
Scientific Annals of Computer Science vol.18, 2008

“Alexandru Ioan Cuza” University of Iaşi, Romania

Involutions on Relational Program Calculi

I. M. Rewitzky1 and J. W. Sanders2

Abstract

The standard Galois connection between the relational and
predicate-transformer models of sequential programming (defined in
terms of weakest precondition) confers a certain similarity between
them. This paper investigates the extent to which the important in-
volution on transformers (which, for instance, interchanges demonic
and angelic nondeterminism, and reduces the two kinds of simulation
in the relational model to one kind in the transformer model) carries
over to relations. It is shown that no exact analogue exists; that the
two complement-based involutions are too weak to be of much use; but
that the translation to relations of transformer involution under the
Galois connection is just strong enough to support Boolean-algebra-
style reasoning, a claim that is substantiated by proving properties
of deterministic computations. Throughout, the setting is that of
the guarded-command language augmented by the usual specification
commands; and where possible algebraic reasoning is used in place of
the more conventional semantic reasoning.

1 Introduction

We adopt the familiar view that a semantic model for programming, and for
the development of programs from specifications through designs to code,
consists of a partially-ordered space. The elements of the space are de-
signs expressed in code—‘programs’—and designs (including specifications)

1Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South
Africa. Email: rewitzky@sun.ac.za

2International Institute for Software Technology, United Nations University, Macao.
Email: jeff@iist.unu.edu

129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201528009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

expressed using more general ‘commands’. The partial order is that of
(‘more-deterministic-than’) refinement.

The two main semantic models for sequential programming, the re-
lational model (see, for example, Hoare et al.’s [10]) and the predicate-
transformer model (Dijkstra’s [5]), are congruent on programs—which we
take to consist essentially of Dijkstra’s guarded-command language (loc.
cit.). The congruence is established by the Galois connection consisting of
the weakest-precondition function from relations to predicate transformers
and its adjoint, relational projection, in the other direction.

But the two models diverge with the incorporation of commands more
general than programs, like partially-enabled computations (guarded com-
mands), unbounded demonic nondeterminism and angelic nondeterminism
(the work of Back [1], Morgan [14], Nelson [16] and Morris [15]). For example
they handle angelic nondeterminism quite differently, and the transformer
model is endowed with an involution that accounts for its quantitatively-
better structure. Indeed transformer involution interchanges demonic and
angelic nondeterminism (see Back and von Wright’s [2]), interchanges pre-
condition and guard (the same authors’ [3]), reduces the two simulations
required for completeness of data refinement in the relational model to a
single complete rule in the transformer model (see Gardiner and Morgan’s
[8] or de Roever and Engelhardt’s text [7]), and facilitates familiar Boolean-
algebra style of reasoning (Back and von Wright’s [3]).

So on one hand the binary-relation and predicate-transformer models
share substantial similarities and on the other they exhibit important differ-
ences. In this paper we investigate the extent to which the relational model
retains vestiges of transformer involution, and how useful that is.

We begin with a simple result: relations possess no equivalent of trans-
former involution. That means, of course, that any attempt to define an
involution by structural induction on relations must fail. But it leaves open
the possibility of ‘weak’ involutions: functions on the relational model that
satisfy merely some of the properties enjoyed by an involution.

The first two putative weak involutions we consider are based on set
complement in the relational model. Unfortunately both turn out to be
too weak because they identify too many computations. So we consider the
translation of transformer involution to relations using the Galois connec-
tion, and call the result Galois star. It is better behaved than the previous
candidates, but an experiment is required to determine whether or not its
properties are strong enough to support the kind of reasoning that trans-

130

former involution permits on transformers.
For that experiment we choose a topic that has emerged as a ‘bench-

mark’ [5, 6, 13] for such kinds of reasoning (at least when restricted to
the guarded-command language proper): the consideration of determinism.
Extending that concept to partially-enabled computations, we distinguish
deterministic, predeterministic and postdeterministic computations. A de-
terministic computation terminates in each initial state with one (state-
dependent) value; a predeterministic computation at each initial state ei-
ther fails to terminate or terminates with one value; and a postdeterministic
computation at each initial state either fails to be enabled or terminates with
one value. (Note that some authors use ‘deterministic’ for our ‘predetermin-
istic’.) Then a standard ‘test’ of a formalism for reasoning about computa-
tions is the ease with which it is able to reason about preservation of deter-
minism: if computations P and Q are predeterministic then so too is their
sequential composition P ◦

9
Q and their conditional if a → P [] b → Q fi

with disjoint guards a and b ; whilst the binary conditional P � b � Q pre-
serves all three kinds of determinism. Reasoning in the transformer model
was originally due to Dijkstra [5], then to Dijkstra and Scholten [6], and in
the relational model with Tarski’s axioms to Maddux [13]. For comparison
we also give a proof in the program calculus itself—without any particular
semantic model. Such a step we regard as hugely preferable. Indeed one of
the techniques promoted in this paper is algebraic reasoning about concepts
normally handled semantically.

The paper proper begins, in Section 3, with a summary of programs
(the guarded-command language) and their more general commands. It
summarises, in Section 4, the relational and transformer models and the
Galois connection between them. It then proves, in Section 5, the absence
of an involution on the relational model, considers the two complement-
based candidates in Sections 6 and 7 before settling, in Section 8, on Galois
star which is applied in reasoning about forms of determinism in Section 9.
But first, notation must be established.

2 Notation

Pertaining to logic, we write: =̂ for equals by definition; a : A to mean a
is of type A; pred.X for the type of predicates on X , where predicates are
Boolean-valued functions and substitution is functional application (possible
because we consider predicates over only a single state space of Cartesian-

131

product type); formulae like ∀ a : A · p in which the dot simply acts as a
syntactic separator; p � b � q for the binary conditional, ‘p if b else q ’ ; ≤
for implication on predicates; and the infix relation it engenders we write
instead ⇛.

Pertaining to binary relations: A↔B denotes the type of binary rela-
tions from A to B and A→B the type of (total) functions from A to B ;
id[A] denotes the identity function on A ; functional application is written
‘.’ (as in f .x) and associates to the left; composition of functions is written
◦ (as in f ◦ g); binary relations are written in infix (thus r relates a and
b is written a r b); (forward) relational composition, as well as sequential
composition in the programming language, is written ◦

9
(so that if binary

relations f and g are actually functions then their forward relational compo-
sition f ◦

9
g equals their functional composition g ◦ f); and relational image

at a point is written r .(|a |) (and equals {y | ∃ x :a · x r y}) .
¿From partial orders we need the following concepts. If (X ,≤) and

(Y ,≤) are partial orders then a pair of functions f : X → Y and g : Y → X
forms a Galois connection [17] means that they satisfy the equivalence

f .x ≤ y ≡ x ≤ g .y .

A function f : X → Y between partial orders is said to be universally
[positively] disjunctive iff

f . ∨ X = ∨{f .x | x ∈ X}

for all [all nonempty] subsets X of X (and analogously for conjunctivity).
Whilst it is very simple, the theory of Galois connections has substantial
applications in program semantics [11] and software engineering [4]. Because
it is one of those subjects that has been developed largely by folklore, we
include in Section 4.3 a summary relevant to our needs. For more general
book treatments we refer to the standards [9, 12].

The semantic denotation of a command P is written [[P]] . Two seman-
tic models are considered (binary relations and predicate transformers).
When confusion could arise by our use of the same notation for two distinct
semantics, we clarify which is meant.

More specific notation (like the healthy closure of a binary relation) is
introduced as it is needed.

132

3 Command Calculus

This section summarises the language this paper uses for describing ‘pro-
grams’ (or ‘code’) and their generalisations ‘commands’ (or ‘specification
computations’), and the laws they satisfy. Concepts like ‘deterministic’ and
‘terminating’ that are normally applied just to programs (and defined se-
mantically) are here extended to commands and defined algebraically. That
enables us to reason algebraically about those concepts.

3.1 Programs

We denote by X the global state space of the programs under consideration;
it is the Cartesian product of the types of the various program variables.
The state of a program is thus denoted by a vector x :X .

The syntax of our version [10] of Dijkstra’s guarded-command language
is summarised in Figure 1. Computation skip terminates without changing
state and computation abort corresponds to divergence. In assignment,
the state x :X is updated to take the value of the well-typed (well defined:
terminating and single-valued) expression e. Sequential composition is stan-
dard. Binary conditional is written P � b � Q to express P if b else Q ,
where b is a (totally defined) predicate on state.

Demonic nondeterminism arises from abstraction of blocks defined at
a lower level of abstraction together with the requirement for local reason-
ing; it corresponds to a choice between its arguments whose resolution lies
beyond the current level of abstraction. Recursion is modelled as least pre-
fixed point. For simplicity we do not here include local block or procedure
invocation. Refinement corresponds to removal of demonic nondeterminism,
so that P ⊑ Q =̂ P ⊓ Q = P .

3.2 Commands

A computation that is a program, or code, is regarded as executable. The
commands which extend programs are summarised in Figure 2. Extending
the operators (and hence also the ordering) in Figure 1 to commands, the
result is a partially-ordered space of computations that we denote L(X).

Arbitrary demonic nondeterminism is infimum in the refinement order-
ing and so extends the binary version expressed in programs. Empty de-
monic nondeterminism is thus the greatest element of L(X): ⊓{ } = magic;
it refines every command and represents a computation which is never en-

133

skip no op
abort divergence
x := e assignment
P ◦

9
Q sequential composition

P � b � Q binary conditional
P ⊓ Q demonic nondeterminism

µF recursion

P ⊑ Q refinement

Figure 1: Syntax for programs and the refinement pre-order.

⊓P arbitrary demonic nondeterminism
choose arbitrary assignment
magic unenabled computation

{{p}} assertion
〈〈p〉〉 coercion
⊔P arbitrary angelic nondeterminism

Figure 2: Syntax for commands (although an assertion is code).

abled. Since arbitrary infima exist, so too do arbitrary suprema. Arbitrary
angelic nondeterminism is supremum in the refinement ordering; empty an-
gelic nondeterminism is thus the least element: ⊔{ } = abort.

For a predicate b on state space X , the computation assert b skips if
b holds but otherwise fails to terminate:

{{b}} =̂ skip � b.x � abort ; (1)

thus it is actually code. Computation coerce b skips if b holds but otherwise
is not enabled:

〈〈b〉〉 =̂ skip � b.x � magic . (2)

The computation choose terminates in an arbitrary state:

choose =̂ ⊓{x := y | y ∈ X } . (3)

When the state space is infinite that is not code. The computation neq

terminates in a final state different from its initial state:

neq =̂ ⊓{x := y | y 6= x0} (4)

134

where x0 denotes the initial state and the predicate y 6= x0 is a finite conjunct
if the state space is finite.

The important computational concepts of termination, enabledness and
determinism are expressed algebraically as follows. Suppose that P is a
command and x0 : X is a state. Then P aborts at x0 iff the computation
might not (equivalently ‘will not’ in the standard (Hoare/Dijkstra) model
we follow here) terminate there

{{x = x0}} ◦

9
P = abort .

Command P is enabled at x0 iff it may (equivalently ‘does’) begin there

〈〈x = x0〉〉 ◦

9
P 6= magic

which is equivalent (in view of Law (17) to follow) to

〈〈x = x0〉〉 ◦

9
P ◦

9
abort = abort .

P terminates at x0 means that it is enabled but does not abort there.
Computation P is deterministic at x0 means that P is enabled there

and terminates in only a single final state. To define that term: command
P is co-atomic at x0 iff at x0 , P does not equal magic and no commands
lie strictly between P and magic

〈〈x = x0〉〉 ◦

9
P 6= magic (5)

∀R :L(X) · 〈〈x = x0〉〉 ◦

9
P ⊏ R ⇒ R = magic . (6)

Then P is deterministic at x0 iff

∀ x0 :X · 〈〈x = x0〉〉 ◦

9
P is co-atomic .

Command P is postdeterministic at x0 iff either it is not enabled there or it
terminates in only a single value:

∀ x0 :X · 〈〈x = x0〉〉 ◦

9
P 6= magic ⇒ 〈〈x = x0〉〉 ◦

9
P is co-atomic .

Finally P is predeterministic at x0 iff it is enabled there and either does not
terminate or is deterministic:

∀ x0 :X · 〈〈x = x0〉〉 ◦

9
P 6= magic

∧
{{x = x0}} ◦

9
P 6= abort ⇒ 〈〈x = x0〉〉 ◦

9
P is co-atomic .

135

A command is terminating [always-enabled, deterministic, predeter-
ministic, postdeterministic] means that it is terminating [enabled, deter-
ministic, predeterministic, postdeterministic] at each initial state x0 . In
particular a command is deterministic iff it is predeterministic and postde-
terministic. Code is always enabled; and the celebrated loop rule ensures
termination of code in the form of an iteration. But magic, for example, is
not enabled (hence) not terminating, but is postdeterministic. It is conve-
nient to keep in mind that in the transformer model (at least), enabledness
plays for commands a rôle dual to that which termination plays for code. A
consequence of our interest in relational involutions is the extent to which
that remains true for the relational model.

3.3 Calculus

The language L(X) has the algebraic structure summarised in Figure 3
(which does not claim to list all laws).

Commands abort and magic are not zeroes on both sides for sequen-
tial composition, for that would imply their degeneration (to the same com-
mand). Nor does sequential composition distribute demonic nondetermin-
ism and angelic nondeterminism on both sides. Nonetheless under demonic
nondeterminism and sequential composition, L(X) forms what might be
called a pre-quantal (by comparison with the definitions in Rosenthal’s text
[18] on quantales): the ⊓ of arbitrary subsets exists and sequential compo-
sition is associative with an identity, skip; also sequential composition dis-
tributes arbitrary demonic nondeterminism in its left-hand argument, and
distributes nonempty (the reason for the ‘pre’) demonic nondeterminism in
its right-hand argument.

In spite of the failure of sequential composition to distribute angelic
nondeterminism, L(X) forms a complete lattice in which each command
is the angelic choice of the compact commands3 it refines. But equality
holds in refinements (14) and (16) if each command being distributed is
predeterministic.

The operators of sequential composition and binary conditional are
monotone in each argument.

3A command is compact if it aborts outside a finite set (on part of which it may, of
course, be unenabled; by comparison, a compact program aborts outside a finite set but
is everywhere enabled).

136

(L(X),⊓, ◦

9
, skip) forms a pre-quantal (7)

(⊓P) ◦

9
R = ⊓{P ◦

9
R | P ∈ P} (8)

P ◦

9
(⊓Q) = ⊓{P ◦

9
Q | Q ∈ Q} , if Q nonempty (9)

(L(X),⊑) forms a complete lattice and a domain (10)

with maximum magic and minimum abort (11)

magic ◦

9
R = magic (12)

P ◦

9
magic = magic , if P always terminates (13)

(⊔P) ◦

9
Q ⊒ ⊔{P ◦

9
Q | P ∈ Q} , = if all P are predet. (14)

abort ◦

9
Q = abort (15)

P ◦

9
(⊔Q) ⊒ ⊔{P ◦

9
Q | Q ∈ Q} , = if all Q are predet. (16)

P ◦

9
abort = abort , if P always enabled (17)

(P � b � Q) ⊓ R = (P ⊓ R) � b � (Q ⊓ R) (18)

(P � b � Q) ⊔ R = (P ⊔ R) � b � (Q ⊔ R) (19)

(P � b � Q) ◦

9
R = (P ◦

9
R) � b � (Q ◦

9
R) (20)

P � b � Q = {{b}} ◦

9
P ⊔ {{¬b}} ◦

9
Q (21)

= 〈〈b〉〉 ◦

9
P ⊓ 〈〈¬b〉〉 ◦

9
Q (22)

(x := e) ◦

9
(x := f) = x := f ◦ e (23)

Figure 3: Laws for the language L.

137

4 Program Semantics

This section summarises the relational and predicate-transformer seman-
tics of L(X) and the (Galois) connection between them. In each case the
semantics yields a pre-quantal-right module.

4.1 Relational Semantics

In this section we give the relational semantics of the language L(X) , first
for code. Each command is represented as a relation from initial states to
the final states attainable from each initial state.

4.1.1 Relations

The state space augmented with the improper state ⊥ (representing non-
termination) is denoted X⊥ =̂ X ∪ {⊥} . As usual we treat X⊥ as the
flat domain X augmented with least element ⊥ . The improper state ⊥ is
not part of the programming notation and it is not a value which can be
assigned to the global variable. It is simply a semantic artifact, enabling
nontermination to be distinguished from arbitrary termination.

We write relations in infix, and use the convention that, for a relation
e with domain X and range X⊥, e⊥ denotes the relation on X⊥

e⊥ =̂ e ∪ ({⊥}×X⊥) .

The semantic space for the relational semantics is the subspace of re-
lations on X⊥ that are strict and whose relational images are upclosed

R(X) =̂ {d : X⊥↔X⊥ | (⊥ d ⊥) ∧ (x d ⊥ ⇒ d .(|x |) = X⊥)}

with the inclusion ordering ⊇ for ‘more-deterministic-than’ refinement (since
multiple-valuedness of a relation captures demonic nondeterminism of the
command it represents).

It is readily confirmed that (R(X),⊇) is a domain and a complete
lattice with least element X⊥×X⊥, greatest element { }⊥ and compact ele-
ments the relations which are cofinite subsets of X⊥×X⊥ ; moreover it is a
Boolean algebra under the usual set-theoretic complement.

The healthy closure of any relation r on X⊥ is given by the value at r
of a function h : (X⊥↔X⊥)→R(X) , characterised by:

x (h.r) y = (x = ⊥) ∨ (x r ⊥) ∨ (x r y) .

138

[[skip]] =̂ id[X]⊥
[[abort]] =̂ X⊥×X⊥

[[χ := e]] =̂ ({(x , e.x) | x ∈ X ∧ e.x terminates})⊥
[[P ◦

9
Q]] =̂ [[P]] ◦

9
[Q]

[[P � b � Q]] =̂ {(x , y) | x [[P]] y � b.x � x [[Q]] y}
[[P ⊓ Q]] =̂ [[P]] ∪ [[Q]]

[[µF]] =̂ ∪{d | F .d ⊇ d} , F monotone on code

Figure 4: Relational semantics of code.

Furthermore r is called healthy if h.r = r . Evidently h is well defined,
increasing (r ⊆ h.r), monotone with respect to inclusion on both sides
(r ⊆ s ⇛ h.r ⊆ h.s) and h.r is the smallest healthy relation containing r .

4.1.2 Semantics

The relational semantics ascribes to each command P a relation [[P]] :R(X) .
The semantics of code is given in Figure 4. Denotations of code satisfy

this healthiness condition: for each x : X the relational image d .(| x |) is
nonempty and either finite or all of X⊥ . The subspace of such healthy
relations forms a domain with least element X⊥×X⊥, maximal elements the
(total) functions and compact elements the members for which only finitely
many elements of X are not related to every element of X⊥. In the definition
of recursion, the function F is defined on that healthy subspace of R(X)
and the relation d ranges over it.

The semantics of commands is given in Figure 5. They satisfy as
healthiness condition just the defining condition of R(X). Evidently the
space R(X) contains the space of denotations of code. However the in-
jection fails to form the embedding in a Galois connection. Otherwise its
companion projection would map the maximum { }⊥ : R(X) to a maximum
denotation of code; but no such denotation exists. So the two spaces have
an uneasy relationship, compared with the corresponding domains in the
predicate-transformer semantics.

4.2 Transformer Semantics

A command may be viewed as a predicate transformer in two, adjoint, ways.
We follow (Dijkstra’s) tradition and consider it as a function from postcon-

139

[[⊓S]] =̂ ∪{[[S]] | S ∈ S}
[[magic]] =̂ { }⊥

[[{{b}}]] =̂ {(x , y) :X×X⊥ | b.x ⇒ x = y}⊥
[[〈〈b〉〉]] =̂ {(x , x) :X×X | b.x}⊥
[[⊔S]] =̂ ∩{[[S]] | S ∈ S}

Figure 5: Relational semantics for commands.

ditions to preconditions: postcondition q is mapped to the precondition true
at just those states from which the command is certain to terminate in a
state satisfying p : the weakest precondition of the command evaluated at
q. (The possibility of demonic nondeterminism is responsible for the word
‘certain’.)

4.2.1 Transformers

Each such function is monotonic under the usual ordering on predicates: a
weaker postcondition engenders a weaker weakest precondition. We write
(pred.X ,≤) for the space of all predicates (Boolean-valued functions) on
X under the implication (pointwise) partial ordering. The space for the
transformer semantics is then the space of all functions on that space that
are monotone

T (X) =̂ {t : pred.X → pred.X | ∀ q , r :pred.X · q ≤ r ⇒ t .q ≤ t .r} ,

ordered by the pointwise lifting of the order ≤ on predicates

t ≤ u =̂ ∀ q :pred.X · t .q ≤ u.q .

Thus t is refined by u iff for each postcondition q , the weakest precondition
of t at q is at least as strong as the weakest precondition of u at q ; whenever
t achieves q so too does u .

Because the order on T (X) is the lifting of implication, least upper
bounds and greatest lower bounds of arbitrary sets exist pointwise. So
(T (X),≤) is readily seen to be a pre-quantal, a complete lattice and a
domain.

140

[[skip]] =̂ id[pred.X]

[[abort]] =̂ false

[[x := e]].q .x =̂ q .(e.x) (= q [e/x])

[[P ◦

9
Q]] =̂ [[P]] ◦ [[Q]]

[[P � b � Q]] =̂ [[P]] � b � [[Q]]

[[P ⊓ Q]] =̂ [[P]] ∧ [[Q]]

[[µF]] =̂ ∨{t :T (X) | F .t ≥ t} , F monotone on T (X)

Figure 6: Transformer semantics of code.

[[⊓S]] =̂ ∧{[[S]] | S ∈ S}
[[magic]] =̂ true
[[{{b}}]].q =̂ b ∧ q
[[〈〈b〉〉]].q =̂ b ⇒ q

[[⊔S]] =̂ ∨{[[S]] | S ∈ S}

Figure 7: Transformer semantics for commands.

4.2.2 Semantics

The transformer semantics ascribes to each command P a predicate-transformer
[[P]] in T (X) .

The semantics of code is given in Figure 6. Denotations of code satisfy
Dijkstra’s healthiness conditions: the transformer is positively conjunctive
and ≤-continuous.

The semantics of commands is given in Figure 7. The healthiness
condition is simply monotonicity, the defining property of T (S) .

4.2.3 Involution

For transformer t : T (X), its involute t∗ : T (X) is defined:

t∗.q =̂ ¬t .¬q .

Involution plays an important rôle in transformer semantics: it is useful
for calculation because it obeys de Morgan’s laws, interchanging demonic
and angelic nondeterminism; it provides a duality (as a result) between ter-
mination and enabledness; it converts one of the two simulation conditions

141

necessary in the relational model for data refinement to the other, thus en-
suring that one simulation condition is alone sufficient for data refinement
in the transformer semantics. Its properties are:

Theorem 1 Involution is well defined on (T (X),≤) and satisfies

t monotone ≡ t∗ monotone (24)

t∗∗ = t (25)

false∗ = true and true∗ = false (26)

(t ◦

9
u)∗ = t∗ ◦

9
u∗ (27)

(id[T (X)])∗ = id[T (X)] (28)

t∗ ⊑ u ≡ t ⊒ u∗ (29)

(t ⊓ u)∗ = t∗ ⊔ u∗ and (t ⊔ u)∗ = t∗ ⊓ u∗ (30)

(¬t)∗ = ¬(t∗) (31)

t [universally] conjunctive ≡ t∗ [universally] disjunctive. (32)

4.3 Galois Connection

The function wp : R(X) → T (X) is defined, for a relational computation
r :R(X) , postcondition q :pred.X and state x :X :

wp.r .q .x =̂ ∀ y :X⊥ · x r y ⇒ (y 6=⊥ ∧ q .y) .

That says, as it ought, that wp.r.q holds at just those states from which
termination is ensured, in a state satisfying q . The consequent can be sim-
plified: since the domain of q is X , q is not defined at ⊥ ; so the first
conjunct can, in the presence of the type statement y : X⊥ and the under-
standing that ¬(q . ⊥) , be omitted:

wp.r .q .x = ∀ y :X⊥ · x r y ⇒ q .y .

Verification that wp is well defined (that wp.r is monotone) is immediate.
It is also routine to show that wp is universally (∪,≥)-junctive, i.e. from

(R(X),⊆) to (T (X),≥) . Thus wp has an adjoint, called the relational
projection, rp, that can be defined as follows. For t : T (X) , rp.t is the
relation on X⊥ defined to be strict and to satisfy, for x :X and y :X⊥ ,

x (rp.t) y =̂ ∀ q :pred.X · t .q .x ⇒ q .y ,

again with the convention ¬(q . ⊥) . In particular rp.false = X⊥×X⊥ .

142

Adjunction means that

t ≤ wp.r ≡ r ⊆ rp.t (33)

so that the functions wp and rp form a Galois connection between the
relational and transformer spaces with their orders reversed: from the space
(R(X),⊆) to the space (T (X),≥) .

Standard theory [17] shows that the Galois connection preserves much
of the structure on the two semantics models, except for angelic nondeter-
minism. Gathering the (elementary) properties we need, in spite of some
being consequences of others:

Theorem 2 The Galois connection satisfies

r ⊆ s ⇒ wp.r ≥ wp.s (34)

t ≥ u ⇒ rp.t ⊆ wp.u (35)

rp ◦ wp = id[R(X)] (36)

id[T (X)] ≤ wp ◦ rp (37)

wp.(r ◦

9
s) = (wp.r) ◦ (wp.s) (38)

wp.(id[X]⊥) = id[T (X)] (39)

rp.(t ◦ u) = (rp.t) ◦

9
(rp.u) (40)

rp.id[T (X)] = id[X]⊥ (41)

∀U ⊆ T (X) · rp.∨U = ∩ rp.(|U |) (42)

∀U ⊆ T (X) · rp. ∧U = ∪ rp.(|U |) (43)

rp.true = { }⊥ (44)

rp.false = X⊥×X⊥ (45)

∀S ⊆ R(X) · wp.(∪S) = ∧wp.(|S |) (46)

wp.(X⊥×X⊥) = false (47)

wp.{ }⊥ = true (48)

∀S ⊆ R(X) · wp.(∩S) ≥ ∨wp.(|S |) (49)

The fact that inclusion (49) may be strict indicates why the embedding
wp cannot be used to lift angelic nondeterminism from relations to trans-
formers. Otherwise, the transformer semantics (Figures 4 and 5) is obtained
from the relational semantics (Figures 6 and 7) under wp .

143

5 No Relational Involution

In this section we establish that there is no function on R(X) satisfying the
minimum requirements of an involution—as exhibited by ∗ on transformers.
Henceforth, semantic brackets refer solely to the relational semantics.

Theorem 3 There is no function ∗ on R(X) that is involutive, obeys ei-
ther of the De Morgan laws and distributes sequential composition, i.e. that
satisfies

(a) ∀ r :R(X) · r∗∗ = r

(b) either ∀ r , s :R(X) · (r ⊔ s)∗ = r∗ ⊓ s∗

or ∀ r , s :R(X) · (r ⊓ s)∗ = r∗ ⊔ s∗

(c) ∀ r , s :R(X) · (r ◦

9
s)∗ = r∗ ◦

9
s∗.

Proof: We argue by contradiction, establishing an untenable identity.
First we observe that Assumptions (a) and (b) are sufficient to establish the
equivalence of the two De Morgan laws in Assumption (b):

(d) (r ⊓ s)∗ = r∗ ⊔ s∗ ≡ (r ⊔ s)∗ = r∗ ⊓ s∗ .

The proof is trivial: if the first De Morgan law holds then

(r ⊓ s)∗

= Assumption (a)

(r∗∗ ⊓ s∗∗)∗

= Assumption (b)

(r∗ ⊔ s∗)∗∗

= Assumption (a)

r∗ ⊔ s∗ ,

so that the second De Morgan law holds, and the result follows by symmetry.
Now for relations

r ◦

9
(s ⊓ t) = (r ◦

9
s) ⊓ (r ◦

9
t) . (50)

144

But in the light of the calculation above, that is inconsistent with the poten-
tially strict Law (16), because from (50) we can infer, for any r , s, t :R(X) ,

r ◦

9
(s ⊔ t) = (r ◦

9
s) ⊔ (r ◦

9
t) . (51)

Indeed

r ◦

9
(s ⊔ t)

= Assumption (a)

(r ◦

9
(s ⊔ t))∗∗

= Assumption (c)

(r∗ ◦

9
(s ⊔ t)∗)∗

= Assumption (b)

(r∗ ◦

9
(s∗ ⊓ t∗))∗

= Law (50)

((r∗ ◦

9
s∗) ⊓ (r∗ ◦

9
t∗))∗

= Assumption (c)

((r ◦

9
s)∗ ⊓ (r ◦

9
t)∗)∗

= Assumption (b)

(r ◦

9
s)∗∗ ⊔ (r ◦

9
t)∗∗

= Assumption (a)

(r ◦

9
s) ⊔ (r ◦

9
t) .

It remains to demonstrate that Claim (51) fails, for which a simple
example suffices. Considering X =̂ {0, 1} with

r =̂ {(0, 0), (0, 1)}⊥

s =̂ {(0, 0)}⊥

t =̂ {(1, 0)}⊥ ,

we find

r ◦

9
(s ⊔ t) = { } ⊂ {(0, 0)} = (r ◦

9
s) ⊔ (r ◦

9
t) .

2

145

As an application of our theme—the investigation of the extent to which
reasoning that is normally done semantically can be done algebraically—
the following corollary lifts that counterexample, and hence the theorem, to
R(X) .

Corollary 1 Theorem 3 holds in any R(X) where X has at least two ele-
ments.

Proof: In the previous proof, only the counterexample used semantic
reasoning and hence needs to reworked in R(X) . Without loss we assume
that X has exactly two elements (otherwise the following construction can
be embedded within X).

Consider doubleton state space X =̂ {x0, x1} and computations

R =̂ 〈〈x = x0〉〉 ◦

9
(x := x0 ⊓ x := x1)

S =̂ 〈〈x = x0〉〉

T =̂ 〈〈x 6= x0〉〉 ◦

9
x := x0 .

We claim that:

S ⊔ T = magic (52)

(R ◦

9
S) ⊔ (R ◦

9
T) = S (53)

R ◦

9
(S ⊔ T) = magic . (54)

For Claim (52), we reason

S ⊔ T

= definition

〈〈x = x0〉〉 ⊔ 〈〈x 6= x0〉〉 ◦

9
x := x0

= definition of coercion

skip � x = x0 � magic

⊔
(skip � x 6= x0 � magic) ◦

9
x := x0

= Law (20)

skip � x = x0 � magic

⊔
(skip ◦

9
x := x0) � x 6= x0 � (magic ◦

9
x := x0)

146

= Laws (7), (12), calculus

skip � x = x0 � magic

⊔
magic � x = x0 � x := x0

= Law (19), calculus

(skip ⊔ magic) � x = x0 � (magic ⊔ x := x0)

= Law (11)

magic � x = x0 � magic

= calculus

magic .

For Claim (53) we show (R ◦

9
S) = (R ◦

9
T) = S and, since each is

similar, we prove just one equality:

R ◦

9
S

= definitions

〈〈x = x0〉〉 ◦

9
(x := x0 ⊓ x := x1) ◦

9
〈〈x = x0〉〉

= definition of coercion

(skip � x = x0 � magic) ◦

9
(x := x0 ⊓ x := x1) ◦

9

(skip � x = x0 � magic)

= Laws (20), (7), (9), (12)

((x := x0 ⊓ x := x1) � x = x0 � magic) ◦

9

(skip � x = x0 � magic)

= Laws (20), (12) again

(x := x0 ⊓ x := x1) ◦

9
(skip � x = x0 � magic)

� x = x0 �

magic

= Law (8)

((x := x0
◦

9
(skip � x = x0 � magic))

⊓
(x := x1

◦

9
(skip � x = x0 � magic)))

� x = x0 �

magic

147

= Law (23)

(skip � true � magic) ⊓ (skip � false � magic)
� x = x0 �

magic

= calculus

skip ⊓ magic

� x = x0 �

magic

= Law (11)

skip � x = x0 � magic

= definition of coercion

〈〈x = x0〉〉

= definition

S .

For Claim (54), we start by observing that if y :X then the assignment
x := y is total and hence by Law (13)

x := y ◦

9
magic = magic . (55)

Thus

(x := x0 ⊓ x := x1) ◦

9
magic

= Law (8)

(x := x0
◦

9
magic) ⊓ (x := x1

◦

9
magic)

= Claim (55) and ⊓ idempotent

magic .

Now we observe

R ◦

9
(S ⊔ T)

= definition and Claim (52)

〈〈x = x0〉〉 ◦

9
(x := x0 ⊓ x := x1) ◦

9
magic

= just established

148

〈〈x = x0〉〉 ◦

9
magic

= definition of coercion

(skip � x = x0 � magic) ◦

9
magic

= Laws (20), (12), (13)

magic � x = x0 � magic

= calculus

magic .

Having established the three claims we infer the strict inclusion sought
by comparing Claims (53) and (54). 2

The result of this section may be re-phrased: any attempt to define an
involution on R(X) by structural induction over commands leads to incon-
sistency unless at least one of the properties (a) to (c) is violated. In the
following three sections we consider weaker alternatives to an involution by
weakening our requirements and being guided by semantic considerations.

6 Complement

To begin our quest for ‘weak involutions’ on R(X), the most obvious a
priori choice seems to lie with some form of set-theoretic complement on
the grounds that it satisfies the De Morgan laws, interchanging unions (i.e.
demonic nondeterminism) and intersections (i.e. angelic nondeterminism).

On inspection we are confronted with two alternatives. Before mak-
ing the result healthy we could complement with respect to all states (i.e.
including ⊥) or with respect to just proper states (i.e. excluding ⊥). The
former operation we call ‘complement’ and investigate in this section; the
latter we call ‘proper complement’ and investigate in the next. We shall see
that both are severely restricted compared with involution on transformers.

The complement of a relation r : X⊥↔X⊥ is defined to be the relation
r : X⊥↔X⊥ that is the complement of r in X⊥×X⊥ , made healthy:

r =̂ h.((X⊥×X⊥) \ r) .

Simple examples show that both ⊥-closure and upclosure are necessary in
order for complement to be well-defined on R(X), the object of our interest.
An equivalent definition is r = h.((X×X⊥) \ r) .

149

Complement shares only a few of the properties of involution on T (X)
because it is so severe. Indeed translated to computational terms, the fol-
lowing result shows that if, from an initial state, a command is either not
enabled or terminating then its complement diverges there; whilst if the
command diverges then its complement is not enabled. So from any initial
state the complement is either not enabled or divergent.

Theorem 4 The complement of a relation is healthy: for any relation r
on X⊥ , r : R(X) . In particular, complement is well defined on R(X) .
Furthermore, for any r :R(X) and any x :X ,

r .(|x |) = ({ } � x r ⊥ � X⊥) .

Proof: By definition r is both strict and upclosed, and hence in R(X).
We observe that if r is healthy and x r ⊥ then r .(| x |) = X⊥ , hence

r .(| x |) = { } and so the first part of the dichotomy holds. For the second
part, if ¬(x r ⊥) then ⊥6∈ r .(| x |) and so ⊥∈ r .(| x |) which by healthiness
means r .(|x |) = X⊥ . 2

By having at most two outcomes from each initial state, complement
identifies quite different computations. As a result it satisfies its laws really
by default:

Corollary 2 1. For any r :R(X) , r ⊆ r and for any x :X⊥

r .(|x |) = r .(|x |) iff r .(|x |) = { } or X⊥ .

2. For any r , s :R(X) ,

r ⊆ s implies r ⊇ s and r ◦

9
s ⊆ r ◦

9
s .

Also id[X]⊥ = X⊥×X⊥ .

3. For any subset E of R(X) , ∪E = ∩E and ∩E = ∪E . In particular

{ }⊥ = X⊥×X⊥ = (X×X)⊥ and X⊥×X⊥ = { }⊥ .

4. For any predicate b on X and any x :X ,

[[{{b}}]].(|x |) = X⊥ � b.x � {} and [[〈〈b〉〉]].(|x |) = X⊥ .

For any relations r and s on X⊥ ,

r � b � s ⊇ r � b � s .

Furthermore each containment (in 1, 2 and 4) may be strict.

150

Proof:

1. We reason

r .(|x |)

= previous theorem

{ } � xr ⊥ � X⊥

= r healthy

{ } � r .(|x |) = X⊥ � X⊥

= r healthy

{ } � ¬(x r ⊥) � X⊥

= calculus

X⊥ � x r ⊥ � { }

from which the claims follow.

2. Co-monotonicity follows because complement is obtained by compos-
ing the co-monotone function ‘set complement’ with the monotone
function ‘healthy closure’.

For sequential composition we reason

r ◦

9
s.(|x |)

= previous theorem

{ } � x (r ◦

9
s) ⊥ � X⊥

= definition of composition

{ } � (x r⊥ ∨ (¬x r⊥ ∧ (∃ y : r .(|x |) · y s⊥))) � X⊥

= calculus

{ } � (x r⊥ ∨ ∃ y : r .(|x |) · y s⊥) � X⊥

⇛ definition of complement

{ } � (r(|x |) = { } ∨ ∃ y : r .(|x |) · s(y) = { }) � X⊥

⇛ set theory

{ } � (r(|x |) = { } ∨ ∃ y : X⊥ · s(y) = { }) � X⊥

151

= definitions of composition and complement

r ◦

9
s.(|x |)

In general the reverse inclusion does not hold, as shown by considering
the relational semantics r = [[skip]] and s = [[abort]]:

r ◦

9
s = [[skip]] ◦

9
[[abort]] = [[abort]] = [[magic]]

whilst

r ◦

9
s = [[skip]] ◦

9
[[abort]] = [[abort]] ◦

9
[[magic]] = [[abort]] ,

which establishes r ◦

9
s ⊂ r ◦

9
s.

The calculation for the identity is routine.

3. De Morgan’s laws, and hence the extreme cases, follow similarly.

4. The first two claims result from routine calculation. Firstly

[[{{b}}]].(|x |)

= previous theorem

{ } � x [[{{b}}]]⊥� X⊥

= x [[{{b}}]]⊥ = ¬b.x

X⊥ � b.x � { } ,

and secondly

[[〈〈b〉〉]].(|x |)

= previous theorem

{ } � x [[〈〈b〉〉]]⊥� X⊥

= ¬x [[〈〈b〉〉]]⊥ = false

X⊥ .

For the third claim, for any x :X⊥ ,

152

(r � b � s) .(|x |)

= definition of binary conditional

r .(|x |) � b.x � s .(|x |)

= definition of complement

({ } � x r⊥ � X⊥) � b.x � ({ } � x s⊥ � X⊥)

⇛ calculus

{ } � (b.x ∧ x r⊥) ∨ (¬b.x ∧ x s⊥) � X⊥

= definition of binary conditional

{ } � x (r � b � x)⊥� X⊥

= definition of complement

(r � b � s) .(|x |) .

To show the inclusion may be strict take, in the relational semantics,
r = [[skip]] and s = [[abort]] so that the conditional is an assertion.
So using the first claim,

r � b � s = { }⊥ whilst r � b � s = X⊥ � b.x � { } ,

hence

r � b � s ⊂ r � b � s .

2

Thus complement happens to be sub-involutive on R(X) , co-monotone,
sub-distributes sequential composition, interchanges angelic and demonic
nondeterminism, (hence) interchanging abort and magic, takes skip to
magic, takes an assertion to a binary conditional between abort and magic,
and takes a coercion to abort. However from the theorem we see that it
identifies too many computations to be useful.

7 Proper Complement

The proper complement of a relation r : X⊥↔X⊥ is defined to be the relation
r : X⊥↔X⊥ that is the complement of r in X×X , made healthy:

r =̂ h.((X×X) \ r) .

153

In fact only ⊥-closure is necessary there in order for proper complement
to be well-defined on R(X) , because proper complement loses information
about divergence and so upclosure is redundant.

We find, as a result, that proper complement identifies far fewer com-
putations than does complement: the only behaviours that are identified
are divergence and arbitrary terminating behaviour from some state (both,
we shall see, being mapped to not enabled behaviour from that state).

Theorem 5 For any relation r on X⊥ ,

r .(|x |) = (X⊥ � x =⊥ � X \ r .(|x |)) .

In particular, proper complement is well defined on R(X) .

Proof: The first identity follows by definition and well-definedness follows
from it immediately. 2

Proper complement is sub-involutive, r ⊂ r , is contained in comple-
ment, is co-monotone, satisfies De Morgan’s laws over nonempty sets, and
takes not enabled behaviour to arbitrary termination.

Corollary 3 1. For any relation r on X⊥ and any x :X⊥ ,

r .(|x |) = (X⊥ � x = ⊥� X ∩ r .(|x |)) .

Hence proper complement is sub-involutive: r ⊆ r .

2. Proper complement is contained in complement: for any relation r on
X⊥ , r ⊆ r .

3. For any relations r and s on X⊥

r ⊆ s implies r ⊇ s .

But in general r ◦

9
s 6= r ◦

9
s , and in particular, id[X]⊥ 6= { }⊥ .

4. For any set E of relations on X⊥ , ∩E = ∪E , and if E is nonempty
then ∪E = ∩E . In particular,

{ }⊥ = (X×X)⊥ and X⊥×X⊥ = { }⊥ = (X×X)⊥ .

154

5. For any predicate b on X and any x :X , in the relational semantics,

[[{{b}}]].(|x |) = [[neq � b � magic]].(|x |)

[[〈〈b〉〉]].(|x |) = [[neq � b � choose]].(|x |) .

and for any relations r and s on X⊥ ,

r � b � s = r � b � s .

Furthermore each containment (in 1, 2 and 3) may be strict.

Proof:

1. We reason

r .(|x |)

= previous theorem

X⊥ � x =⊥ � (X \ r .(|x |))

= previous theorem and calculus

X⊥ � x =⊥ � (X \ (X \ r .(|x |)))

= set theory

X⊥ � x =⊥ � X ∩ r .(|x |) .

Therefore

r = (r ∩ (X × X))⊥ ⊆ r .

The claimed sub-involutivity follows. Routine verification shows that
the relational semantics of the commands choose and abort have the
same proper complement, so strict inclusion may hold.

2. We reason from elementary set theory:

true

⇛

X×X ⊆ X⊥×X⊥

⇛ calculus

155

(X×X) \ r ⊆ (X⊥×X⊥) \ r

⇛ h monotone

h.((X×X) \ r) ⊆ h.((X⊥×X⊥) \ r)

≡ definitions

r ⊆ r .

Strictness follows by taking, for example, r =̂ X×X , so that the
left-hand side is {⊥}×X⊥ and the right-hand side is X⊥×X⊥ .

3. Antimonotonicity follows as in the previous corollary.

However proper complement fails to distribute sequential composition,

r ◦

9
s 6= r ◦

9
s , (56)

even weakly (i.e. in one direction). A simple example demonstrating
that in general no inclusion holds between those two sides is obtained
by considering state space X =̂ {0, 1} and commands skip and neq

(recall that the latter chooses a final state different from the initial
state; we are concerned only with state space having more than one
element). Their relational semantics are, respectively,

r = [[skip]] = {(0, 0), (1, 1)}⊥

s = [[neq]] = {(0, 1), (1, 0)}⊥

which are proper complements. We infer that

r ◦

9
s = s = r and r ◦

9
s = s ◦

9
r = s ,

so the two sides of (56) are nonempty and disjoint on proper states.

It also follows that

id[X]⊥ = [[neq]] 6= id[X]⊥ .

4. For a nonempty set E of relations we reason

∪E

= definition of proper complement

156

h.((X×X) \ ∪E)

= calculus and R nonempty

h.(∩{(X×X) \ r | r ∈ E})

= h distributes intersections

∩{h.((X×X) \ r) | r ∈ E}

= definition of proper complement

∩{r | r ∈ E}

= notation

∩E .

Taking E =̂ { } we find

∪{ }

= definition of proper complement

h.((X × X) \ ∪{ })

= calculus

h.(X × X)

= definition of h

(X × X)⊥

⊃ calculus

X⊥ × X⊥

= calculus

∩{r | r ∈ { }}

= definition

∩{ } .

The dual ∩E = ∪E follows similarly but there is no need for the
restriction to nonempty sets since, if R =̂ { },

∩{ }

= definition of proper complement

157

h.((X × X) \ ∩{ })

= calculus

h.((X × X) \ (X⊥ × X⊥))

= calculus

h.({ })

= definition of h

{ }⊥

= calculus

∪{r | r ∈ { }}

= definition

∪{ } .

5. We reason

[[{{b}}]].(|x |)

= characterisation of proper complement

X⊥ � x = ⊥ � (X \ [[{{b}}]].(|x |))

= definition of assertion

X⊥ � x = ⊥ � (X \ ({x} � b.x � X⊥))

= calculus

X⊥ � x = ⊥ � ((X \ {x}) � b.x � { })

= definitions of relational semantics and (4)

[[neq � b � magic]].(|x |) ,

and similarly for coercion.

For the last part

(r � b � s).(|x |)

= definition of binary conditional

r .(|x |) � b.x � s.(|x |)

158

= definition of proper complement

(X⊥ � x = ⊥ � (X \ r .(|x |))
� b.x �

X⊥ � x = ⊥ � (X \ s.(|x |)))

= calculus

X⊥ � x = ⊥ � ((X \ r .(|x |)) � b.x � (X \ s.(|x |))

= definition of binary conditional

X⊥ � x = ⊥ � X \ (r .(|x |) � b.x � s.(|x |))

= definition of proper complement

(r � b � s).(|x |) .

2

8 Galois Star

The previous two complement-based attempts at defining an involution on
R(X) satisfied too few laws to be of use, because they failed to preserve
important computational distinctions.

An alternative weak involution may be defined by translating to rela-
tions the involution on transformers, using the Galois connection of section
4. Accordingly we define the Galois star of a relation r : X⊥↔X⊥ to be the
relation r † : X⊥↔X⊥ ,

r † =̂ rp.((wp.r)∗) .

Theorem 6 Galois star is well defined on R(X): indeed for any relation
r on X⊥ , r † ∈ R(X) . Furthermore for any proper state y ,

x r † y ≡ x =⊥ ∨ r .(|x |) ⊆ {y} .

Proof: Galois star is the composition of three functions, the last of whose
range lies in R(X) , and so the first claim follows.

For the second claim we argue routinely that, if x , y :X⊥ , then

x r † y

≡ definition of Galois star

159

x (rp.(wp.r)∗) y

≡ definition of rp

x =⊥ ∨ ∀ q :pred .X · (wp.r)∗.q .x ⇒ q .y

≡ definition of wp and calculus

x =⊥ ∨ ∀ q :pred .X · (∀w :X · ¬q .w ∨ ¬ x r w) ∨ q .y

≡ calculus

x =⊥ ∨ ∀w :X · x r w ⇒ (∀ q :pred .X · q .w ⇒ q .y)

≡ calculus

x =⊥ ∨ ∀w :X · x r w ⇒ (w = y)

≡ calculus

x =⊥ ∨ r .(|x |) ⊆ {y} .

2

As a result, r †.(|x |) is severely constrained: it can be empty, a singleton
or all of X⊥ . In particular we are already able to see the extent to which
Galois star † retains the switching of demonic and angelic nondeterminism,
exhibited by the transformer involution ∗ . Indeed a command P exhibits
demonic nondeterminism or diverges at (proper state) x iff, in the relational
semantics, there is no y for which [[P]].(| x |) ⊆ {y} ; which holds iff x 6∈
dom.[[P]]† ; which holds iff [[P]]† is not enabled at x . More precisely, we
have:

Corollary 4 1. For any relation r on X⊥ , r †† ⊇ r .

2. For any relations r and s on X⊥ ,

r ⊆ s iff r † ⊇ s†

(r ◦

9
s)† = r † ◦

9
s†

id[X]⊥
† = id[X]⊥ .

3. For any subset E of relations on X⊥ ,

(∪E)† = ∩E † and (∩E)† ⊇ ∪E † .

In particular,

{ }⊥
† = X⊥×X⊥ and (X⊥×X⊥)† = { }⊥ = ((X×X)⊥)† .

160

4. For any predicate b on X ,

[[{{b}}]]† = [[〈〈b〉〉]] and [[〈〈b〉〉]]† = [[{{b}}]] ,

and for any relations r and s on X⊥ ,

(r � b � s)† = r † � b � s† .

Furthermore the containments in Parts 1 and 3 may be strict.

Proof:

1. Iterating the characterisation of the theorem we find

x r †† y ≡ x =⊥ ∨ ∀ z :X⊥ · r .(|x |) ⊆ {z} ⇒ (z = y) .

Evidently if x r y then that condition holds, and so r †† ⊇ r as required.

Routine calculation shows that Galois star is not injective and so not
involutive; a particular strict containment is:

(X×X)⊥
†† = (X⊥×X⊥) ⊃ (X×X)⊥ .

2. For co-monotonicity we reason

r ⊆ s

⇛ Law (34)

wp.r ≥ wp.s

⇛ Law (29)

(wp.r)∗ ≤ (wp.s)∗

⇛ Law (35)

rp.((wp.r)∗) ⊇ rp.((wp.s)∗)

≡ definition of Galois star

r † ⊇ s† .

For sequential composition we reason using simple properties

161

(r ◦

9
s)†

= definition of Galois star

rp.((wp.(r ◦

9
s))∗)

= Law (38)

rp.((wp.r ◦ wp.s)∗)

= Law (27)

rp.((wp.r)∗ ◦ (wp.s)∗)

= Law (40)

rp.((wp.r)∗) ◦

9
rp.((wp.s)∗)

= definition of Galois star

r † ◦

9
s† .

Let us continue to write id[X]⊥ for the healthy identity relation on
X⊥ but also id[T] for the identity predicate transformer. Then for the
last subclaim we reason

id[X]⊥
†

= definition of Galois star

rp.((wp.id[X]⊥)∗)

= Law (39)

rp.(id[T]∗)

= Law (28)

rp.(id[T])

= Law (41)

id[X]⊥ .

3. For any subset E of relations on X⊥ we reason for the first identity as
follows.

(∪E)†

= definition of Galois star

162

rp.((wp. ∪ E)∗)

= Law (46)

rp.((∧{wp.r | r ∈ E})∗)

= Law (30)

rp. ∨{(wp.r)∗ | r ∈ E}

= Law (42)

∩{rp.((wp.r)∗) | r ∈ E}

= definition of Galois star

∩{r † | r ∈ E}

= definition

∩E † .

For the refinement we reason

∪E †

= definition of Galois star

∪{rp.((wp.r)∗) | r ∈ E}

= Law (43)

rp. ∧ {(wp.r)∗ | r ∈ E}

= Law (30)

rp.((∨{wp.r | r ∈ E})∗)

⊆ Laws (35), (49)

rp.((wp. ∩ {r | r ∈ E})∗)

= definition

rp.((wp. ∩ E)∗)

= definition of Galois star

(∩E)† .

A simple example showing that the De Morgan containment may be
strict, is obtained by taking state space X =̂ {0, 1} and the relational

163

semantics of assignments

r = [[x := 0]] = {(x , 0) | x ∈ X }⊥

s = [[x := 1]] = {(x , 1) | x ∈ X }⊥ ,

so that r ∩ s = {}⊥ , r † = r and s† = s . Thus

(r ∩ s)† = X⊥×X⊥ ⊃ r ∪ s = r † ∪ s† .

The first extreme case is the vacuous case of the first De Morgan iden-
tity. Since the second does not follow from the De Morgan contain-
ment just proved, we calculate (the remaining equality being similar),

(X⊥×X⊥)†

= definition of Galois star

rp.(wp.(X⊥×X⊥)∗)

= Law (47)

rp.(false∗)

= Law (26)

rp.true

= Law (44)

{ }⊥ .

4. The arguments for assertions and coercions are similar so we present
just one. Choosing to reason from first principles in the relational
semantics we have, for any proper states x , y ,

x [[{{b}}]]† y

≡ definition of Galois star

x rp.((wp.[[{{b}}]])∗) y

≡ definitions of rp, wp, assertion, involution and calculus

∀ q :pred.X · ((b.x ⇒ q .x) ∧ (q 6= false)) ⇒ q .y

≡ calculus

b.x ∧ (x = y)

164

≡ relational semantics, Figure 5

x [[〈〈b〉〉]] y .

For binary conditional we reason from the two algebraic representa-
tions:

(r � b � s)†

= Law (22)

([[〈〈b〉〉]] ◦

9
r ∪ [[〈〈¬b〉〉]] ◦

9
s)†

= Part 3

([[〈〈b〉〉]] ◦

9
r)† ∩ ([[〈〈¬b〉〉]] ◦

9
s)†

= Part 2

([[〈〈b〉〉]]† ◦

9
r †) ∩ ([[〈〈¬b〉〉]]† ◦

9
s†)

= previous sub-part of 4

[[{{b}}]] ◦

9
r † ∩ [[{{¬b}}]] ◦

9
s†

= Law (21)

r † � b � s† .

2

Thus Galois star is sup-involutive and co-monotone, obeys just one
of the De Morgan laws between angelic and demonic nondeterminism, and
half the other. Vitally it distributes sequential composition and binary
conditional, preserves skip, interchanges assertions and coercions, and in
particular the trivial cases of both De Morgan laws hold: it interchanges
abort and magic.

9 Applications

Dijkstra and Scholten [6] prove, from their axioms for predicate calculus,
that in the transformer semantics the property of being predeterministic
is preserved by (general) conditional with pairwise disjoint guards and by
iteration. Maddux [13] infers the same results in the transformer semantics
(and the analogous result for sequential composition) from the relational

165

semantics and Tarski’s axiomatisation of the calculus of relations due to
Boole, De Morgan, Peirce and Schröder.

Here we extend the treatment to include commands as well as code.
Concentrating on just the conditional, we provide proofs in the relational
semantics that are moderately compelling because they resemble Boolean-
algebra proofs by exploiting weak inversion in the shape of Galois star.
And we compare those proofs with straight algebraic proofs that require
results about co-atomicity under refinement, reflecting our earlier algebraic
formalisation of notions related to determinism in Section 3.2.

9.1 Algebraic Approach

The result for binary conditional, proved algebraically, is as follows.

Theorem 7 If b is a predicate on state space and commands P and Q are
deterministic [predeterministic, postdeterministic] then so too is the binary
conditional P � b � Q .

Proof: We expand a coerced binary conditional

〈〈x = x0〉〉 ◦

9
(P � b � Q)

= definition of coercion and Laws (20), (7)

(P � b � Q) � x = x0 � magic

= calculus

(P � b.x0 � Q) � x = x0 � magic .

From this the claims follow. For example if P and Q are enabled at x0

then so too is the coerced binary conditional since either b.x0 or not; and if
the coerced binary conditional is strictly refined by R then at x0 either P
or Q is strictly refined by R and so R is magic . 2

However that result does not extend to (general) conditionals, of which
it suffices here to consider the following special case. Recall that for pred-
icates a and b on state space and commands P and Q , the conditional
if a → P [] b → Q fi aborts unless either a or b holds; if just a holds it
behaves like P ; if just b holds it behaves like Q ; and if both hold it be-
haves (demonic) nondeterministically like either P or Q . Conditional can
be defined, without having to define guarded commands, by extending Law
(21) (rather than its successor):

if a → P [] b → Q fi =̂ ({{a}} ◦

9
P) ⊔ ({{b}} ◦

9
Q) . (57)

166

We say that a and b are disjoint iff their conjunction is false. Then
if a and b are not disjoint and P and Q are deterministic [postdeterminis-
tic], the conditional is not deterministic [postdeterministic] at some states.
Nonetheless the previous theorem generalises from binary conditionals to
conditionals in the following result, whose proof extends that of the previ-
ous theorem.

Theorem 8 If a and b are disjoint predicates on state space and P and
Q are predeterministic commands then so too is the conditional command
if a → P [] b → Q fi .

Proof: Now the coerced conditional is expanded one step further since
a and b need not be complementary:

({{a}} ◦

9
P ⊔ {{b}} ◦

9
Q) � x = x0 � magic

= as before

((P � a � abort) ⊔ (Q � b � abort)) � x = x0 � magic

= calculus, using disjointness

(P � a.x0 � (Q � b.x0 � abort)) � x = x0 � magic

and the desired results follow from that. For example if P and Q are
enabled at x0 then so too is the coerced conditional, by case analysis; and if
the coerced conditional is strictly refined by R then either P or Q is strictly
refined by R at x0 ; and so the conditional is co-atomic. 2

9.2 Relational Approach

In this section we use Galois star to provide proofs in the relational se-
mantics that share with Boolean algebra the use of (weak) inversion. The
observation that enables us to do so is Law (62):

Theorem 9 Let P be a command. In the relational semantics, at an arbi-
trary state x ,

P is postdeterministic ≡ [[P]]†.(|x |) ⊇ [[P]].(|x |) (58)

P is enabled ≡ [[P]]†.(|x |) ⊆ [[P]].(|x |) (59)

P is deterministic ≡ [[P]]†.(|x |) = [[P]].(|x |) (60)

P is post or pre deterministic ≡ [[P]]††.(|x |) ⊆ [[P]].(|x |) (61)

P is predeterministic ≡ ([[P]]†† ∪ [[P]]†).(|x |) ⊆ [[P]].(|x |) (62)

167

Proof: Write r = [[P]] in the relational semantics.
For Equivalence (58), we have

r †.(|x |) ⊇ r .(|x |)

≡ definition of relational image

∀ y :X⊥ · x r y ⇒ x r † y

≡ † theorem

∀ y :X⊥ · x r y ⇒ r .(|x |) ⊆ {y}

≡ calculus

r .(|x |) = { } ∨ #r .(|x |) = 1

≡ definitions

P not enabled or deterministic at x .

For Equivalence (59),

r †.(|x |) ⊆ r .(|x |)

≡ definition of relational image and † theorem

∀ y :X⊥ · r .(|x |) ⊆ {y} ⇒ x r y

≡ calculus

∃ y :X⊥ · x r y

≡ definition

P enabled at x .

Equivalence (60) is an immediate consequence of the first two.
For (61), the usual calculations show implication from left to right.

Assuming now the inclusion on the right, recall that r ††.(| x |) can only be
empty, singleton or all of X⊥ . The first case yields nothing; the second case
yields r .(| x |) a singleton (because if it were larger then r †.(| x |) would be
empty and so r ††.(| x |) would be all of X⊥ , a contradiction); and the third
case yields r ††.(|x |) = X⊥ = r .(|x |) . In the first case P is not enabled at x ;
in the second case P is deterministic at x ; and in the third case P aborts
at x . Thus P is postdeterministic or predeterministic at x .

Finally (62) follows from (59) and (61), with the observation that P is
predeterministic iff it is enabled and either postdeterministic or predeter-
ministic. 2

168

The last theorem of the previous section can now be proved using weak
inversion in the guise of (62). For convenience we again write r = [[P]] and
s = [[Q]] in the relational semantics and abbreviate the conditional as iffi .
Proof: As before, we start by using disjointness to infer

[[iffi]].(|x |) = r .(|x |) � a.x � (s.(|x |) � b.x � [[abort]].(|x |)) .

Thus, reasoning to establish (62),

[[iffi]]††.(|x |) ∪ [[iffi]]†.(|x |)

= previous inference

(r .(|x |) � a.x � (s.(|x |) � b.x � [[abort]].(|x |)))††

∪
(r .(|x |) � a.x � (s.(|x |) � b.x � [[abort]].(|x |)))†

= Parts 4, 3 of † corollary and calculus

(r ††.(|x |) ∪ r †.(|x |)
� a.x �

(s††.(|x |) ∪ s†.(|x |)) � b.x � [[abort]].(|x |))

⊆ assumption on r and s

r .(|x |) � a.x � (s.(|x |) � b.x � [[abort]].(|x |))

= notation

[[iffi]].(|x |) ,

as required. 2

The theorem of the previous section, for binary conditional, can be
established by similar techniques (as can the appropriate determinism of
other combinators).

10 Conclusion

This paper has promoted the use of algebra—of combinators in the program
and command calculi—to express properties, and reason about them, in
situations where semantic reasoning is more usual (e.g. termination). That
has enabled us to extend certain definitions from programs to commands,
and reason in a uniform way about both (e.g. in Section 9). The approach
is continued in [19].

169

But our explicit target has been the extent to which the structurally-
important and well-behaved involution on predicate transformers carries
over to binary relations. After showing that the relational structure is not
consistent with an involution, two ‘weak’ involutions are considered but
discarded as being too weak in the sense that they fail to distinguish too
many computations. A third involution—still weak but better behaved than
the others—is defined by translating the transformer involution using the
weakest-precondition Galois connection between relations and transformers.
That weak involution, Galois star, is shown to be just strong enough to
facilitate algebraic reasoning in a simple benchmark situation: preservation
of forms of determinism (but generalised from programs to commands). The
conclusion is that Galois star does afford the kind of reasoning with which
we are familiar from Boolean algebra, even though it is inevitably doomed
to be weaker.

Acknowledgements

The authors are grateful for quick and accurate reviewing which led to the
removal of some errors and obscurities.

References

[1] R.-J. R. Back. Combining angels, demons and miracles in program spec-
ifications. Theoretical Computer Science, 100(2):365–383, 1992.

[2] R.-J. R. Back and J. von Wright. Duality in specification languages: a
lattice-theoretical approach. Acta Informatica, 27(7):583–625, 1990.

[3] R.-J. R. Back and J. von Wright. Refinement Calculus: a Systematic
Introduction. Springer Verlag, 1998.

[4] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the Fourth Annual ACM Symposium on
Principles of Programming Languages, 238–252, January 1977.

[5] E. W.Dijkstra. A Discipline of Programming. Prentice-Hall Interna-
tional, 1976.

[6] E. W.Dijkstra and C. S. Scholten. Predicate Calculus and Program Se-
mantics. Springer Verlag, 1990.

170

[7] W.-P. de Roever and K. Engelhardt, Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1998.

[8] P. H. B.Gardiner and Carroll Morgan. A single complete rule for data
refinement. Formal Aspects of Computing, 5(4):367–382, 1993.

[9] G. Gierz, K. H. Hofman, K.Keimel, J. D. Lawson, M. Mislove and
D. S. Scott, A Compendium of Continuous Lattices. Springer Verlag,
1980.

[10] C. A. R. Hoare et al. The laws of programming. Communications of the
ACM, 30(8):672–686, 1987.

[11] C. A. R. Hoare and J. He, Unifying Theories of Programming. Prentice-
Hall series in Computer Science, 1998.

[12] J. Lambek and P. J. Scott, Introduction to Higher-Order Categorical
Logic. Cambridge University Press, 1986.

[13] R. D. Maddux. A working relational model: The derivation of the
Dijkstra-Scholten predicate transformer semantics from Tarski’s axioms
for the Peirce-Schröder calculus of relations. South African Computer
Journal, 9:92–130, 1993.

[14] C. Morgan. Programming from Specifications, second edition. Prentice-
Hall International, 1994.

[15] J. M. Morris. A theoretical basis for stepwise refinement and the pro-
gramming calculus. Science of Computer Programming, 9(3):287–306,
1987.

[16] G. Nelson. A generalisation of Dijkstra’s calculus. ACM Transactions
on Programming Language and Systems, 11(4):517–561, 1989.

[17] O. Ore, Galois connexions. Transactions of the American Mathematical
Society, 55:494–513, 1944.

[18] K. I. Rosenthal. Quantales and their Applications. Pitman Research
Notes in Mathematics, 234, Longman, 1990.

[19] J. W. Sanders. Computations as fibre bundles. In Proceedings of Re-
lational Methods in Computer Science 2006, edited by R. A. Schmidt,
LNCS 4136:30–62, Springer-Verlag, 2006.

171

