a2 |X[ci/ai])+. . .

116 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

Encoding of

the parent

membrane

J�|�0 Ka1

J ⌧ |⌧0 Kb1

JP Ka2

JQ Kb2

Fwdc1
a1

Fwdc2
a2

Fwdc2

b2

Fwdc1

b1

Mm
c1,c2

{m}

{b1}

{b2}

{a2}

{a1}

{c1}

{c1}

{c2}

{c2}

Figure 8: Illustration of the Mate Synchronisation Encoding: the Target
Process.

where i ∈ [1, 2] and c1, c2 are two freshly created locations to be
communicated to all the other parties, X[c1/a1, c2/a2] can be just
read as Mm

c1,c2 (i.e. it represents the new membrane c), the link
a1mate\mmate is needed for the synchronisation with the maten.σ party,
and two new forwarders, Fwd c1a1 |Fwd c2a2 are created for redirecting
the communications with components that are still located at the
updated locations a1 and a2 (because such components do not actively
participate to the interaction). Note that the variable name is used to
receive the parameter n of the (Mate) reduction, even if it is not used
in the continuation.

• The party Mm
b1,b2

for the membrane b: the translation of the membrane

b holding the mate⊥n operation is even simpler:

recX. · · ·+ mmate\b
1mate⊥

〈name, x1, x2〉.(Fwdx1b1 |Fwdx2b2) + . . .

A Flat Process Calculus for Nested Membrane Interactions 117

where the link mmate\b
1mate⊥

is for the synchronisation with the trans-

lation of mate⊥n .τ party, and two new forwarders Fwdx1b1 |Fwdx2b2 are
created to redirect the synchronisations on the old locations b1 and b2
to the received locations x1 and x2 (they will correspond to the freshly
created locations c1, c2 extruded by the party Mm

a1,a2).

• The mate⊥n .τ party: the translation of mate⊥n .τ is similar to that of
maten.σ. It provides the prefix b

1mate⊥\τ 〈n, x1, x2〉, where b1mate⊥ is
for the synchronisation with the encoding of its membrane, the message
n is sent for the matching with the one sent by the maten.σ party, and
the received names x1, x2 are still irrelevant.

Putting all pieces together, we can observe that the four-party synchro-
nisation forms the following link chain, once reached the agreement on the
associated tuple 〈n, c1, c2〉

τ\a1mate
a1mate

\mmate
mmate

\b1mate⊥
b
1mate⊥

\τ

where the freshly created names c1, c2 are extruded to the other parties.
We can then observe the correspondence of the resulting process with the
encoding of the target system [σ|σ0]a|[τ |τ0]bL[P]a ◦ [Q]bMc, illustrated in
Figure 8, by noting that J [σ|σ0]a|[τ |τ0]bL[P]a ◦ [Q]bMc Km amounts to

(ν a1, a2, b1, b2, c1, c2)(M
m
c1,c2 | Jσ|σ0 Ka1 |JP Ka2 |Fwd c1a1 |Fwd c2a2 |

J τ |τ0 Kb1 |JQ Kb2 |Fwd c1b1 |Fwd c2b2)

As, in general, we would need to consider the presence of contexts C
and S (i.e. of brackets in the syntax), the four-party synchronisation can
become a larger multiparty synchronisation, where an unbounded number
of forwarders is involved. The same holds for the cases we discuss next.

Also, the translation of the budn operation involves four entities. In
this case no forwarder will be introduced. The Brane code we refer to is:

bud⊥n (ρ).τ |τ0Lbudn.σ|σ0LP Ma ◦QMb → ρLσ|σ0LP MaMc ◦ τ |τ0LQMb

where we still distinguish the two involved membranes a and b, holding the
two co-actions budn and bud⊥n (ρ), respectively.

118 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

• The budn.σ party is translated as τ\a1bud〈n, x1, x2〉.Jσ Ka1 . The link
τ\a1bud is for the synchronisation with the translation M b2

a1,a2 of its
membrane, the parameter n plays the same role as before, and the
received locations x1, x2 are irrelevant.

• The party M b2
a1,a2 for representing the membrane a is:

recX. · · ·+ a1bud\b2bud〈name, x1, x2〉.(X[x2/b2]) + . . .

where X[x2/b2] can be just read as Mx2
a1,a2 (i.e. it represents the mem-

brane a after the relocation in the new membrane c), and the link
a1bud\b2bud is needed for the synchronisation with the budn.σ party.
The variable name is used to receive the parameter n of the (Bud)
reduction, even if it is not used in the continuation. The variable x1 is
irrelevant.

• The party Mm
b1,b2

for representing the membrane b is:

recX. · · ·+(ν c1, c2)
b2bud\b

1bud⊥
〈name, c1, c2〉.(X[c1/b1, c2/b2] |X)+. . .

where two fresh locations c1, c2 and a new membrane X[c1/b1, c2/b2]
(to be read as Mm

c1,c2) are created to represent the new membrane c,

and the link b2bud\b
1bud⊥

is for the synchronisation with the translation

of bud⊥n (ρ).τ party. Note that locations c1, c2 are extruded in the com-
munication, as they will be needed by the other parties to (re)position
ρ and the membrane a.

• The bud⊥n (ρ).τ party is translated as b
1bud⊥\τ 〈n, x1, x2〉.(J ρ Kx1 |Jσ Kb1).

The link b
1bud⊥\τ is for the synchronisation with the translation of its

membraneMm
b1,b2

, the parameter n plays the usual role, and the received
location x1 is used to locate ρ (only the location x2 is irrelevant). Note
that x1 will be substituted by the freshly created location c1.

The four-party synchronisation forms the link chain below, once reached
the agreement on the associated tuple 〈n, c1, c2〉

τ\a1buda1bud
\b2budb2bud

\b1bud⊥b
1bud⊥

\τ

where the freshly created names c1, c2 are extruded to the other parties.

A Flat Process Calculus for Nested Membrane Interactions 119

Finally, we can discuss the translation of the action drip, that, since it
involves only one membrane, is the simplest one:

drip(ρ).σ|σ0LP Ma → ρL�Mb ◦ σ|σ0LP Ma.

The drip(ρ).σ party is translated as τ\a1drip〈x1〉.(J ρ Kx1 |Jσ Ka1), while the
party Mm

a1,a2 for representing the membrane a is:

recX. · · ·+ (ν b1, b2)
a1drip\τ 〈b1〉.(X[b1/a1, b2/a2] |X)

where the fresh locations b1, b2 and the process X[b1/a1, b2/a2] (to be read
as Mm

b1,b2
) represent the fresh membrane b to be used for locating ρ. The

two-party synchronisation forms the link chain below, once reached the
agreement on the associated tuple 〈b1〉

τ\a1dripa1drip\τ

Example We will now show a fully detailed example that illustrates the
encoding of a MBD process in link-calculus, and also two of its possible
derivations. Let P ≡ maten.drip(ρ) |σLτLRMM ◦ mate⊥n .δLQM be a process,
where two membranes merge, and then a drip reaction creates a new empty
membrane.

P → P1 ≡ drip(ρ) |σ|δLτLRM ◦QM (mate)
P1 → P2 ≡ ρLM ◦ σ|δLτLRM ◦QM (drip)

In the following encoding, we colour the parts involved in the mate transition,
and we call, for brevity, σ1, τ2, δ3 the translations of the corresponding brane
actions, where the index is the number of the membranes that initially
include them. The encoding is JP Ktop ≡ Plink|P ′link, where

Plink ≡ (ν m1, s1)(M top
m1,s1 | τ\m1mate〈n, x1, x2〉.τ\m1drip

〈y1〉.(J ρ Ky1 |σ1) (membrane m1)
(ν m2, s2)(Ms1

m2,s2 | τ2 | JR Ks2)) (membrane m2 in m1)
P ′
link ≡ (ν m3, s3)(M top

m3,s3 |m3mate⊥ \τ 〈n, x1, x2〉.δ3 | JQ Ks3) (membrane m3)

For simplicity, we just give a sketch of the derivation of the two operations.

Plink

τ\m1mate
m1mate

\ ∗
topmate

\∗∗\∗〈n,m′,s′〉−−−−−−−−−−−−−−−−−−−−−→ Qlink P ′
link

∗\∗∗\
topmate∗ \

m
3mate⊥

m
3mate⊥

\τ 〈n,m′,s′〉
−−−−−−−−−−−−−−−−−−−−−−→ Q′

link

Plink|P ′
link

τ\ττ\
topmate
topmate

\ττ\τ−−−−−−−−−−−→ P 1
link

120 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

In P 1
link ≡ (ν m′, s′)(Qlink|Q′

link), we colour the parts involved in the drip
transition, where also the forwarder process is involved, as the membrane m1 is no
more active:

P 1
link ≡ JP1 Ktop ≡ (ν m′, s′)((ν m1, s1)(Fwdm

′
m1
|Fwds′s1 |M

top
m′,s′ | τ\m1drip

〈y1〉.(J ρ Ky1 |σ1) |
(ν m2, s2)(Ms1

m2,s2 | τ2 | JR Ks2)) |
(ν m3, s3)(Fwdm

′
m3
|Fwds′s3 | δ3 | JQ Ks3))

P1a
link

∗\
m1drip
∗ \ ∗

m′
drip

\∗〈m′′〉

−−−−−−−−−−−−−−−−−−−−→ Q1a
link P1b

link

∗\∗∗\
m′drip
∗ \τ 〈m′′〉−−−−−−−−−−−−−−−→ Q1b

link

P1a
link|P

1b
link

∗\
m1drip
∗ \

m′drip
m′
drip

\τ 〈m′′〉

−−−−−−−−−−−−−−−−−−−−→ Q1a
link|Q

1b
link P1c

link

τ\ ∗
m1drip

\∗∗\∗〈m
′′〉

−−−−−−−−−−−−−−−−→ Q1c
link

P1a
link|P

1b
link|P

1c
link

τ\
m1drip
m1drip

\
m′drip
m′
drip

\τ
−−−−−−−−−−−−−−−−→ Q1a

link|Q
1b
link|Q

1c
link

.

.

.

P1
link

τ\ττ\
m′drip
m′
drip

\τ
−−−−−−−−−−−→ P2

link

where P 2
link ≡ JP2 Ktop is equivalent to

(ν m′, s′) ((ν m′′, s′′)((ν m1, s1)(Fwdm
′

m1
|Fwds′s1 |M

top
m′,s′ |M top

m′′,s′′ | J ρ Km′′) |σ1) |
(ν m2, s2)(Ms1

m2,s2 | τ2 | JR Ks2)) |
(ν m3, s3)(Fwdm

′
m3
|Fwds′s3 | δ3 | JQ Ks3))

The result of the above transitions is that membranes m1 and m3 have
been substituted by the new merged membrane m′ lying on the top position,
and the four processes Fwdm

′
m1

, Fwds
′
s1 ,Fwdm

′
m3

,Fwds
′
s3 keep track of this event.

Another new membrane m′′, lying on the top position, is introduced as the
result of the drip operation.

Operational Correspondence We can state an operational correspon-
dence result to show the correctness of the proposed encoding.

Intuitively, the idea is to define an encoding assigning to any MBD
system P a corresponding link-calculus process JP K.

• for any reduction P → P ′ there is a step JP K → JP ′ K;

• and vice versa, for any silent step JP K → Q there is a MBD system
P ′ such that Q = JP ′ K and P → P ′.

A Flat Process Calculus for Nested Membrane Interactions 121

Unfortunately, a direct encoding has to deal with the presence of forwarders,
so that in general:

• for any reduction P → P ′ we can find a step JP K → Q but Q can
differ from JP ′ K because of the presence of forwarders;

• and vice versa, for any silent step JP K → Q we can find a MBD system
P ′ such that P → P ′ but, again, Q can differ from JP ′ K because of
the presence of forwarders.

We obtain a correspondence based on the forwarders introduced in the syntax
of MBD, with no effect whatsoever on the semantics and expressiveness, and
that allows us to recover the stronger correspondence result sketched above,
with exact matching between the MBD reductions and the silent steps of
the link-calculus (modulo some standard structural laws imposed by the
MBD structural congruence).

Proposition 1 The encoding in Fig. 6 is well-defined, in the sense that if
P ≡ Q then JP K ≡ JQ K.

We can filter out non solid transitions (representing partial interactions)
of encoded processes by letting: JP K , (ν tmate, tmate⊥ , tbud, tbud⊥ , tdrip)JP Kt

We say that a link chain s is silent if it consists of τ actions only, and
write P

τ−→ Q if P
s−→ Q for some silent s. (Note that any silent link chain is

solid.)

Lemma 1 If JP K s−→ Q, then s is silent.

Sketch of the proof: The proof is by cases on the type of capability
simulated by the encoded process JP K (maten, budn, or dripn). The proof
of each case is, in turn, by induction on the length of the derivation of the
transition.

Theorem 1 Let P be a MBD system, then P → P ′ if and only if there
exists Q such that JP K s−→ Q, and Q ≡ JP ′ K.

Sketch of the proof: The proof for the only if part is by induction on the
length of the derivation of the reduction P → P ′; the if part can be proved
by cases on the type of the capability simulated by the encoded process.
Here, some explanations about the derivation of a silent move: JP K s−→ Q
are in order. First, the silent move s must have been obtained as a chain

122 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

of link prefixes that come equipped with compatible tuples, and that are
combined along restricted channels. Of course, at the left and right hand
sides of this link chain, we need two link prefixes presenting a τ on its left
and on its right, respectively. Then, thanks to rule (Close), in Table 2, we
can derive a link chain s where only τ appears and the tuple of values has
been discarded.

Now, we detail the construction of the link chain. At the left hand side
of the link chain, a link offering a silent action τ is required. By the rules
in Figure 6, the links offering an action τ on their left are: τ\amate ,

τ\abud ,
and τ\adrip deriving from the encoding of the prefixes maten, budn, dripn.
At the right hand side of the link chain, a silent action τ is also required.
By the rules in Figure 6, the only links offering a τ action on their right are:
b
mate⊥\τ , bbud⊥\τ , and adrip\τ . The first two links derive from the encoding

of the prefixes mate⊥n , and bud⊥n ; the last one, adrip\τ , derives from the
encoding of the membrane holding the prefix dripn. Back to the encoding
of the capability mate, two membranes are needed to pass from the channel
amate to the channel mmate, and from bmate⊥ to mmate: on their surface, the
two membranes host the maten and the mate⊥n prefixes, respectively. As
fas as the encoding of the capability bud is concerned, two membranes are
needed to pass from the channel abud to the channel mbud, and from mbud

to b⊥bud: on their surface, the two membranes host the budn and the bud⊥n
prefixes, respectively. The case of the capability drip is simpler, because it
does not require additional links. Forwarders can provide links to the chains,
but without changing the type of the channels. Participants to the action
can be arranged in parallel, according to their position in s, by using the
link-calculus structural congruence rules. By induction on the proof of the
derivation, we can rebuild the tree of the bracketed membranes involved in
the reduction.

6.2 The PEP Brane Calculus

We now extend our framework, in order to include also the Phago/ Exo/Pino
(PEP) version of the Brane Calculus, where the three new reactions represent
the operations that model endocytosis and exocytosis. The first indicates
the process of incorporating external material into a cell, by engulfing it
with the cell membrane, while the second one indicates the reverse process.
Endocytosys is rendered by two more basic operations: phagocytosis (phago),
that consists in engulfing just one external membrane, and pinocytosis (pino),
consists in engulfing zero external membranes. Exocytosis is instead denoted

A Flat Process Calculus for Nested Membrane Interactions 123

a, b ::= ... | phagon | phago⊥n (ρ) | exon | exo⊥n | pino(ρ)

(Phago) phagon.σ|σ0LP M ◦ phago⊥n (ρ).τ |τ0LQM→ τ |τ0LρLσ|σ0LP MM ◦QM
(Exo) exo⊥n .τ |τ0Lexon.σ|σ0LP M ◦QM→ P ◦ σ|σ0|τ |τ0LQM
(Pino) pino.(ρ).σ|σ0LP M→ σ|σ0LρL�M ◦ P M

J phagon.σ Km , τ\mphg
〈n, x1, x2〉.Jσ Km

J phago⊥n (ρ).σ Km , m
phg⊥\τ 〈n, x1, x〉.(J ρ Kx1 | Jσ Km)

J pino(ρ).σ Km , τ\mpino〈x1〉.(J ρ Kx1 | Jσ Km)

J exon.σ Km , τ\mexo〈n, x1, x2〉.Jσ Km
J exo⊥n .σ Km , m

exo⊥\τ 〈n, x1, x〉.Jσ Km
Mp
i,j , recX. · · ·+ iphg\pphg〈name, x1, x2〉.X[x2/p]

+ (νm1,m2)
pphg\i

phg⊥
〈name,m1,m2〉.(M j

m1,m2 |X)

+ iexo\pexo〈name, x1, x〉.(Fwdx1i |Fwdxj)

+ jexo\i
exo⊥
〈name, i, p〉.X

+ (ν m1,m2)
ipino\τ 〈m1〉.(Mm

m1,m2
|X)

Table 4: The Phago/Exo/Pino (PEP) Syntax, Semantics and Encoding.

by exo. The extended syntax and semantics are in the upper part of Table 4,
while the corresponding encoding is in the lower part of the table.

As usual, the membranes are encoded as separate entities, and each
synchronisation involves the membrane and one or two prefixes, correspond-
ing to the operators pino(ρ), or phagon and phago⊥n (ρ), or exon and exo⊥n .
For the operators pino and phago, a new membrane is created and extrusion
is exploited to relocate pieces of code: actually some biological elements are
forced to change their location, as they are sent to the new membrane. We
omit the obvious extension of the definition of forwarders and the detailed
discussion of the various cases, as the technical development is analogous to
the MBD case.

124 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

6.3 Comparing the MBD and PEP encodings

As discussed by Cardelli, the MBD set of membrane capabilities (mate, bud,
drip) can be derived from the PEP membrane primitives (phago, exo, pino).
Nevertheless, since they model particular biological phenomena, it is worth
having them as primitives as well.

For instance, the mate interaction can be obtained by a suitable combi-
nation of phago and exo, as illustrated below.

maten , phagon.exon
mate⊥n , phago

⊥
n (exo⊥n .exon′′).exo

⊥
n′′

It would be interesting to investigate the connection between the MBD
encoding of membrane primitives and the similar PEP one into the link-
calculus. To this aim, we try to compare the encoding of the MBD process

PMBD , maten.σ|σ0LP M ◦mate⊥n .τ |τ0LQM
JPMBD Kt = (ν n1, n2,m1,m2)

M t
n1,n2|τ\n1mate〈n, x1, x2〉.Jσ Kn1|Jσ0 Kn1|JP Kn2|

M t
m1,m2|m1⊥mate\τ 〈n, x1, x2〉.J τ Km1|J τ0 Km1|JQ Km2

and the encoding of its corresponding PEP version, obtained by using
the above combination of phago and exo.

PPEP , phagon.exonσ|σ0LP M ◦ phago⊥n (exo⊥n .exon′′).exo
⊥
n′′ .τ |τ0LQM

JPPEP Kt = (ν n1, n2,m1,m2)
τ\n1phg〈n, x1, x2〉.τ\n1exo〈n′, x1, x2〉.Jσ Kn1|Jσ0 Kn1|M t

n1,n2|JP Kn2|
m1⊥phg\τ 〈n, x1, x2〉.(J exo⊥n .exon′′ Kx1|m1⊥exo\τ 〈n′′ , x1, x2〉.J τ Km1)|
J τ0 Km1|M t

m1,m2|JQ Km2

We show the transition of JPMBD K corresponding to the mate interac-
tion, and then the three transitions of JPPEP K corresponding to the three
interactions needed for simulating the mate (one phago, and two exo). Fi-
nally we compare the two results. To help the intuition, we leave the channel
names in the link chains and the tuples of values in the transition labels,

A Flat Process Calculus for Nested Membrane Interactions 125

although the semantics of the language would remove them.

JPMBD Kt = (ν n1, n2,m1,m2)
M t
n1,n2|τ\n1mate〈n, x1, x2〉.Jσ Kn1|Jσ0 Kn1|JP Kn2|

M t
m1,m2|m1⊥mate\τ 〈n, x1, x2〉.J τ Km1|J τ0 Km1|JQ Km2

mate ↓ τ\n1mate
n1mate

\tmate
tmate
\m1⊥mate
m1mate

\τ 〈n, n1, n2〉

(ν n1, n2,m1,m2, new1, new2)
Jσ Kn1|Jσ0 Kn1|Fwdnew1n1 |Fwdnew2n2 |M t

new1,new2|JP Kn2
J τ Km1|J τ0 Km1|Fwdnew1m1 |Fwdnew2m2 |JQ Km2

JPPEP Kt = (ν n1, n2,m1,m2)
τ\n1phg〈n, x1, x2〉.τ\n1exo〈n′, x1, x2〉.Jσ Kn1|Jσ0 Kn1|M t

n1,n2|JP Kn2|
m1⊥phg\τ 〈n, x1, x2〉.(J exo⊥n .exon′′ Kx1|m1⊥exo\τ 〈n′′ , x1, x2〉.J τ Km1)|
J τ0 Km1|M t

m1,m2|JQ Km2

phago ↓ τ\n1phgn1phg
\tphgtphg
\m1⊥phg
m1phg

\τ 〈n, new1, new2〉

(ν n1, n2,m1,m2, new1, new2)
τ\n1exo〈n′, x1, x2〉.Jσ Kn1|Jσ0 Kn1|Mnew2

n1,n2|JP Kn2|
new1⊥exo\τ 〈n′, x1, x2〉.τ\new1exo〈n

′′
, x1, x2〉|J τ Km1)|

J τ0 Km1|Mm2
new1,new2|M t

m1,m2|JQ Km2

exo n′ ↓ τ\n1exon1exo
\new2exonew2exo

\new1
⊥
exo

new1⊥exo
\τ 〈n′, new1,m2〉

(ν n1, n2,m1,m2, new1, new2)
Jσ Kn1|Jσ0 Kn1|Fwdnew1n1 |Fwdm2

n2 |JP Kn2|
τ\new1exo〈n

′′
, x1, x2〉|J τ Km1|

J τ0 Km1|Mm2
new1,new2|M t

m1,m2|JQ Km2

exo n
′′ ↓ τ\new1exonew1exo

\m2exo
m2exo

\m1⊥exo
m1⊥exo

\τ 〈n′′ ,m1, t〉

(ν n1, n2,m1,m2, new1, new2)
Jσ Kn1|Jσ0 Kn1|Fwdnew1n1 |Fwdm2

n2 |JP Kn2|J τ Km1|J τ0 Km1|
Fwdm1

new1|Fwdtnew2|M t
m1,m2|JQ Km2

We can now compare the two final configurations (where the systems
are rearranged in order to facilitate the comparison).

126 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

(MBD)
(ν n1, n2,m1,m2, new1, new2)
Jσ Kn1|Jσ0 Kn1|Fwdnew1n1 |Fwdnew2n2 |M t

new1,new2|JP Kn2|
J τ Km1|J τ0 Km1|Fwdnew1m1 |Fwdnew2m2 |JQ Km2

(PEP)
(ν n1, n2,m1,m2, new1, new2)
Jσ Kn1|Jσ0 Kn1|Fwdnew1n1 |Fwdm2

n2 |M t
m1,m2|JP Kn2|

J τ Km1|J τ0 Km1|Fwdm1
new1|Fwdtnew2|JQ Km2

As it can be observed, in both cases we obtain the same hierarchical
membrane structure. More precisely, in both cases we obtain a unique
membrane, called M t

new1,new2 in the MBD case, and M t
m1,m2 in the PEP

one. The two membranes hold the same subprocesses and expose the same
capabilities on their surfaces. Thus, we can say that we obtain the model of
the same biological system.
From the syntactical point of view, and looking at the different forwarder
processes, we can instead observe that there is a different use of the restricted
names in the two cases. This phenomenon is due to our encoding technique,
which uses the forwarder processes to leave track of the dissolved membranes.
As a consequence, the different membrane evolution histories in the two
computations are recorded in different forwarder processes. This seems
reasonable, from a biological point of view, because it reflects the different
traces, produced in the two cases. Technically, this amounts to a slightly
different parsing of the same term, due to a different insertion of brackets.

6.4 Molecules and Molecular actions

In Brane calculi [8], Cardelli also models small molecules that can easily cross
or be transported across membranes, and whose movements are completely
mediated by membranes. The new set of actions models the binding and
the releasing of the molecules on both sides of membrane surfaces.

The molecular extensions of the syntax and of the semantics of the Brane
calculi is in Table 5. We slightly modify the original syntax by considering
only the set M of molecules (ranged over by t, r), i.e. we exclude molecular
complexes.

The encoding of the molecules and of the molecular reaction are in
Figure 9.

A Flat Process Calculus for Nested Membrane Interactions 127

Systems P,Q ::= . . . | t systems with molecules t, r ∈M
Actions a, b ::= . . . | t1(t2)⇒ t3(t4) bind & release of molecules

B&R t1 ◦ t1(t2)⇒ t3(t4).σ|σ0Lt2 ◦ P M → t3 ◦ σ|σ0Lt4 ◦ P M

Table 5: Molecules and the Molecular Reaction.

We slightly modify the encoding function style, to keep track of both
names associated to a membrane, i.e. JP Km′m , so that we initially have
JP K , (ν t)JP Ktt. The only encoding rule that results modified is the one
for membranes

JσLP M Km′m , (ν m1,m2)(M
m
m1,m2

| Jσ Km2
m1
| JP Km2

m2
),

while the other rules will keep the second membrane name as superscript for
the encoding function J . . . Km′m , without any change.

For the encoding of the B&R operation we distinguish four cases de-
pending on the number and the position of the molecules that will disappear.
We also make use of three names: in, out and inout (in bold in Figure 9 to
point out that are special names) to record the fact that the molecule which
is inside, or outside the membrane, or both the molecules, will disappear
after the B&R operation, respectively. The two prefixes offered by the mem-
brane Mm

m1,m2
are equipped with the link m\m1 that will connect the outside

molecule with one of the previous prefixes encoding the B&R operation.
Finally, a molecule t is rendered as a process Molmt located in membrane
m that can recursively fire two types of prefixes: one at the beginning of
the link communication, τ\m, and the other at the end m\τ ; for each type
of prefix, according to the encoding of the B&R operation, there are four
possibilities, depending on the number and the position of the molecules
that will disappear.

As an example, we show the encoding of a molecular reaction, in which
both the molecules disappear: p1 ◦ p1(p2) ⇒ �(�)Lp2 ◦ P M. Our encoding

128 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

J t Km2
m1

, Molm2
t

J t1(t2)⇒ t3(t4).σ Km2
m1

,


m1\m2

〈t1, t2, t3, t4〉.Jσ Km2
m1

if t3 6= � 6= t4
m1\m2

〈in, t1, t2, empty, t4〉.Jσ Km2
m1

if t3 = �
m1\m2〈out, t1, t2, t3, empty〉.Jσ Km2

m1
if t4 = �

m1\m2〈inout, t1, t2, empty, empty〉.Jσ Km2
m1

if t3 = � = t4

Mm
m1,m2

, recX. . . . +
m\m1

〈t1, t2, t3, t4〉.Mm
m1,m2

+
m\m1

〈type, t1, t2, t3, t4〉.Mm
m1,m2

Molmt , recX. (τ\m〈t, t2, t3, t4〉.X[t4/t]

+ τ\m〈in, t, t2, empty, t4〉.X[t4/t]

+ τ\m〈out, t, t2, t3, empty〉.0
+ τ\m〈inout, t, t2, empty, empty〉.0
+ m\τ 〈t1, t, t3, t4〉.X[t3/t]

+ m\τ 〈in, t1, t, empty, t4〉.0
+ m\τ 〈out, t1, t, t3, empty〉.X[t3/t]

+ m\τ 〈inout, t1, t, empty, empty〉.0

Figure 9: The Encoding of the Molecules and of the Molecular Reaction.

generates the following link-calculus code:

(ν t)(Moltp1 |(ν m1,m2)(M
t
m1,m2

|m1\m2〈inout, p1, p2, empty, empty〉 |Molm2
p2))

↓ τ\tt\m1
m1
\m2
m2
\τ 〈inout, p1, p2, empty, empty〉

(ν t,m2)(0 |(ν m1)(M
t
m1,m2

|0 |0))

where the transition label has been kept for clarity, and each link in the
label has been offered by the subprocesses in the corresponding position,
i.e. the first link, τ\t, has been offered by the first subprocess Moltp1 , and so
on.

This further encoding shows how the link-calculus can easily simu-

A Flat Process Calculus for Nested Membrane Interactions 129

late different biological entities, considering also their locations, without
introducing any new operator.

7 Our encoding at work

To show how our encoding works, we consider the example of the Semliki
Forest virus, presented in [8]. Briefly: (1) a virus enters a cell via phagocy-
tosis, then an endosome compartment merges with the virus, and the virus
deposits its nucap particle (NUCAP in the code) into the cytoplasm, i.e. the
liquid inside the cell, via an exocytosis (Figure 7, in [8]); (2) a series of
molecular reactions reproducing the RNA virus replication follow (Section
4.6, in [8]); (3) the virus reproduction cycle ends with two further steps
(Figure 8, in [8], here reported as Figure 11).

For the sake of simplicity, we only show the execution of the encoding of
the part (1), which consists of membrane interactions, and the first reaction
of part (2), which amounts to a molecular interaction. A nucap particle is
defined as a membrane containing vRNA. The nucap surface can disassemble
the nucap membrane, by pushing the molecule vRNA outside, in response
to some trigger molecule found in the cytosol, (molecule dis-trg in the code).

The Brane code is as follows:

phagon.exonLNUCAP M ◦ (virus)

phago⊥n (maten)Lmate⊥n |exo⊥n L�M ◦ dis-trgM (cell)

where

NUCAP , dis trg(vRNA)⇒ vRNA(�)LvRNAM

As there are no molecular interactions, we use the standard version of
the encoding function that only uses one subscript name, i.e. JP Kt. The
corresponding link-calculus code is as follow:

Phagovrs1.Exovrs1|M t
vrs1,vrs2|Nucap| (virus)

Phago⊥cell|M t
cell1,cell2| (cell membrane)

Mate⊥bare|Exo⊥bare1|M cell2
bare1,bare2|Molcell2dis trg (inside the cell)

130 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

Phagovrs1 , τ\vrs1phg〈n, x1, x2〉
Phago⊥cell1 , cell1

phg⊥\τ 〈n, x1, x2〉.Jmaten Kx1
Nucap , nucap1\nucap2〈m1,m2, dis trg, vRNA, vRNA, empty〉 |

Mvrs2
nucap1,nucap2|Molnucap2vRNA

Mate⊥bare1 , bare1
mate⊥\τ 〈n, x1, x2〉

Exovrs1 , τ\vrs1exo〈n, x1, x2〉
Exo⊥bare1 , bare1

exo⊥\τ 〈n, x1, x2〉

To help the intuition, we leave the channel names in the link chains in the
transition labels, although the semantics of the language would remove them.

In Figure 10, we show the execution of the link-calculus process. Ini-
tially, there are a virus, whose membrane is encoded as M t

vrs1,vrs2, and a
cell, M t

cell1,cell2. Both lie next to each other, in the t location. With the
phago reaction, the virus enters the cell: the new membrane vesicle is cre-
ated inside the cell (M cell2

vesicle1,vesicle2), and the virus membrane changes its

location (Mvesicle2
vrs1,vrs2). Then, the bare membrane, which models the endosome

compartment inside the cell, merges with the vesicle. The effects of this
operation are that (i) a new membrane new is created, and that (ii) the two
membranes, vesicle and bare, are dissolved. As a side effect, four forwarders
Fwdnew1vesicle1, Fwdnew2vesicle2, Fwdnew1bare1 and Fwdnew2bare2 are created to redirect any
request from the old locations to the new ones. The last membrane reaction
is the exo that allows the virus to exit the membrane new, and to dissolve
itself, leaving proceses Fwdnew1vrs1 |Fwd cell2vrs2 . Please note that the forwarder
Fwdnew1vrs1 redirects the actions, previously located on the surface of the virus
membrane, on the surface of the new membrane; this is a direct consequence
of the behaviour of the action exocytosis, see Table 4 for the details of the
Exo transition. The nucleocapsid Mvrs2

nucap1,nucap2 can interact with a molecule

that lies in the cytoplasm (Molcell2dis trg), which trigger the disassembly of the
nucleocapsid. Thus the mol interaction can take place. The result is that
the molecule vRNA, initially inside the nuclecapsid membrane Molnucap2vRNA , is
now free in the cell Molcell2vRNA, and that the Molcell2dis trg has been “consumed”.

Our encoding renders each biological location, i.e. each membrane, as a
process that takes part in the multiparty interactions. Forwarder processes
can record the history of the computation, giving the exact position of the
membranes when they have been dissolved. This could be useful for an exact
analysis of the dynamics of the computation. Alternatively, we can instead
garbage these pieces of code, as in [7], by applying a renaming operator.

A Flat Process Calculus for Nested Membrane Interactions 131

Phagovrs1.Exovrs1|M t
vrs1,vrs2|Nucap (virus)

Phago⊥cell1|M t
cell1,cell2| (cell membrane)

Mate⊥bare1,bare2|Exo⊥bare1|M cell2
bare1,bare2|Molcell2dis trg (inside the cell)

phago ↓ τ\vrs1phgvrs1phg
\tphgtphg

\cell1phg⊥cell1
phg⊥
\τ

M t
cell1,cell2| (cell membrane)

(ν vesicle1, vesicle2)(τ\vesicle1mate〈n,x1,x2〉|M cell2
vesicle1,vesicle2| (vesicle inside the cell)

Exovrs1|Mvesicle2
vrs1,vrs2|Nucap)| (virus inside the vesicle)

Mate⊥bare1|Exo⊥bare1|M cell2
bare1,bare2|Molcell2dis trg (inside the cell)

mate ↓ τ\vesicle1matevesicle1mate
\cell2matecell2mate

\bare1
⊥
mate

bare1⊥mate
\τ

M t
cell1,cell2|(ν vesicle1, vesicle2, new1, new2)((cell membrane)

Fwdnew1
vesicle1|Fwdnew2

vesicle2|Fwdnew1
bare1|Fwdnew2

bare2| (dissolved membranes)

Exovrs1|Mvesicle2
vrs1,vrs2|Nucap| (virus inside the new membrane)

Exo⊥bare1|M cell2
new1,new2|Molcelldis trg (new membrane and)

(dis-trg molecule)

exo ↓ τ\vrs1exovrs1exo
\vesicle2exovesicle2exo

\new2exo
new2exo

\new1⊥exo
new1⊥exo

\bare1
⊥
exo

bare1⊥exo
\sτ

M t
cell1,cell2|(ν vesicle1, vesicle2, new1, new2)((cell membrane)

Fwdnew1
vrs1 |Fwdcell2vrs2 |Fwdnew1

vesicle1|Fwdnew2
vesicle2|Fwdnew1

bare1|Fwdnew2
bare2| (dissolved membranes)

nucap1\nucap2〈out,in,dis-trg,vRNA,vRNA,empty〉|Mvrs2
nucap1,nucap2| (nuclecapsid membrane)

M cell2
new1,new2|Molcell2dis trg) (new membrane and)

(dis-trig molecule)

mol ↓ τ\cell2cell2\vrs2vrs2\nucap1nucap1\nucap2nucap2\τ

M t
cell1,cell2|(ν vesicle1, vesicle2, new1, new2)((cell membrane)

Fwdcell1vrs1 |Fwdcell2vrs2 |Fwdnew1
vesicle1|Fwdnew2

vesicle2|Fwdnew1
bare1|Fwdnew2

bare2| (dissolved membranes)

Mvrs2
nucap1,nucap2| (nuclecapsid membrane)

M cell2
new1,new2|Molcell2vRNA) (new membrane and)

(vRNA molecule)

Figure 10: Execution of the Encoding of the Brane Phago, Mate, Exo and
of a Molecular Interaction.

132 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

Figure 11: Viral Infection (highlighted part) and Reproduction. [Adapted
from [8]].

8 Conclusion

We presented the application of the link-calculus to Systems Biology, show-
ing that it is suitable for representing biological interactions. In this field,
interactions vary on the number of elements, on their locations, and on their
shapes. Here, we have shown that the link-calculus can easily take into
account interactions with a different number of participants, and that can
easily manage membrane compartments. In particular, we can encode the
MBD version of Brane calculi with the link-calculus, and we can also offer
similar encodings for further versions of the calculus, based on different sets
of primitives. Our flat calculus puts its set of low-level primitives at our
disposal to simply implement the various more abstract primitives of Brane.
We have an operational correspondence result that shows the correctness
of the proposed encoding. In [8], Cardelli shortly addresses the problem
of encoding Brane Calculi in BioAmbients [25], by observing some critical

A Flat Process Calculus for Nested Membrane Interactions 133

aspects such as atomicity of actions and the difficulty in managing the
interactions through the ambient structure. The encodings presented here
make us confident that such limitations do not apply to a flat and multiparty
calculus like the link-calculus.

Furthermore, we can directly model other biological interactions, like
those involved in the Receptor-mediated Endocytosis, without passing from
another process calculus. The simplicity and expressivity of our encoding of
this mechanism encourages us to think that link-calculus can be adopted
to provide straight models of biological processes. In future work, we would
like to enrich the link-calculus in order to take into account also the shape
and geometry of the biological elements, that influence their interactions.

It would be interesting to further investigate and test the encoding
capability of link-calculus, by considering other compartment-based calculi,
such as BioAmbients [25], the calculus for proteins and cells [21], introduced
as an extension of κ-calculus [15], Bio-PEPA [14], the Calculus of Looping
Sequences [2], Beta Binders [23], the Shape calculus [3]; and Membrane
Systems [10, 11].

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

This research has been supported by the MIUR project PRIN CINA
Prot. 2010LHT4KM.

References

[1] B. Alberts, A. Johnson, P. Water, J. Lewis, M. Raff, K. Roberts, and
N. Orme. Molecular Biology of the Cell. Garland, 2007.

[2] R. Barbuti, G. Caravagna, A. Maggiolo-Schettini, P. Milazzo, and
G. Pardini. The calculus of looping sequences. In Formal Methods for
Computational Systems Biology, 8th International School on Formal
Methods for the Design of Computer, Communication, and Software
Systems (SFM 2008), volume 5016 of Lecture Notes in Computer Science,
pages 387–423, 2008. doi:10.1007/978-3-540-68894-5_11.

[3] E. Bartocci, F. Corradini, M.R. Di Berardini, E. Merelli, and L. Tesei.
Shape calculus. a spatial mobile calculus for 3d shapes. Scientific Annals
of Computer Science, 20, 2010.

http://dx.doi.org/10.1007/978-3-540-68894-5_11

134 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

[4] C. Bodei, L. Brodo, and R. Bruni. Open multiparty interaction. In
Recent Trends in Algebraic Development Techniques, 21st International
Workshop (WADT 2012), volume 7841 of Lecture Notes in Computer
Science, pages 1–23, 2013. doi:10.1007/978-3-642-37635-1_1.

[5] F. Bonchi, F. Gadducci, and G. V. Monreale. Labelled transitions for
mobile ambients (as synthesized via a graphical encoding). Electronic
Notes in Theoretical Computer Science, 242(1):73–98, 2009. doi:10.

1016/j.entcs.2009.06.014.

[6] F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive systems,
barbed semantics, and the mobile ambients. In Foundations of Soft-
ware Science and Computational Structures (FoSSaCS 2009), volume
5504 of Lecture Notes in Computer Science, pages 272–287, 2009.
doi:10.1007/978-3-642-00596-1_20.

[7] L. Brodo. On the expressiveness of the π-calculus and the mobile
ambients. In M. Johnson and D. Pavlovic, editors, Algebraic Methodology
and Software Technology - 13th International Conference (AMAST
2010), volume 6486 of Lecture Notes in Computer Science, pages 44–59.
Springer, 2010. doi:10.1007/978-3-642-17796-5_3.

[8] L. Cardelli. Brane calculi - interactions of biological membranes. In
Computational Methods in Systems Biology, 7th International Confer-
ence (CMSB 2004), volume 3082 of Lecture Notes in Computer Science,
pages 257–280. Springer, 2005. doi:10.1007/978-3-540-25974-9_24.

[9] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Com-
puter Science, 240(1):177–213, 2000. doi:10.1016/S0304-3975(99)

00231-5.

[10] G. Ciobanu, R. Desai, and A. Kumar. Membrane systems and dis-
tributed computing. In G. Păun, G. Rozenberg, A. Salomaa, and
C. Zandron, editors, Membrane Computing, International Workshop
(WMC-CdeA 2002), volume 2597 of Lecture Notes in Computer Science,
pages 187–202. Springer, 2003. doi:10.1007/3-540-36490-0_12.

[11] G. Ciobanu, M.J. Pérez-Jiménez, and G. Păun, editors. Applications of
Membrane Computing. Natural Computing Series. Springer, 2006.

[12] G. Ciobanu and V. A. Zakharov. Encoding mobile ambients into the π
-calculus. In I. Virbitskaite and A. Voronkov, editors, Ershov Memorial

http://dx.doi.org/10.1007/978-3-642-37635-1_1
http://dx.doi.org/10.1016/j.entcs.2009.06.014
http://dx.doi.org/10.1016/j.entcs.2009.06.014
http://dx.doi.org/10.1007/978-3-642-00596-1_20
http://dx.doi.org/10.1007/978-3-642-17796-5_3
http://dx.doi.org/10.1007/978-3-540-25974-9_24
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://dx.doi.org/10.1007/3-540-36490-0_12

A Flat Process Calculus for Nested Membrane Interactions 135

Conference, 2006, volume 4378 of Lecture Notes in Computer Science,
pages 148–165. Springer, 2007. doi:10.1007/978-3-540-70881-0_15.

[13] F. Ciocchetta. The BlenX language with biological transactions. In
C. Priami, editor, Transactions on Computational Systems Biology IX,
volume 5121 of Lecture Notes in Computer Science, pages 114–152.
Springer, 2008. doi:10.1007/978-3-540-88765-2_4.

[14] F. Ciocchetta and J. Hillston. Bio-PEPA: An extension of the process
algebra PEPA for biochemical networks. Electronic Notes in Theoretical
Computer Science, 194(3):103–117, 2008. doi:10.1016/j.entcs.2007.
12.008.

[15] V. Danos and C. Laneve. Graphs for core molecular biology. In Com-
putational Methods in Systems Biology, 7th International Conference
(CMS 2003), volume 2602 of Lecture Notes in Computer Science, pages
34–46, 2003. doi:10.1007/3-540-36481-1_4.

[16] L. Dematté, C. Priami, and A. Romanel. The BlenX language: a tutorial.
In Formal Methods for Computational Systems Biology, School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems (SFM 2008), volume 5016 of Lecture Notes in Computer Science,
pages 313–365. Springer, 2008. doi:10.1007/978-3-540-68894-5_9.

[17] G. L. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics
of ambients via graph synchronization with mobility. In Theoret-
ical Computer Science, 7th Italian Conference (ICTCS 2001), vol-
ume 2202 of Lecture Notes in Computer Science, pages 1–16, 2001.
doi:10.1007/3-540-45446-2_1.

[18] P. Gardner, C. Laneve, and L. Wischik. Linear forwarders. Information
and Computation, 205(10):1526–1550, 2007. doi:10.1016/j.ic.2007.
01.006.

[19] J. Heath, M.Z. Kwiatkowska, G. Norman, and D. Parker O. Tymchyshyn.
Probabilistic model checking of complex biological pathways. Theoretical
Computer Science, 391(3):239–257, 2008. doi:10.1016/j.tcs.2007.

11.013.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic model
checking in systems biology. ACM SIGMETRICS Performance Evalua-
tion Review, 35(4):14–21, 2008. doi:10.1145/1364644.1364651.

http://dx.doi.org/10.1007/978-3-540-70881-0_15
http://dx.doi.org/10.1007/978-3-540-88765-2_4
http://dx.doi.org/10.1016/j.entcs.2007.12.008
http://dx.doi.org/10.1016/j.entcs.2007.12.008
http://dx.doi.org/10.1007/3-540-36481-1_4
http://dx.doi.org/10.1007/978-3-540-68894-5_9
http://dx.doi.org/10.1007/3-540-45446-2_1
http://dx.doi.org/10.1016/j.ic.2007.01.006
http://dx.doi.org/10.1016/j.ic.2007.01.006
http://dx.doi.org/10.1016/j.tcs.2007.11.013
http://dx.doi.org/10.1016/j.tcs.2007.11.013
http://dx.doi.org/10.1145/1364644.1364651

136 C. Bodei, L. Brodo, R. Bruni, D. Chiarugi

[21] C. Laneve and F. Tarissan. A simple calculus for proteins and cells.
Electronic Notes in Theoretical Computer Science, 171(2):139–154, 2007.
doi:10.1016/j.entcs.2007.05.013.

[22] M. Merro and F. Zappa Nardelli. Behavioral theory for mobile ambients.
Journal of the ACM, 52(6):961–1023, 2005. doi:10.1145/1101821.

1101825.

[23] C. Priami and P. Quaglia. Beta binders for biological interactions. In
Computational Methods in Systems Biology, 7th International Confer-
ence (CMSB 2004), volume 3082 of Lecture Notes in Computer Science,
pages 20–33, 2005. doi:10.1007/978-3-540-25974-9_3.

[24] J. Rathke and P. Sobociński. Deriving structural labelled transitions
for mobile ambients. Information and Computation, 208(10):1221–1242,
2010. doi:10.1007/978-3-540-85361-9_36.

[25] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E.Y. Shapiro.
BioAmbients: An abstraction for biological compartments. Theoretical
Computer Science, 325(1):141–167, 2004. doi:10.1016/j.tcs.2004.

03.061.

[26] A. Regev, W. Silverman, and E.Y. Shapiro. Representation and sim-
ulation of biochemical processes using the π-calculus process algebra.
In Pacific Symposium of Biocomputing 2001, volume 6, pages 459–470,
2001.

[27] C. Versari. A core calculus for a comparative analysis of bio-inspired
calculi. In Programming Languages and Systems, 16th European
Symposium on Programming (ESOP 2007), volume 4421 of Lecture
Notes in Computer Science, pages 411–425, 2007. doi:10.1007/

978-3-540-71316-6_28.

c© Scientific Annals of Computer Science 2014

http://dx.doi.org/10.1016/j.entcs.2007.05.013
http://dx.doi.org/10.1145/1101821.1101825
http://dx.doi.org/10.1145/1101821.1101825
http://dx.doi.org/10.1007/978-3-540-25974-9_3
http://dx.doi.org/10.1007/978-3-540-85361-9_36
http://dx.doi.org/10.1016/j.tcs.2004.03.061
http://dx.doi.org/10.1016/j.tcs.2004.03.061
http://dx.doi.org/10.1007/978-3-540-71316-6_28
http://dx.doi.org/10.1007/978-3-540-71316-6_28

	Introduction
	The Receptor-mediated Endocytosis Example
	The Calculus of Linked Interactions
	Back to the Receptor-mediated Endocytosis Example
	An Overview on Brane Calculi
	From Membranes to Links
	The MBD Brane Calculus
	The PEP Brane Calculus
	Comparing the MBD and PEP encodings
	Molecules and Molecular actions

	Our encoding at work
	Conclusion

