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Synthesis of Petri Nets with Localities

Maciej KOUTNY and Marta PIETKIEWICZ-KOUTNY1

Abstract

Automated synthesis from behavioural specifications is an attrac-
tive way of constructing computational systems. In this paper, we
look at a specific instance of this approach which aims at constructing
GALS (globally asynchronous locally synchronous) systems. GALS
systems are represented by Petri nets with localities, each locality
defining a set of co-located actions, and specifications are given in
terms of transition systems with arcs labelled by steps of executed ac-
tions. The proposed synthesis procedures are based on the regions of
transition systems, and work without knowing which actions are to be
co-located.

We consider two basic classes of Petri nets, viz. Elementary Net
System with Localities (ENL-system) and Place/Transition nets with
localities (PTL-nets). In particular, we discuss ENL-systems where
there is no conflict between events coming from different localities.
In such a case, the synthesis problem reduces to checking just one
co-location relation. This result is then extended to PTL-nets.
Keywords: concurrency, Petri nets, localities, GALS, net synthesis,
step sequence semantics, transition systems, theory of regions, conflict.

1 Introduction

Many computational systems exhibit behaviour adhering to the ‘globally
asynchronous locally synchronous (GALS)’ paradigm. Examples can be
found in hardware design, where a VLSI chip may contain multiple clocks
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responsible for synchronising different subsets of gates [6], and in biologically
inspired membrane systems representing cells within which biochemical re-
actions happen in synchronised pulses [16]. To formally capture GALS sys-
tems, the paper [9] introduced Place/Transition nets with localities (PTL-
nets), where each locality identifies a distinct set of actions which must
be executed synchronously, i.e., in a maximally concurrent manner. Intu-
itively, this way of executing actions can be thought of as local maximal
concurrency.

An attractive way of constructing complex computational systems is
their automated synthesis from a range of behavioural specifications, e.g.,
given in terms of suitable transition systems. In such a case, synthesis
procedures are often based on the regions of transition systems [1, 2, 3, 7,
14, 15, 17].

In the paper [10], we used localities together with local maximal con-
currency for the case of Elementary Net Systems (EN-systems) — a funda-
mental class of safe Petri nets [15] — leading to EN-systems with localities
(ENL-systems). We aimed there at finding a characterisation of all tran-
sition systems generated by such nets, and in so doing provide a solution
to the corresponding synthesis problem (from transition systems to ENL-
systems). Later we extended our approach to cover EN-systems with context
arcs and localities [11]. The papers [10, 11] adapted the classical theory of
regions [2] to cope with local maximal concurrency and this work was later
generalised to other classes of Petri nets, including PTL-nets, in [5]. How-
ever, in all these papers it was assumed that localities are given at the outset
rather than ‘discovered’ during runs of a synthesis algorithm. In this paper,
we again consider ENL-systems and PTL-systems, but this time we aim
at efficient synthesis procedures in the case that localities are not given in
advance.

To explain the basic idea behind Petri nets with localities, let us con-
sider the ENL-system in Figure 1 modelling two co-located consumers and
one producer residing in a remote location. (Note that in the diagrams co-
located events or transitions are shaded in the same way.) In the initial state,
the net can execute the singleton step {c4}. Another enabled step is {p1}
which removes the token from b1 and inserts tokens into b and b2. After that,
there are three enabled steps, viz. {p2}, {c1, c4} and {p2, c1, c4}. The last
one, {p2, c1, c4}, corresponds to what is usually called maximal concurrency
as no more activities can be added to it without violating the constraints
imposed by the available resources (represented by tokens). However, the

2



b2

b1

b4

b3

b6

b5

b

b0

p3

p2 p1

c2

c3

c1 c4

Figure 1: A one-producer/two-consumers system where boxes representing
co-located events are shaded in the same way.

previously enabled step {c4} which is still resource enabled is disallowed by
the control mechanism of ENL-systems. It rejects {c4} since we can add to
it c1 which is enabled and co-located with c4, obtaining a resource enabled
step {c1, c4}. It can therefore be said that the step execution mechanism
employed by ENL-systems (and PTL-nets) is local maximal concurrency.

The synthesis procedure of [10] assumed that the events of the ENL-
systems to be constructed come with a given co-location relation. Such
an assumption may be difficult to fulfil in practice, and in this paper we
drop it. After doing so, we discover that for the class of ENL-systems with
localised conflicts, there exists just one co-location relation which needs
to be investigated by the synthesis procedure. In the second part of the
paper, we basically repeat, for PTL-nets, the discussion carried out for
ENL-systems. (Note that a preliminary version of this part was presented
at PNSE’09 [12].) In particular, we show that the idea of localised conflicts
works also in this case.

2 Preliminaries for ENL-systems

Let E be a fixed finite non-empty set of events. A co-location relation on E
is any equivalence relation ≏ on the set of events. Moreover, for an event
e and a non-empty set of events U (called a step), we will denote e ≏ U
whenever there is at least one event f ∈ U satisfying e ≏ f .

A step transition system on E is a triple ts
df

= (Q,A, q0) where Q is a
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non-empty finite set of states, A ⊆ Q × (2E \ {∅}) × Q is a finite set of

transitions (arcs), and q0 ∈ Q is the initial state. We will write q
U

−→ q′ (or

simply q
U

−→) whenever (q, U, q′) is a transition. Moreover, for every state q
of the step transition system ts, we assume that:

• allStepsq is the set of all steps labelling arcs outgoing from q.

• minStepsq is the set of all minimal steps (w.r.t. set inclusion) belonging
to allStepsq.

• Eq is the union of all the steps labelling arcs outgoing from q.

• ≏q is the restriction of a co-location relation ≏ to Eq × Eq.

To ease the presentation, we will assume that each event of E occurs in at
least one of the steps labelling the transitions of ts.

2.1 ENL-systems and their step transition systems

An elementary net system with localities (ENL-system) is a tuple

enl
df

= (B,E, F,≏, c0)

such that B is a finite set of conditions disjoint from the events, F ⊆
(B × E) ∪ (E × B) is the flow relation, ≏ is a co-location relation on E,
and c0 ⊆ B is the initial configuration (in general, any subset of B is a
configuration).

In diagrams, conditions (local states) are represented by circles, events
(actions) by boxes, the flow relation by directed arcs, and each configuration
(global state) by tokens (small black dots) placed inside those conditions
which belong to this configuration. Moreover, as we already mentioned,
boxes representing co-located events are shaded in the same way (see Fig-
ure 1).

For every event e, its pre-conditions and post-conditions are given re-
spectively by •e

df

= {b | (b, e) ∈ F} and e•
df

= {b | (e, b) ∈ F} (both sets
are assumed to be non-empty and disjoint). Two events are in conflict (or
conflicting) if they share a pre-condition, or share a post-condition. The dot-

notation extends to sets of events in the usual way, e.g., •U
df

=
⋃
{•e | e ∈ U}.

The semantics of enl is based on steps of simultaneously executed
events. We first define potential steps of enl as all non-empty sets of non-
conflicting events. A potential step U is then resource enabled at a config-
uration c if •U ⊆ c and U• ∩ c = ∅, and control enabled if, in addition,
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there is no event e /∈ U such that e ≏ U and the step U ∪ {e} is resource
enabled at c. A control enabled step U can be executed leading from c to
the configuration c′ = (c \ •U) ∪ U•. We denote this by c[U〉c′ (or c[U〉). It
is easy to see that the following hold:

Fact 1 If a step U is resource enabled at a configuration c then there is a
step W which is control enabled at c such that U ⊆W and e ≏ U , for every
e ∈W \ U .

Fact 2 Two events, e and f , resource enabled at a configuration c are in
conflict iff there is no step resource enabled at c to which they both belong.
Note: an event is resource enabled at a configuration if the singleton step
containing this event is resource enabled.

The step transition system of enl is given by:

tsenl
df

=
(
C , {(c, U, c′) ∈ 2B × 2E × 2B | c ∈ C ∧ c[U〉c′} , c0

)
,

where C — the set of reachable configurations — is the least set of con-
figurations containing c0 and closed w.r.t. the step execution relation. To
ease the presentation, we will assume that enl does not have dead events,
i.e., each event occurs in at least one of the steps labelling the arcs of the
step transition system tsenl. Figure 2 shows three different ENL-systems
generating the same step transition system.

To link the nodes (global states) of a step transition system ts with the
conditions (local states) of the hypothetical ENL-system corresponding to
it, we use the notion of a region defined as a triple

r
df

= (in, r, out) ∈ 2E × 2Q × 2E

such that, for every transition q
U

−→ q′, the following hold:

R1 If q ∈ r and q′ /∈ r then |U ∩ in| = 0 and |U ∩ out| = 1.

R2 If q /∈ r and q′ ∈ r then |U ∩ in| = 1 and |U ∩ out| = 0.

R3 If U ∩ out 6= ∅ then q ∈ r and q′ /∈ r.

R4 If U ∩ in 6= ∅ then q /∈ r and q′ ∈ r.
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Figure 2: A step transition system (a); and three ENL-systems with differ-
ent co-location relations generating it (b, c, d).

There are exactly two trivial regions satisfying r = ∅ or r = Q, viz.
(∅,∅,∅) and (∅, Q,∅). Moreover, (in, r, out) is a region iff so is its com-
plement (out,Q \ r, in). In general, a region cannot be identified only by its
set of states r; in other words, in and out may not be recoverable from r.
For example, the step transition system of Figure 3(a) has two different
regions, r1 = (∅, {q0}, {e}) and r3 = (∅, {q0}, {f }), which have the same
set of states.

The set of all non-trivial regions will be denoted by Rts and, for every

(a)
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r1

r2

r3

r4

e f

Figure 3: An ENL-transition system with co-located events e and f (a),
and the ENL-system resulting from the synthesis (b). Note that the non-
trivial regions in this case are: r1 = (∅, {q0}, {e}), r2 = ({e}, {q},∅}),
r3 = (∅, {q0}, {f }) and r4 = ({f }, {q},∅).
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state q, Rq is the set of all non-trivial regions (in, r, out) containing q, i.e.,
q ∈ r. The sets of pre-regions, ◦e, and post-regions, e◦, of an event e
comprise all the non-trivial regions (in, r, out) respectively satisfying e ∈
out and e ∈ in. This extends in the usual way to sets of events, e.g.,
◦U

df

=
⋃
{ ◦e | e ∈ U}.

To characterise step transition systems of ENL-systems, we need two
more notions. The set of potential steps of ts comprises all non-empty sets
U of events such that ◦e∩ ◦f = e◦∩f◦ = ∅, for each pair of distinct events
e, f ∈ U . A potential step U is then region enabled at state q if ◦U ⊆ Rq

and U◦ ∩ Rq = ∅.
A step transition system ts = (Q,A, q0) is an ENL-transition system

w.r.t. a co-location relation ≏ if the following hold:

A1 Each state is reachable from the initial state.

A2 For every event e, both ◦e and e◦ are non-empty.

A3 For all distinct states q and q′, Rq 6= Rq′ .

A4 For every state q and step U , we have that q
U

−→ iff U is region
enabled at q and there is no event e 6∈ U such that e ≏ U and the step
U ∪ {e} is region enabled at q.

One can show (see [10]) that the step transition system of an ENL-system
with the co-location relation ≏ is an ENL-transition system w.r.t. ≏. More-
over, the following hold:

Fact 3 If a step U is region enabled at a state q then there is a step W

such that q
W
−→ and U ⊆W and e ≏ U , for every e ∈W \ U .

Fact 4 If q
U

−→ q′ is one of the transitions of ts, then the step U is region
enabled at q and the following are satisfied:

Rq \ Rq′ = ◦U and Rq′ \ Rq = U◦ and ◦U =
⊎

e∈U

◦e and U◦ =
⊎

e∈U

e◦ .

Note that the problem of checking whether a step transition system is
an ENL-transition system w.r.t. a given co-location relation is NP-complete
(this is the case even if no two events are co-located).
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2.2 Synthesis of ENL-systems with fixed localities

ENL-systems generate ENL-transition systems. The converse also is true,
and the translation from ENL-transition systems to the corresponding ENL-
systems is based on the regions of step transition systems.

Let ts = (Q,A, q0) be an ENL-transition system w.r.t. a (given) co-
location relation ≏. Then the net system associated with ts is defined as:

enl≏ts
df

= (Rts , E, Fts , ≏ , Rq0
)

where Fts
df

= {(r, e) ∈ Rts × E | r ∈ ◦e} ∪ {(e, r) ∈ E × Rts | r ∈ e◦}. It
turns out that such a construction always produces an ENL-system which
generates a transition system isomorphic to ts. (Note that one does not
have to use all the regions in Rts to construct a desired ENL-system, and a
method to reduce their number is described in [13].)

Theorem 1 ([10]) Let ts be an ENL-transition system w.r.t. a co-location
relation ≏. Then enl≏ts is an ENL-system and its step transition system is
isomorphic to ts. Moreover, the isomorphism ψ between ts and the step
transition system of enl≏ts is given by ψ(q)

df

= Rq, for every state q of ts.

The above result assumes that a suitable co-location relation is known
in advance, but we might want to weaken the synthesis problem by con-
sidering only a step transition system and finding a co-location relation
during the synthesis procedure. Usually, there will be many co-location re-
lations that would make a particular step transition system synthesisable,
see Figure 2. They form a pool of relations from which one might select an
‘optimal’ one. However, this pool of suitable relations is naturally restricted
by a given step transition system as seen below.

Proposition 1 Consider an ENL-transition system w.r.t. some co-location
relation and its state q.

1. If U ⊎W ∈ allStepsq and U ∈ allStepsq then there are no co-located
events e ∈ U and f ∈W .

2. If U ∈ minStepsq and for each pair of events, one in U and the other
in Eq \U , there is a step in allStepsq to which the events belong, then
all the events in U are co-located.
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3. If two events in Eq are such that, for every U ∈ allStepsq, they either
both belong to U or both do not belong to U , then the events are co-
located.

Proof: Similar to proofs of Propositions 6.1, 6.2 and 6.3 in [11]. 2

For example, if we consider the step transition system in Figure 3(a)
then it follows from Proposition 1(3) that e and f must be co-located,
whereas e and f in Figure 4(a) must belong to different locations (see Propo-
sition 1(1)).

(a)

q0

q1 q2

q3

{e, f }

{e} {f }

{f } {e}
(b)

r1

r2

r3

r4

e f

Figure 4: An ENL-transition system with non co-located events e and f
(a), and the ENL-system resulting from the synthesis (b). The non-trivial
regions in this case are: r1 = (∅, {q0, q2}, {e}), r2 = ({e}, {q1, q3},∅}),
r3 = (∅, {q0, q1}, {f }) and r4 = ({f }, {q2, q3},∅).

3 ENL-systems with localised conflicts

As mentioned above, the axioms (A1-A4) and the synthesis algorithm are
formulated w.r.t. a known co-location relation. However, one could con-
vincingly argue that the distribution of events into separate subsystems
should be part of a realistic synthesis procedure. Given that the number of
co-location relations is finite for a given finite set of events, one might, of
course, enumerate them all and check the axioms (A1-A4) for each and ev-
ery one. This, however, would be both wasteful (as many potential relations
could be totally inappropriate) and impractical (since the total number of
co-location relations for n different events is the n-th number in the fast-
growing sequence of Bell numbers). To address this problem, we will now
attempt to make the number of relevant co-location relation as low as pos-
sible.

Proposition 1 narrows down the range of co-location relations worth
considering. Another result aimed at the same reduction is presented next.
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Proposition 2 Let ts be a step transition system. Moreover, let ≏ and ≏
′

be two state consistent co-location relations, i.e., ≏q and ≏
′

q coincide for
every state q. Then ts is an ENL-transition system w.r.t. ≏ iff it is an
ENL-transition system w.r.t. ≏

′.

Proof: Clearly, ts satisfies (A1-A3) w.r.t. ≏ iff the same holds w.r.t. ≏
′.

For (A4), Fact 3 implies that events belonging to steps which are region
enabled at a given state q always belong to Eq, and so we can take advantage
of the fact that ≏ and ≏

′ are state consistent (note that being a region
enabled step does not depend on the co-location relation). 2

Though the above result is straightforward, it is potentially very useful.
Basically, what it says is that, when checking the axioms (A1-A4), what
really matters are the restrictions of the co-location relations to sets of
events enabled at each of the states of the step transition system. Hence it
suffices to check the axioms w.r.t. just one relation for any equivalence class
of state consistent co-location relations. In the extreme case, the synthesis
problem can be reduced to checking the axioms (A1-A4) for just one co-
location relation.

An ENL-system has localised conflicts (or is ENL/LC-system) if no
conflicting non-co-located events are resource enabled at any reachable con-
figuration. A key property of such ENL-systems is captured by the next
result.

Proposition 3 Let ts be the step transition system of an ENL/LC-system,
and q be one of its states.

1. If U ∈ allStepsq and W is a non-empty maximal subset of U contain-
ing only co-located events, then W ∈ minStepsq.

2. If U ∈ minStepsq, then all the events in U are co-located.

Proof: (1) Let ≏ be the co-location relation of an ENL/LC-system enl

generating ts. In particular, this means that below we may treat the states
of ts as if they were reachable configurations of enl.

Suppose that U ∈ allStepsq and W /∈ allStepsq. Then (since W is
resource enabled at q) there is event e /∈ W such that e ≏ W (and so
e /∈ U \W as W is a maximal subset of co-located events) and the step
W ∪ {e} is resource enabled at q. Since e is resource enabled at q and
U ∈ allStepsq and e ≏ U and e /∈ U , it must be the case that U ∪ {e}
is not a potential step. Hence, since U and W ∪ {e} are potential steps
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(as both are resource enabled at q), there is f ∈ U \W such that f and e
are in conflict, producing a contradiction with enl having localised conflicts.
Hence W ∈ allStepsq and so, since all the events in W are co-located,
W ∈ minStepsq.

(2) follows immediately from (1). 2

ENL/LC-systems are interesting because in this case we are able to
characterise all possible co-location relations rather precisely.

Theorem 2 Let ts be the step transition system of an ENL/LC-system,
and q be one of its states. Then two distinct events in Eq are co-located iff
either there is no step in allStepsq to which the two events belong, or there
is a step in minStepsq to which the two events belong.

Proof: Let e and f be distinct events in Eq.
(=⇒) Suppose that e and f are co-located and there is U ∈ allStepsq

containing both e and f . Let W be the (non-empty) set of all events in U co-
located with e and f . Then, by Proposition 3(1), we have W ∈ minStepsq.

(⇐=) If there is no U ∈ allStepsq comprising e and f , then e and f
must be in conflict, and so they must be co-located as the ENL-system
generating ts has localised conflicts. If there is U ∈ minStepsq comprising
e and f , we apply Proposition 3(2). 2

Corollary 1 Let ts be the step transition system of an ENL/LC-system
with the co-location relation ≏. Then, for every state q of ts we have that
≏q is equal to ≏

ts,q, where:

≏
ts,q df

=
⋃

U∈minStepsq

U × U ∪
(

(Eq × Eq) \
⋃

U∈allStepsq

U × U
)

. (1)

Proof: Follows from Theorem 2 and an observation that, by Proposi-
tion 3(1), for every event e ∈ Eq, there is U ∈ minStepsq such that e ∈ U .
Hence ≏

ts,q is reflexive. 2

Proposition 4 Let enl and enl′ be two ENL-systems with the same sets of
conditions and events, and the co-location relations ≏ and ≏

′, respectively.
If they generate the same step transition system ts and ≏q is equal to ≏

′

q,
for every state q of ts, then enl has localised conflicts iff enl′ has localised
conflicts.
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Proof: Suppose that enl is not an ENL/LC-system and enl′ is. Then
there is a reachable configuration c of enl and two distinct events e 6≏ f
which are conflicting in enl and resource enabled at c. Clearly, c is then a
state of ts. From Facts 1 and 2 it follows that e, f ∈ Ec and there is no
step in allStepsc to which e and f both belong. Now, by e, f ∈ Ec and the
assumed consistency of ≏ and ≏

′ at c, we have that e 6≏′ f . On the other
hand, by Theorem 2, e ≏

′ f , a contradiction. 2

Proposition 5 Let ts be the step transition system of an ENL-transition
system enl with the co-location relation ≏. Then enl is an ENL/LC-system
iff there is no state q of ts and two distinct events e 6≏q f in Eq which do
not belong to at least one step in allStepsq.

Proof: The (=⇒) implication follows from Theorem 2, and (⇐=) from
Fact 2 and the definition of an ENL/LC-system. 2

4 Synthesis of ENL/LC-systems

We are interested in solving the following synthesis problem:

Problem 1 Given a step transition system ts find as efficient as possible
a way of checking whether it is isomorphic to the step transition system of
an ENL/LC-system, and if so construct such a system.

We can approach this problem in stages. First, for every state q of ts,
we construct ≏

ts,q as in Corollary 1, and then form the co-location relation:

≏
ts
min

df

=
( ⋃

q∈Q

≏
ts,q

)
∗
.

Next, we check whether ≏
ts,q is equal to ≏

ts
min |Eq×Eq

, for every state q. If
this is not the case, we know that Problem 1 is not feasible. Otherwise,
in view of Corollary 1, ≏

ts
min is the finest (w.r.t. the number of equivalence

classes) possible co-location relation for ts although we still do not know
whether it provides a positive answer to the synthesis problem. To establish
this, we proceed to check whether the axioms (A1-A4) are satisfied for the
co-location relation ≏

ts
min . If so, ts is an ENL-transition system, and we can

use the procedure from Section 2.2 to obtain the synthesised ENL-system
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enl
≏

ts
min

ts . What is more, one can easily check that, for all the states q of the
step transition system ts, we have:

(Eq × Eq)\ ≏
ts
min ⊆

⋃

U∈allStepsq

U × U .

Hence, by Proposition 5, enl
≏

ts
min

ts is an ENL/LC-system solving Problem 1.
The above outlines a procedure which takes advantage of the struc-

tural (and local) properties of the original step transition system. If it
succeeds, we obtain an ENL/LC-system which solves the synthesis prob-
lem. Moreover, one can easily characterise all other ENL/LC-systems with
this property using Propositions 2 and 4.

Let Gts be an undirected graph whose vertices are the equivalence
classes of the co-location relation ≏

ts
min , and there is an edge between ver-

tices V and V ′ if there is a state q of ts and two events, e ∈ V and f ∈ V ′,
such that e, f ∈ Eq and e 6≏ts

min f . Then it follows from Propositions 2
and 4 that all other co-location relations which also provide a solution are
given through the solutions of the vertex colouring problem for the graph
Gts. More precisely, for each valid colouring (i.e., one which uses different
colours for vertices joined by an edge), we join into clusters of co-located
events all equivalence classes of ≏

ts
min labelled with the same colour.

5 Preliminaries for PTL-nets

In the second part of this paper we consider PTL-nets rather than ENL-
systems. Since these two classes of Petri nets differ in a number of subtle
ways and, moreover, they employ different notation and terminology (for
example, conditions are called places in PTL-nets and, crucially, can carry
more than one token), we start by providing a fresh set of definitions to
avoid any confusion.

Let T be a fixed finite non-empty set of net transitions. A co-location
relation on T is any equivalence relation ≏ on the set of net transitions.
For a net transition t and a multiset of net transitions α (i.e., an element
of NT ), called subsequently a step, we will denote t ≏ α whenever there is
at least one u ∈ α satisfying t ≏ u. Moreover, α|t is α after deleting all the
net transitions which are not co-located with t.

Below mappings like f : T → N or g : X × T → N, where X is a set,
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can accept steps α instead of single net transitions, in the following way:

f(α)
df

=
∑

t∈T

α(t) · f(t) and g(x, α)
df

=
∑

t∈T

α(t) · g(x, t) .

A step transition system on T is a triple ts
df

= (Q,A, q0) where Q is a
non-empty finite set of states, A ⊆ Q× NT ×Q is a finite set of transitions
(arcs), and q0 ∈ Q is the initial state. We will write q

α
−→ q′ whenever

(q, α, q′) is an arc. Moreover, for every state q of the step transition system
ts, we assume that:

• allStepsq is the set of all steps labelling arcs outgoing from q.

• minStepsq is the set of all non-empty steps α ∈ allStepsq for which
there is no non-empty β ∈ allStepsq strictly included in α.

• Tq is the set of all net transitions occurring in the steps of allStepsq.

• ≏q is the restriction of a co-location relation ≏ to Tq × Tq.

Similarly as before, we assume that each net transition of T occurs in at
least one of the steps labelling the arcs of ts, and that each state is reachable
from the initial state.

5.1 PTL-nets and their step transition systems

A Place/Transition net with localities (PTL-net) is a tuple

ptl
df

= (P, T,W+,W−,≏,M0) ,

such that P is a finite set of places disjoint from net transitions, W+,W− :
P × T → N define directed flow arcs with non-negative integer weights, ≏

is a co-location relation, and M0 : P → N is an initial marking (in general,
any multiset of places is a marking). In diagrams, places (local states) are
represented by circles, net transitions (actions) by boxes, the flow relation
by directed arcs with the weights W+(p, t) (from t to p) and W−(p, t) (from
p to t), and a marking (global state) by tokens inside the places. Note that
zero weight arcs as well as unitary arc weight are omitted, see Figure 5.

A step α of net transitions is resource enabled at a marking M if, for
every place p ∈ P , M(p) ≥ W−(p, α). Such a step is then control enabled
if there is no net transition t such that t ≏ α and the step t+ α is resource
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(a)

t u v

(b)

q0q1

q2

q3

q4 q5

{u}

{t}

{v}

{t, u} {t, v}{t} {t}

{u} {v}

Figure 5: A PTL/LC-net (a); and its step transition system (b).

enabled at M . A control enabled step α can be executed leading to the
marking M ′, for every p ∈ P given by:

M ′(p)
df

= M(p) −W−(p, α) +W+(p, α) .

We denote this by M [α〉M ′. We also assume that for each net transition t
there is a place p such that W−(p, t) > 0 (otherwise t would never occur in a
control enabled step since, for every resource enabled step α containing t, the
strictly greater step α+t would also be resource enabled). As a consequence,
we have the following:

Fact 5 For every step α which is resource enabled at a marking M there is
a step containing α which is control enabled at M .

The step transition system of ptl is given by:

tsptl
df

=
(
M , {(M,α,M ′) ∈ NP × NT × NP |M ∈ M∧M [α〉M ′} , M0

)
,

where M — the set of reachable markings — is the least set of markings
containing M0 and closed w.r.t. the step execution relation. Similarly as
before, we will assume that each net transition occurs in at least one of the
steps labelling the arcs of the step transition system tsptl.

5.2 Synthesis of PTL-systems with fixed localities

Let us consider the following net synthesis problem:

Problem 2 Given a finite step transition system ts and a co-location rela-
tion ≏ on T , construct a PTL-net ptl such that ts is isomorphic to tsptl.
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It was shown in [5] that synthesis problems like Problem 2 can be
solved using techniques coming from the theory of regions of step transition
systems (see, e.g., [2, 8, 14]). In this particular case, a region of the step
transition system ts is a triple of mappings to non-negative integers

(
σ : Q→ N , η+ : T → N , η− : T → N

)

such that, for every transition q
α

−→ q′ of ts, we have:

σ(q) ≥ η−(α) and σ(q′) = σ(q) − η−(α) + η+(α) .

Regions of this kind are used both to check the feasibility of Problem 2
and to construct a target PTL-net. At the centre of the synthesis proce-
dure outlined below is checking of two required properties of ts, called state
separation and forward closure.

Assume that Q = {q0, . . . , qm} and T = {t1, . . . , tn}. We use three
vectors of non-negative variables: x = x0 . . . xm, y = y1 . . . yn and z =
z1 . . . zn. We also denote p = xyz and define a homogeneous linear system,
where α · z denotes α(t1) · z1 + · · · + α(tn) · zn, etc.:

P :

{
xi ≥ α · z
xj = xi + α · (y − z)

for all qi
α

−→ qj in ts

The regions of ts are determined by the integer solutions p of P assuming
that σ(qi) = xi (for 0 ≤ i ≤ m) as well as η+(tj) = yj and η−(tj) = zj (for
1 ≤ j ≤ n).

Remark 1 Let αi be the sum of the sequence of steps labelling arcs along
the path from q0 to qi in a fixed spanning tree Tree of ts. One can eliminate
each xi with i ≥ 1 through a substitution xi = x0 + αi · (y − z), resulting
in a system equivalent to P (note that as ∅ ∈ allStepsqi

we do not need the
inequality x0 + αi · (y − z) ≥ 0):

P ′ :

{
x0 + αi · (y − z) ≥ α · z for all qi and α ∈ allStepsqi

(αj − αi − α) · (y − z) = 0 for all qi
α

−→ qj in ts but not in Tree

The set of rational solutions of P forms a polyhedral cone in Qm+2n+1

(while that of P ′ forms a polyhedral cone in Q2n+1). Following [4], one
can compute (in time polynomial in the size of ts) finitely many integer
generating rays p1, . . . ,pk of this cone such that each rational solution p of
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P can be expressed as their linear combination with non-negative rational
coefficients:

p =

k∑

l=1

rl · p
l .

Such rays are fixed and turned into net places if Problem 2 is feasible. More
precisely, the initial marking of each pl is given by xl

0 and, for every ti, we

have W−(pl, ti)
df

= zl
i and W+(pl, ti)

df

= yl
i.

Checking state separation is carried out for each pair of distinct states,
qi and qj , and amounts to deciding whether there exists an integer solution
p of P with coefficients r1, . . . , rk such that xi 6= xj . Since the latter is
equivalent to

k∑

l=1

rl · x
l
i 6=

k∑

l=1

rl · x
l
j ,

one simply checks whether there exists at least one l such that xl
i 6= xl

j .
Checking forward closure is carried out for each state qi, and starts by

calculating the region enabled steps regStepsqi
. One only needs to consider

steps α with |α| ≤ max where max is maximum size of steps labelling arcs
in ts since, as one can easily see,

p = max . . . max
︸ ︷︷ ︸

m+1 times

1 . . . 1
︸ ︷︷ ︸

n times

1 . . . 1
︸ ︷︷ ︸

n times

is an integer solution of P. Such a step does not belong to regStepsqi
iff for

some integer solution p of P with coefficients r1, . . . , rk we have xi < α · z.
Since the latter is equivalent to

k∑

l=1

rl · (x
l
i − α · zl) < 0 ,

one simply checks whether there exists at least one l such that xl
i−α ·z

l < 0.
Finally, one checks whether allStepsqi

is the set of all α ∈ regStepsqi
for

which there is no t ∈ T such that α+ t ∈ regStepsqi
and t ≏ α.

6 PTL-nets with partially localised conflicts

The synthesis procedure outlined above works when a co-location relation
is given in advance. Suppose now that this is not he case. Then, as for
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ENL-systems, a useful observation is that the synthesis procedure succeeds
for ≏ iff it succeeds for any co-location relation ≏

′ with which it is state
consistent (i.e., the restrictions ≏q and ≏

′

q are the same, for every state q).
Moreover, for a special subclass of PTL-nets — similar to ENL/LC-systems
— all one needs to consider is just one co-location relation.

A PTL-net has partially localised conflicts (or is PTL/LC-net) if the
following holds:

Assumption 1 For all reachable markings M and steps α which are re-
source enabled at M , if t is a net transition resource enabled at M but the
step α + t is not resource enabled at M , then α|t + t is also not resource
enabled at M .

The intuition behind a PTL/LC-net is that all the actual (dynamic) conflicts
for resources (tokens) in reachable markings involve only local conflicts. All
conflicts between net transitions that are not co-located are only static (or
structural). To see this, consider Assumption 1 and observe that (α−α|t)+t
is resource enabled at M for any PTL/LC-net. Indeed, otherwise we could
take Assumption 1 with the same t and (α− α|t) instead of α reaching the
conclusion that (α−α|t)|t + t is not resource enabled. But this would mean
that t is not resource enabled (as (α − α|t)|t + t = ∅ + t = t), contrary to
what has been assumed.

Figure 5 shows an example of a PTL/LC-net which exhibits a dynamic
conflict between (co-located) net transitions u and v, but the conflict be-
tween (not co-located) net transitions t and u is static.

Let ts be the step transition system of a PTL/LC-net ptl with the
co-location relation ≏. Moreover, let q be one of its states and

max q
t

df

= max{α(t) | α ∈ allStepsq} ,

for every net transition t in Tq. Below we treat q as a marking of ptl.

Proposition 6 If t ∈ α ∈ allStepsq then α|t ∈ minStepsq.

Proof: Suppose that α|t /∈ allStepsq. Then (since α|t is resource enabled
at q) there is a net transition u such that u ≏ α|t and α|t + u is resource
enabled at q. By Assumption 1, α+u is resource enabled at q, contradicting
α ∈ allStepsq. As a result, α|t ∈ allStepsq and so, since all the net transitions
in α|t are co-located, α|t ∈ minStepsq. 2
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Corollary 2 If α ∈ minStepsq, then all the net transitions in α are co-
located.

The next result shows that, for a step transition system of a PTL/LC-
net, the local information at a state q about the steps enabled there will de-
termine the co-location relation of any two net transitions that are involved
in all these steps. More precisely, two net transitions will be co-located
if either there is no step enabled at q where they both have the maximal
number of occurrences, or there is a minimal step at q to which they both
belong.

Theorem 3 Two distinct net transitions t, u ∈ Tq are co-located iff either
there is no step α ∈ allStepsq such that max q

t + max q
u = α(t) + α(u), or

there is a step in minStepsq to which the two net transitions belong.

Proof: (=⇒) Suppose that α ∈ allStepsq is such that

max q
t + max q

u = α(t) + α(u) ,

and so α(t) ≥ 1 and α(u) ≥ 1. Then t, u ∈ α|t and by Proposition 2, we
obtain that α|t ∈ minStepsq.

(⇐=) Suppose that t 6≏ u and there is no step α ∈ allStepsq such that

max q
t + max q

u = α(t) + α(u) .

Let β be a step in allStepsq such that β(t) + β(u) is maximal. Since

β(t) + β(u) < max q
t + max q

u ,

we assume, without loss of generality, that β(t) < max q
t . Since β ∈ allStepsq

we have that the step γ = β(t) · t + β(u) · u is resource enabled at q. On
the other hand, γ + t is not resource enabled as otherwise there would have
been a step in allStepsq containing it (see Fact 5), contradicting the choice
of β. Hence, by t 6≏ u and t ∈ Tq and Assumption 1,

γ|t + t = β(t) · t+ t

is not resource enabled at q. But this contradicts the definition of max q
t and

β(t) + 1 ≤ max q
t .

If t, u ∈ α ∈ minStepsq then we apply Corollary 2. 2

19



It follows from Theorem 3 that if we can synthesise a PTL/LC-net then
the projections ≏q of all suitable co-location relations are unique and can be
computed locally for each state q from the steps in allStepsq and minStepsq.

For the step transition system in Figure 5(b), we can show that the
choice of a co-location relation as in Figure 5(a) was actually the only choice
to make this step transition system synthesisable to a PTL-net. To see
this, let us apply Theorem 6 to the states of the step transition system in
Figure 5(b). For the initial state, we have Tq0

= {u, t, v} and

allStepsq0
= {∅, {u}, {t}, {t, u}, {v}, {t, v}}

minStepsq0
= {{u}, {t}, {v}} .

Consequently, t 6≏q0
u as there is no step in minStepsq0

which contains both
t and u, and there is a step α = {t, u} ∈ allStepsq0

such that

α(t) + α(u) = 2 = max q0

t + max q0

u .

Similarly, one can show that t 6≏q0
v. For the last pair of net transitions, u

and v, we obtain that u ≏q0
v as there is no step α ∈ allStepsq0

such that

α(u) + α(v) = 2 = max q0

u + max q0

v .

For the remaining states we have

Tq1
= {t} Tq2

= {u, v} Tq3
= {t} Tq4

= Tq5
= ∅ ,

and so we only need to check whether u ≏q2
v. The answer is positive since

allStepsq2
= {∅, {u}, {v}}

minStepsq2
= {{u}, {v}}

and so there is no step α ∈ allStepsq2
such that

α(u) + α(v) = 2 = max q2

u + max q2

v .

After computing the projections ≏q, for all q ∈ Q, we form the transi-
tive closure ≏ts of their union and proceed as follows (note that in the case
of our example, ≏ts= {(u, v), (v, u), (u, u), (v, v), (t, t)}).

First we check whether ≏q is equal to ≏ts |Tq×Tq
, for every state q.

If this is not the case, we know that the synthesis problem to PTL/LC-
nets is not feasible. Otherwise, we proceed with the procedure outlined in
the previous section with a given co-location relation ≏ts, and its outcome
determines the outcome of the whole synthesis process. Moreover, if the
synthesis procedure succeeds, then any other good co-location relation can
be obtained similarly as in the case of ENL/LC-systems.
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7 Concluding remarks

In this paper, we discussed how one could synthesise GALS systems rep-
resented by Petri nets from their behavioural specifications given in terms
of step transition systems without assuming anything about the co-location
of actions. In particular, we investigated how this problem might be solved
without considering all potential co-location relations. This has led to the
identification of two net classed, ENL/LC-systems and PTL/LC-nets, char-
acterised by the lack of dynamic conflicts between co-located actions, and
for which it suffices to consider only one co-location relation. It is worth
pointing out that nets of this kind have practical importance. Consider,
for example, a distributed system of computing nodes, where each node
executes actions in a synchronous manner, and the nodes themselves com-
municate by asynchronous message passing of signals. Then, provided that
each computing node can be represented by a finite Place/Transition net,
the overall network can be modelled by a PTL/LC-net.

In our future work we plan to consider more relaxed versions of the
synthesis problem. For example, one can assume that a step transition
system gives an upper bound on the desirable behaviour of the synthesised
net, and the goal is to retain as much as possible of its behaviour in the
constructed Petri net. Another direction for future work is net synthesis
from behavioural specifications expressed in a temporal logic, such as that
described in [18].
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