
Scientific Annals in Computer Science Vol.17, 2007

“Alexandru Ioan Cuza” University of Iaşi, Romania

Basic Techniques for Creating
an Efficient CSP Solver 1

Cristian FRĂSINARU2

Abstract

Many computationally difficult problems from areas like planning
and scheduling are easily modelled as constraint satisfaction problems
(CSP). In order to have an uniform practical approach of these, a new
programming paradigm emerged in the form of constraint program-
ming, providing the opportunity of having declarative descriptions of
CSP instances and also obtaining their solutions in reasonable compu-
tational time. This paper presents from both theoretical and practical
points of view the design of a general purpose CSP solver. The solver
we have created is called OmniCS (Omni Constraint Solver) and is
freely available at http://omnics.sourceforge.net

1 Introduction

Many problems that are very important from a scientifical or economical
point of view prove to be very hard to approach in an uniform manner
with usual mathematical techniques, like linear programming for instance.
Based on these premises, it was developed the theory of constraint satis-
faction which defines a model for representing the problems as networks
of constraints and also defines algorithms and programming techniques for
effective solving of these problems. Papers dedicated to constraint satisfac-
tion appeared since the ’70s ([18], [17], [6]), but the CSP area became very

1This paper is an extended abstract of the thesis submitted to the “Al. I. Cuza”

University of Iaşi for the degree of Doctor of Philosophy in Computer Science.
2Faculty of Computer Science, ”A.I.Cuza” University, General Berthelot 16, 700483

Iasi̧, Romania, email: acf@info.uaic.ro

83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201527975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

active only in the last two decades, today being identified by ACM (Asso-
ciation for Computing Machinery) as a ”strategical direction in computer
research”. In 1997, Eugene C. Freuder said:

”Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of program-
ming: the user states the problem, the computer solves it.”

Because constraint programming received very much attention also
from the industry, a lot of CSP solvers emerged, i.e. applications that
offer solutions to model a problem using constraints and also an engine able
to solve it. These solvers are both commercial and open-source and have
been developed on different programming platforms like Java, C++, Pro-
log. To give only a few examples, we can mention Ilog Solver [12], Koalog
Constraint Solver[13], Choco [14] or our solver OmniCS [8].

Recently, there have been published a series of monographs dedicated
to CSP like [5], [1], [25], [2], [21] which offer a global picture over the whole
theory.

This paper presents from both theoretical and practical points of view
the process of creating an original CSP solver called OmniCS, that is suit-
able for any type of problem that can be represented as a CSP instance.
The main idea was to analyze the basic techniques and algorithms that were
proposed so far in this particular research area, to offer efficient implemen-
tations for them and to create a unified framework for modelling and solving
constraint satisfaction problems, that is very easy to understand, use and
extend. We also approached topics that are hardly found in any CSP solver
available on the market as generating explanations, solving multi-criteria
optimizations problems or offering an interactive environment between the
user and the solver.

The paper is organized as follows. In Section 2 we present the basic
definitions and concepts related to constraint satisfaction. In Section 3
there are described all the aspects that must be analyzed when designing
a software system able to solve CSP problems. The focus is put on the
internal implementation of OmniCS, especially on the control layer that
contains the components responsible with the actual solving of a problem.

84

2 Preliminaries

2.1 Classical networks of constraints

The definitions and notations from this section are taken from [5].
A k-tuple (or simply tuple) is a sequence of k elements, not necessarily
distinct, denoted by (a1, ..., ak). The cartesian product of the sets D1, ..., Dk

is denoted by D1 ×· · ·×Dk and contains all the tuples (a1, ..., ak) for which
∀i : ai ∈ Di.

Given a set of variables X = {x1, ..., xk}, each associated with a domain
D1, ..., Dk respectively, a k-arity relation R on the set of variables is any
subset of the cartesian product of their domains.

A constraint network is a triplet R = (X,D, C) where:

• X = {x1, ..., xn} is a finite set of variables;

• D = {D1, ..., Dn} represents finite domains that are associated to vari-
ables of X;

• C = {C1, ..., Ct} is a finite set of constraints.

A constraint Ci is a relation Ri on a subset of variables Si, Si ⊆ X,
which denotes their simultaneous legal value assignments. We may also
make the notations Ci = (Ri, Si) and schema(R) = {S1, ..., St}. If S is a
list of variables, we denote T (S) =

∏
xi∈S

Di.

In the above definition there is no restriction on the types of variables,
their domains may be integers, strings or anything else. There are also no
specifications on how constraints are defined. The purpose of a constraint
is to restrict the possible values a variable xi can be assigned from Di.

Let us consider a simple example of modelling a NP-hard problem, the
graph coloring problem, as a network of constraints. Let G = (V, E) be a
graph and we want to obtain a p-coloring of the vertices V , where p is a
positive integer. To represent this problem we create the following network:

• The variables are: X = {v1, ...vn}

• The domains are: Di = {1, ..., p}, ∀i ∈ {1, ..., n}

• The constraints are: Cvivj
= {c(vi) 6= c(vj)}, ∀vivj ∈ E

The instantiation of a variable is the process of assigning it to a value
from its domain. We shall denote (〈xi1 , ai1〉, ..., 〈xik , aik〉) or

85

(xi1 = ai1 , ..., xik = aik) or even a = (ai1 , ..., aik) the tuple that represents
the instantiation of a set of variables Y = {xi1 , ..., xik}.

Let a be a tuple, and let Y = {xi1 , ..., xik} be a set of variables. We
denote πY (a) or a[Y] the projection of a onto Y , that is a new tuple created
from a out of which we eliminate all the components that do not belong to
Y .

Let R be a relation, and let Y = {xi1 , ..., xik} be a set of variables. We
denote πY (R) or R[Y] the projection of R onto Y , that is a new relation
created from the projections of all the tuples of R onto Y .

We say that an instantiation a of the variables Y = {xi1 , ..., xik} satis-
fies a constraint C = (R, S) if and only if the projection of a over S belongs
to R: a[S] ∈ R

A solution of a network of constraints R = (X,D, C) is an instantiation
of all variables such that no constraint is violated:

sol(R) = {a = (a1, ..., an) | (∀i = 1..n : ai ∈ Di) ∧ (∀j = 1..t : a[Sj] ∈ Rj)}

If R has at least one solution, we say that it is satisfiable or consistent.
A partial instantiation a of a set of variables S is consistent if and

only if it satisfies all the constraints defined only over variables already
instantiated:

∀Si ∈ schema(R), Si ⊆ S ⇒ a[Si] ∈ R[Si].

2.2 Soft networks of constraints

The classical model of constraint satisfaction is defined over the premises
that identifying a solution means satisfying all the constraints of the prob-
lem. But there are many real life situations that cannot be solved this way,
either because they are over-constrained ([7], [3]) and thus not consistent
or because their restrictions cannot be imposed in a yes-or-no manner. A
good example of such a problem is the timetable problem that has hard
constraints that must not be violated under any circumstances: students
cannot be in two different places at the same time or a shared resource
cannot be assigned simultaneously to different activities, but it also has soft
constraints that represent for instance the preferences of the teachers. In a
”perfect” solution all these preferences would be satisfied but in most cases
this is not feasible and we are concerned in creating a timetable that is ”as
good as possible”, in other words minimizing somehow the number or the
magnitude of the constraints that are not satisfied.

A soft networks of constraints [22] is a triplet (X,D, C), where:

86

• X = {x1, ..., xn} is a finite set of variables;

• D = {D1, ..., Dn} are the domains of the variables;

• C = {C1, ..., Ct} is a finite set of soft constraints.

A soft constraint C is a pair (S, f) where S ⊆ X and f is a function defined
over the tuples TS and having values in a set E denoting levels of preference:
f :

∏
xi∈S

Di → E. We may also note C = (S, f) as fS .

In order to tell if an instantiation t of the variables S is better than
another one t′ with respect to satisfying a constraint fS we define a total
ordering � over the levels of preferences E. We also note ⊥ the bottom of
E meaning ”allowed tuple” and ⊤ the top of E meaning ”forbidden tuple”:

∀a ∈ E ⊥ � a � ⊤.

We also define an operator ⊕ that ”combines” levels of preferences over
the set E, specifying how good is an instantiation with respect to satisfying
all the constraints of the network. We define the degree of satisfaction
offered by an instantiation a as a function F : T (X) → E:

F (a) =
⊕

{fS(a[S]) | ∀fS ∈ C}.

We say that a soft network of constraints has a solution if and only if
∃t ∈ T (X) such that F (t) ≺ ⊤ and such a solution is called admissible. A
solution t is optimal if and only if ∀t′ ∈ T (X) F (t) � F (t′).
If ∀t ∈ T (X) F (t) = ⊤, the network is not consistent.

A valuation structure [24] is a quintuple S = (E,⊕,�,⊥,⊤) having the
meanings defined above.

A valuated network of constraints is a quadruple (X, D, C, S), where
(X, D, C) is a soft network of constraints and S is a valuation structure.

By specifying particular types of valuation structures, we obtain dif-
ferent models of constraint satisfaction problems:

CSP E � ⊥ ⊤ ⊕

Classical {0, 1} 0 � 1 0 1 ∧

Additive N ∪∞ ≤ 0 ∞ +

MAX-CSP {0, 1} ≤ 0 |C| +

87

2.3 Solving constraint satisfaction problems

There are many approaches to solving satisfaction problems depending on
the nature and the hardness of the problem. In this paper, we are interested
in determining if a CSP instance (classical or soft) is consistent and we
want to develop a simple but efficient algorithm that will search for exact
solutions.

Let R = (X, D, C) be a constraint network. A systematic search algo-
rithms is defined as a finite determinist automaton A consisting of:

• A finite set S of states, each state corresponding to a partial instan-
tiation of variables from X. S is also called the search space of the
algorithm and |S| is the size of the search space.

• A set O of operators responsible with the transition of A from one
state to another.

• An initial state s0;

• A set Sf ⊆ S of final states, representing the solutions of the network.

Usually, the search space will be represented as a tree rooted at s0

and having |S| leaves. A transition from one state to another will signify
descending from one level of the tree to the next one. This representation is
important because the width of the tree will have a significant impact over
the efficiency of the search algorithms.

We say that two constraint networks are equivalent if and only if they
are defined over the same set of variables and have the same set of solutions.
We say that a network R′ = (X,D′, C′) is easier to solve than an equivalent
network R = (X,D, C) and we write R′ � R if and only if the search space
of R′ is ”smaller” than the search space of R, that is ∀xi ∈ X |D′

i| ≤ |Di|.
A filter is an algorithm that applied to a constraint network R =

(X,D, C) will reduce its search space, transforming it into an equivalent
easier to solve network. Because a filtering algorithm transforms the net-
work it was invoked on, reducing its domains, it is natural to apply it again
and again until we obtain an empty domain, a solution or we reach a point
where its execution produces no more reductions. We call such a technique
filter-and-propagate.

A constraint is redundant if and only if removing it from the network
does not affect the set of solutions, i.e. the new network is equivalent to

88

the original one. The inference is the process of adding to the network new
redundant constraints deduced from the existing ones.

Obtaining a solution for a constraint network R using a systematic
search algorithm can be viewed as a finite succession of transformations
R = R0 → R1 → · · · → Rf , where Ri and Rj are equivalent, Ri+1 ≺ Ri

and all domains of Rf are singletons.
The transformation Ri → Ri+1 is accomplished by either:

1. An instantiation x = a which reduces the domain of x to Dx = {a},
or

2. The propagation of a decision x = a using filtering algorithms that
will reduce the domains of the network’s variables.

Ri
decision

−−−−−−−−−−→
propagate/filter

Ri+1

The basic structure of the algorithm we have used to develop our solver
OmniCS is backtracking that uses a flexible filter-and-propagate mechanism
in order to obtain efficiency. The challenge we are facing is creating an
implementation as general as possible, highly configurable, that could be
applicable to any CSP instance, but without inflicting a serious performance
penalty.

Let us consider now the case of soft network constraints. It must be
noticed that solving these types of problems using systematic search algo-
rithms is much more difficult than in the case of classical model because in
the situation where the operator ⊕ is not idempotent, as in additive valu-
ation structures, the quality of an assignment is known only when we sum
all the penalties induced by the constraints that are not satisfied. In order
to create a solver that is able to solve both classical and soft CSP instances
we have merged the backtracking and the branch-and-bound algorithms in a
manner that is transparent for the user of the solver.

3 Creating a CSP solver

The objectives we aimed to reach in creating the CSP solver OmniCS were:

• Uniformity - to solve both classical and soft constraint satisfaction
problems in an uniform manner.

89

• Full control - to provide a mechanism for controlling the whole pro-
cess of systematically searching the solution.

• Extensibility - to be able to:

– add new filter-and-propagate algorithms special created for the
problem we solve.

– add new simple or global constraints without having to know
much about the internal behavior of the solver.

• Observability - the solver should generate events as it searches for
solutions and inform special objects called observers .

• Explanatory - when a problem is inconsistent, we want to know why.

• Dynamic - to be able to rewrite the problem even when the solver is
running, without having to restart the whole process again.

• Interactive - to allow human intervention in the search process, over-
writing the default behavior of the solver.

• Simplicity - creating a CSP model for a problem should be very easy
and intuitive.

• Performance - even if all the previous requirements may slow down
our solver, we want to achieve performances comparable to other sim-
ilar products.

We conceived our solver based on the MVC (Model-View-Controller)
design pattern [10], [26]:

• Model layer - offers the instruments for modelling a problem as a
CSP instance;

• Control layer - contains all the components involved in solving the
problem:

– the solver

– the filtering algorithms

• View layer - defines the interface with the user.

For developing the whole framework, we have used the Java program-
ming platform [9].

90

3.1 The model layer

In designing the model layer we must create an API (Application Program-
ming Interface) that will allow a user to define a problem, specify its vari-
ables, their domains and add the constraints.

In order to prove that OmniCS’ API is very intuitive and easy to use let
us consider the following network of constraints R = (X, D, C), X = {x, y},
Dx = Dy = {1, 2}, C = {x 6= y, x < y}. The source code that models the
network R is presented below:

// Step 1: Create the domains of the variables

Domain domain = new Domain(1, 2);

// Step 2: Create and set the variables

Var x = new Var("x", domain);

Var y = new Var("y", domain);

problem.setVariables(x, y);

// Step 3: Create and set the constraints

problem.addConstraint(new NotEqual(x, y));

problem.addConstraint(new Less(x, y));

The domains accepted by OmniCS are heterogeneous, meaning they
can contain objects of any type. Variables are identified by unique names
and each has an associated domain. All constraints have a common interface
and are represented by classes with specific purposes.

In our implementation we impose a total ordering on the values (ob-
jects) of each variable’s domain and we call this the natural order of the
domain. This is obtained in the following manner: if two values from one
domain are comparable (their corresponding classes implement the interface
Comparable) then the rules defined by their implementations are used to
determine their order inside the domain; if they are not comparable, the
internal hash codes of the objects will be used to sort them.

Each constraint is defined by a class extended from Constraint. There
are a lot of commonly used predefined constraints, but creating new ones
is very simple - all we have to do is specify how our constraint evaluates a
tuple.

Let us consider the implementation of the binary constraint NotEqual,
which enforces that two given variables cannot have the same value in any
solution of the problem:

91

public class NotEqual extends Constraint {

private Var x, y;

/**

* The constructor of the class receives the

* variables of the constraint.

*/

public NotEqual(Var x, Var y) {

super(x, y);

this.x = x;

this.y = y;

}

/**

* This method evaluates a given tuple

* against the constraint.

*/

public int eval(Tuple tuple) {

Object a = tuple.get(x);

Object b = tuple.get(y);

if (a == null || b == null) return ALLOWED;

if (a.equals(b)) return FORBIDDEN;

return ALLOWED;

}

}

The default mechanism for defining the constraints is declarative - it only
specifies the behavior of the constraint without connecting it to the solving
process, and this is a major advantage comparing to other solvers that force
the user to ”learn” details about the solving process in order to create new
constraints.

3.2 The control layer

As we said earlier, the basic structure of the algorithm we have used to
develop our solver OmniCS is backtracking, which performs a systematic
search over the solution space. The general structure of a systematic solver
is given in the Algorithm 1.

92

Algorithm 1 The structure of a systematic solver

Input: R = (X, D, C) a constraint network
Output: A solution of R

Step0 Apply filters to reduce the initial problem
{This ensures the arc-consistency of the network}
if the network is solved then

Process solution
return

end if
if the network is inconsistent then

return
end if

Step1 Save the current state of the problem
Step2 Make a decision {A decision is usually the instantiation of a vari-
able}
Step3 Apply filters to propagate the decision
if the network is solved then

Process solution
return

end if
if the network is inconsistent then

Restores the state of the problem before the decision
goto Step2

end if
goto Step1

Based on this structure we have designed a plug-in mechanism that
allows the user to specify filtering algorithms and also the heuristics that
control the exploration of the search tree (that is how the solver takes a
decision in Step 2). In order to provide a simple and efficient ”out of the
box” functionality the solver comes with a predefined filter-and-propagate
algorithm in the form of the Global Arc Consistency (GAC) algorithm.

Let R = (X,D, C) be a network of constraints. We say that a variable
xi ∈ X is arc-consistent [5] relative to another variable xj ∈ X if and only
if ∀ ai ∈ Di ∃ aj ∈ Dj such that the partial instantiation {〈xi, ai〉, 〈xj , aj〉}
is consistent. In other words, from an algorithmic point of view, assigning

93

the value ai to the variable xi will not immediately create a situation that
requires backtracking.

A constraint network is arc-consistent if and only if ∀x, y ∈ X, x is
arc-consistent relative to y and y is arc-consistent relative to x. Obviously,
if a network is not arc-consistent then it has no solution.

Arc-consistency is an important property that must be satisfied by a
constraint network in order to achieve efficient systematic search algorithms.
The default implementation of our solver uses the AC-3 algorithm in order
to maintain the arc-consistency of the network.

Algorithm 2 Arc-consistency(AC-3)

Input: R = (X,D, C) a constraint network
Output: An arc-consistent network R′ equivalent to R

R′ = R
queue = ∅
for all xi, xj ∈ X, xi 6= xj participate in a common constraint do

queue = queue ∪ {(xi, xj), (xj , xi)}
end for
while queue 6= ∅ do

Select a pair (xi, xj) from queue

queue = queue − {(xi, xj)}
revised = Revise(R′, xi, xj)
if revised then
{D′

i was reduced}
queue = queue ∪ {(xi, xk)|k 6= i}

end if
end while
return R′

It is easy to note that the execution of Algorithm 2 is finite, since at
every step of the loop either we remove one element from the queue or we
remove one from some domain. Eventually, the queue or the domains will
become empty. According to the definitions, the algorithm generates an
equivalent arc-consistent network. However, in the actual implementation,
whenever an empty domain is encountered, the algorithm will stop since this
proves the inconsistency of the network. An analysis of time complexity can
be found in [5].

The Revise procedure is responsible with making a variable xi arc-

94

consistent relative to xj , eliminating values from Di. After its execution we
will have: Di = Di ∩πxi

(Rij). The actual implementation of this procedure
(described in Algorithm 3) is critical in achieving performance since it will
be invoked many times in the process of filtering the domains.

Algorithm 3 The Revise procedure

Input: R = (X,D, C) a network of constraints, xi, xj ∈ X, xi 6= xj

Output: The domain Di is filtered such that xi is arc-consistent relative
to xj ; if the domain has been reduced it returns true, otherwise false.

Rij =
⋃
{πxixj

(R)|R ∈ C}
{Rij is the relation of allowed pairs for xi, xj}

revised = false

for all ai ∈ Di do
if ∄aj ∈ Dj such that (ai, aj) ∈ Rij then

Di = Di − {ai}
revised = true

end if
end for
return revised

It is easy to prove that the execution of Algorithm 3 is finite, since each
value in Di is compared, in the worst case, with each value in Dj . Details
can be found in [5].

3.3 The exploration strategies

The systematic search algorithm must make a series of decisions in order to
explore the search space. We define the following configurable strategies:

A forward strategy is responsible with selection of the next variable
that will be instantiated, thus defining a relation of ordering over the whole
set of variables. However, this order is not static and can be specified during
execution depending on specific conditions that can be evaluated only at
runtime. The interface that defines this strategy is called ForwardStrategy

and it has some simple implementations like:

• SimpleForward - selects variables in the order specified by the defini-
tion of the problem.

95

• MinDomainForward - selects first variables with the smallest domains,
thus reducing the width of the search space.

• MostConstrainedForward - selects variables that appear the most in
the network’s constraints; instantiating such a variable is likely to
determine a better behavior of filter-and-propagate algorithms.

An assignment strategy is responsible with defining a relation of order-
ing over the values of a variable’s domain. As in the case of the forward
strategy, this relation can be defined dynamically during execution. The
interface that defines this strategy is AssignmentStrategy. The default
implementations are:

• SimpleAssignment - selects values according to the natural order of
their domain;

• MaxReductionAssignment - performs a forward-checking operation,
determining for each possible value of the current variable the degree
of filtering that it produces (i.e. how many values will be removed
from the other variables domains), then chooses the value with the
highest degree.

A backward strategy defines how the solver will select the variable from
which it will resume the search process, after a failure was detected. The
interface that defines this strategy is BackwardStrategy and its default im-
plementation is SimpleBackward which returns to the last chronologically
variable instantiated before the one that provoked the failure. This strategy
is very easy to implement but it has several drawbacks, since it can perform
redundant work or it can fail for the same reason multiple times (thrashing).
However, we can use other heuristics that can improve this behavior such
as BackJumping that attempts to identify the real variable whose current
instantiation is responsible for the current failure and return to it (avoiding
thrashing) or BackMarking that maintains a data structure with incompat-
ible assignments that will help the algorithm to avoid redundancy.

The strategies OmniCS offers by default are standard strategies com-
monly provided by any CSP solver. Our advantage is that we provide a
programming interface that allows the user to create new strategies in a
very simple fashion and to specify them in a ”plug-in” manner even during
the solving process. This offers a high degree of flexibility for the general
systematic search algorithm and it is very common to define specific strate-
gies for specific problems, in order to effectively solve them.

96

3.4 Creating global constraints

Let C = {C1, ..., Ck} be a set of constraints. We define a global constraint
CG as the conjunction CG = C1 ∧ C2 ∧ · · · ∧ Ck.

Let R = (X,D, C) be a constraint network and CG = C1∧C2∧· · ·∧Ck

a global constraint. It is easy to observe that R and R′ = (X,D, C ∪ {CG})
are equivalent, so CG is a redundant constraint. We say that a filtering
algorithm F is pertinent if and only if applied to the network R′ it reduces
the search space better than when it is applied to the network R, that is:
F(R′) ≺ F(R).

Apart from the fact that global constraints are more expressive from
a syntactical point of view, we are interested in developing special filtering
algorithms dedicated to global constraints that will perform better than
the general filters applied to the individual constraints. Let us consider a
simple example that illustrates this fact. Let R = (X,D, C) be a constraint
network, where X = {x, y, z}, Dx = Dy = Dz = {0, 1} and C = {x 6=
y, y 6= z, z 6= x}. The general arc-consistency algorithm will simply do
nothing in this case because, no matter how we pick two variables, let’s say
x and y, for any value a ∈ Dx there is a value b = 1 − a ∈ Dy such that
the partial instantiation {x = a, y = b} is consistent; that means that the
network is arc-consistent. Since we cannot reduce the domains, the search
algorithm will have to make several wrong decisions in order to detect the
inconsistency of the network. However, if we add the global constraint
CG = x 6= y ∧ y 6= z ∧ z 6= x, the filtering algorithm will immediately
reduce the domain of the starting variable to ∅ and no backtracking will be
required.

The value graph [16] associated to a constraint C is a bipartite graph
G = (X, Y, E) where:

• X = X(C) - are the variables of C

• Y = D(X(C)) - are the values the variables of X(C) may be assigned

• (x, a) ∈ E ⇔ a ∈ D(x)

Let us consider the alldiff global constraint that imposes that all vari-
ables from a specified set must be different. The following proposition gives
us a first indication of how should we develop a filtering algorithm for alld-
iff : An alldiff constraint C is consistent if and only if the value graph of C

contains a matching that covers all the vertices X(C) [20].

97

It is easy to see that in our example the maximum matching of the
value graph is of size 2 and |X(C)| = 3, thus the alldiff constraint will
provide the information that the network is not consistent.

An efficient implementation of a global constraint should offer a spe-
cific filtering algorithm that will detect special cases of inconsistency that
cannot be identified by the general algorithm. For instance, the actual im-
plementation of the alldiff constraint is the class AllDiff which contains
an instance of AllDiffFilter:

public class AllDiff extends Constraint {

public AllDiff(Var ... variables) {

super(variables);

setFilter(new AllDiffFilter());

}

public int eval(Tuple tuple) {

// Normal implementation of AllDiff

...

}

}

A simple implementation of AllDiffFilter would verify the proposi-
tion stated above:

private class AllDiffFilter extends AbstractFilter {

...

public boolean filter() {

Graph graph = new Graph();

// Create the value graph

...

BipartiteMaximumMatching alg =

new BipartiteMaximumMatching(graph);

Map<Node, Node> matching = alg.maximumMatching();

int n = variables.length;

boolean consistent = (matching.size() == n);

return consistent;

}

}

98

4 Solving optimization problems

There are many techniques for solving optimization problems, such as linear
programming, that are very efficient for a large class of problems. However,
as we have seen, the constraint satisfaction theory offers us an elegant so-
lution for modelling multi-criteria optimization problems as valuated con-
straint networks. This approach is very useful for situations where modelling
a problem using standard mathematical techniques is very difficult or even
impossible, a good example for such a problem being the timetable prob-
lem. In our implementation, each problem must have a valuation structure
described by the interface ValuationStructure:

public interface ValuationStructure {

// The top and bottom elements

int MIN=0;

int MAX=Integer.MAX_VALUE;

int ALLOWED=MIN;

int FORBIDDEN=MAX;

// The operator that combines levels of preferences

int plus(int a, int b);

// The operator that defines the total ordering

int compareTo(int a, int b);

}

For the classical model we have implemented this interface and we have
created the class ClassicalValuation that contains only two elements, the
bottom (ALLOWED = 0) and the top (FORBIDDEN = ∞):

public class ClassicalValuation implements ValuationStructure{

// logical AND

public int plus(int a, int b) {

return (a == FORBIDDEN ||

b == FORBIDDEN ? FORBIDDEN : ALLOWED);

}

// ALLOWED < FORBIDDEN

public int compareTo(int a, int b) {

return a - b;

}

}

99

In the additive model the domain that represents levels of prefer-
ences is formed by the natural numbers and the operators plus, respec-
tively compareTo are the usual operators for natural numbers. The value
ALLOWED = 0 means ”complete satisfaction” of a constraint,
FORBIDDEN = ∞ means ”not feasible” and the rest of the numbers
indicate a ”penalty” induced by not satisfying a constraint.

public class AdditiveValuation implements ValuationStructure {

public int plus(int a, int b) {

return a + b;

}

public int compareTo(int a, int b) {

return a - b;

}

}

Using this approach the evaluation of a tuple is totally independent by
the type of problem we solve:

public int eval(Tuple tuple) {

int cost = 0;

VarSet vars = tuple.variables();

ConstraintSet constraints = problem.getConstraints(vars);

ValuationStructure valuation =

problem.getValuationStructure();

for(Constraint constraint : constraints) {

int eval = constraint.eval(tuple);

if (eval == ValuationStructure.FORBIDDEN) {

return eval;

}

cost = valuation.plus(cost, eval);

}

return cost;

}

Let us consider a classical example of optimization, ”the knapsack prob-
lem”: we have a bag of capacity c, n kind of items, each item i has a weight
wi and a value (profit) pi. We want to add as many items in the bag in
order to maximize the profit. In order to model this problem as a constraint
satisfaction problem, we will consider n variables xi, i = 1..n that can be

100

assigned values 0 or 1. The problem has only one hard constraint:

∑

i=1..n

wixi ≤ c

The function we have to maximize is:

f(x1, ..., xn) =
∑

i=1..n

pixi

The technique for modelling this type of problem is determining a max-
imum value M =

∑
i=1..n pi of the objective function and to create a soft

constraint f(x1, ..., xn) = M that imposes that we try to approach the
maximum as much as possible. The preference level of a tuple a = (x1 =
a1, ..., xk = ak) will be |M − f(a)|.

public class KnapsackProblem extends Problem {

public KnapsackProblem() {

setValuationStructure(new AdditiveValuation());

int n = 6;

int w[] = {100, 50, 45, 20, 10, 5};

int p[] = { 40, 35, 18, 4, 10, 2};

int c = 100;

int m = 0;

for(int i=0; i<n; i++) {

m += p[i];

}

Domain domain = Domain.createIntEnum(0,1);

Var[] x = createVariables(n, domain);

addConstraint(new ScalarProductLeq (x, w, c));

addConstraint(new SoftScalarProduct(x, p, m));

}

}

The solution we obtain for this problem is: x[0] = 0, x[1] = 1, x[2] =
1, x[3] = 0, x[4] = 0, x[5] = 1, the optimum being 35 + 18 + 2 = 55.

Unlike the previous example in which we have modelled a classical
combinatorial problem that defines a single objective function, there are
many situations that require us to perform multi-criteria optimization.

Let us consider the situation of balancing the qualitiy/price ratio of an
acquisition. We have n products that we want to purchase, each product

101

can be bought from several vendors, each vendor having a specific price and
quality for that product. We want do buy these products in order to:

• minimize the price

• maximize the quality

Obviously, in that case we have to decide on what degree we focus on quality,
and on what degree we focus on price. For each product i = 1..n and each
vendor j = 1..m we will note qij the quality offered and pij the price (both
may be represented in percents, 100 meaning the best price and the best
quality). Let xij be the variable assigned to the pair (i, j) of product and
vendor, having values 0 or 1. The soft constraints of our problem will be:

∑

i=1..n;j=1..m

pijxij = 0

and ∑

i=1..n;j=1..m

cijxij = 100

The hard constraint will impose that we don’t buy the same product from
different vendors:

∀i = 1..n
∑

j=1..m

xij = 1

The problem will be modelled with only three constraints:

addConstraint(new SoftScalarProduct(x, q, 100));

addConstraint(new SoftScalarProduct(x, p, 0));

addConstraint(new ConstantSum(x, 1));

The advantage of our approach to modelling multi-criteria optimization
problems is it retains as much as possible of the informal definition of the
problems, therefore making it very easy to represent and to solve efficiently.

5 Explaining the inconsistency

Many of the current CSP solvers are not able to offer us a motivation of the
fact that a problem has no solution and this is certainly a drawback since
the user has to figure out himself the reason of failure: ”is the problem over-
constrained, is there an error in the model or maybe there is a bug in the

102

solver’s algorithm ?”. We would like to obtain answers in a human-readable
form that explain why the problem is inconsistent or even why some variable
cannot be assigned a certain value.

Recently, some solvers like Choco [14] with the PaLM (Propagation and
Learning with Move) extension [4], offer some instruments for generating
explanations regarding mainly the current state of the system.

In our solver OmniCS we are interested in developing an algorithm that
creates a data structure that maintains a minimal set of information that
we could use to prove that a problem is inconsistent, if this is the case.

Let R = (X, D, C) be a constraint network. A failure situation of a
systematic search algorithm is identified by a tuple a = (x1 = a1, ..., xk =
ak) representing the current partial instantiation from where the search
process cannot continue, that is because ∃y ∈ X − {x1, ..., xk} such that
∀b ∈ Dy (x1 = a1, ..., xk = ak, y = b) is not consistent. Such a tuple is
called a nogood [19] and we shall note: C ⊢ ¬(x1 = a1, ..., xk = ak) or
¬(x1 = a1 ∧ ...∧xk = ak). For any variable xj , j ∈ [1..k] wa may also write:∧

i∈[1..k]\j(xi = ai) ⇒ xj 6= aj

We call an explanation of a nogood a and we note expl(¬a) a deduc-
tive reasoning having as premises the network R and the tuple a = (x1 =
a1, ..., xk = ak) and as conclusion the fact that the network R′ obtained
after reducing the domains D1 = {a1}, ..., Dk = {ak} is inconsistent. If the
tuple has only one element (x = a) we note expl(¬(a)) = expl(x 6= a).

An explanation algorithm must offer answers to questions like:

• expl(x 6= a): ”why a variable cannot be assigned a specific value ?”;

•
⋃

a∈Dx
expl(x 6= a): ”why the problem has no solution ?”.

The atomic unit of a reasoning will be the violation of a constraint.
For example, let us consider the network R = (X,D, C), X = {x, y}, Dx =
Dy = {0, 1} having only one constraint x 6= y.
In this case, expl(¬(x = 0, y = 0)) = {x 6= y} and no further explanations
are required. There are situations when the implementation of a constraint
is not trivial or it has additional filtering algorithms. Let R = (X, D, C),
X = {x, y, z}, Dx = Dy = Dz = {1, 2, 3} and C contains the constraint
x + y + z = 9. The explanation expl(¬(x = 1)) = {x + y + z = 9} may not
be very clear because it is based on the internal behavior of the constraint.
The result we would like to see is: x = 1 ∧ max(Dy) = 3 ∧ max(Dz) =
3 ⇒ x + y + z ≤ 7. So, if we want to develop an algorithm that generates

103

explanations we must offer a mechanism that explains inconsistency also at
the constraint level.

Let R = (X, D, C) be a constraint network and a = (x1 = a1, ..., xk =
ak) a partial instantiation of some variables. If we want to prove that this
tuple is a nogood we have to identify one of the following situations:

(E1) There is a constraint c that is not satisfied by a;

(E2) There is a variable x such that: ∀a ∈ Dx a′ = (a, x = a) is a nogood;

(E3) After applying the filter-and-propagate algorithms triggered by the
decision xi = ai, the domain of a variable becomes empty.

Let us explain why the queen-problem on a 3× 3 table is inconsistent.
In the absence of any filtering algorithm the proof would be formed only
using (E1) and (E2) rules:

Explain problem is inconsistent

Explain {x[0]=0} is inconsistent

{x[0]=0} => x[1] != 0

{x[0]=0} => x[1] != 1

Explain {x[0]=0, x[1]=2} is inconsistent

{x[0]=0, x[1]=2} => x[2] != 0

{x[0]=0, x[1]=2} => x[2] != 1

{x[0]=0, x[1]=2} => x[2] != 2

Explain {x[0]=1} is inconsistent

{x[0]=1} => x[1] != 0

{x[0]=1} => x[1] != 1

{x[0]=1} => x[1] != 2

Explain {x[0]=2} is inconsistent

{x[0]=2} => x[1] != 1

{x[0]=2} => x[1] != 2

Explain {x[0]=2, x[1]=0} is inconsistent

{x[0]=2, x[1]=0} => x[2] != 0

{x[0]=2, x[1]=0} => x[2] != 1

{x[0]=2, x[1]=0} => x[2] != 2

Obviously, for greater values of the size of the table this proof is very hard
to understand and it becomes meaningless.

The support set offered for an instantiation x = a by some variable y

is defined as: support(x = a, y) = {b ∈ Dy|(x = a, y = b) consistent}. If

104

there is a variable y such that support(x = a, y) = ∅ then we can eliminate
the value a from Dx.

support x[0] x[1] x[2]

x[0] = 0 - {2} {1}

x[0] = 1 - ∅ {0, 2}

x[0] = 2 - {0} {1}

x[1] = 0 {2} - {2}

x[1] = 1 ∅ - ∅

x[1] = 2 {0} - {0}

x[2] = 0 {1} {2} -

x[2] = 1 {0, 2} ∅ -

x[2] = 2 {1} {0} -

Using the notion of support set, the arc-consistency algorithm can be
described as in Algorithm 4. Details about Algorithm 4 can be found in [5].

From this perspective, the reason why a value a is eliminated from the
domain of a variable x is the complete loss of the support from some variable
y: ∃y ∈ X support(x = a, y) = ∅. If initially support(x = a, y) = {b1, ..., bt}
then: expl(x 6= a) = expl(y 6= b1) ∪ expl(y 6= b2) ∪ · · · ∪ expl(y 6= bt)
This mechanism allows us to prove inconsistency in a manner that reveals
dependencies between variables. For the previous example we would obtain
the following explanation:

Explain problem is inconsistent

Explain x[2] != 0

- support(x[2]=0, x[0])=[1]

Explain x[0] != 1

- support(x[0]=1, x[1])=[]

Explain x[2] != 1

- support(x[2]=1, x[1])=[]

Explain x[2] != 2

- support(x[2]=2, x[0])=[1]

Explain x[0] != 1

- support(x[0]=1, x[1])=[]

Based on this idea, we have integrated in our solver an explanation
algorithm that runs as an observer of the solving process gathering data
required to prove the inconsistency of a problem.

105

Algorithm 4 Arc-consistency ((AC-4))

Input: R0 = (X, D, C) a constraint network
R = R0

Create S the set of all the support sets
queue = ∅
{queue is the list of empty support sets}
for all E = support(x = a, y) ∈ S do

if E = ∅ then
queue = queue ∪ {(x, y, a)}

end if
end for
while queue 6= ∅ do

Select a triplet (x, y, a) from queue

queue = queue − {(x, y, a)}
Dx = Dx − {a}
if Dx = ∅ then
{The network is inconsistent}
return null

end if
for all A = support(z = c, x) ∈ S do

A = A − {a}
if A = ∅ then

queue = queue ∪ {(z, x, c)}
end if

end for
end while
return R

106

5.1 Interactive and dynamic problems

Traditionally, the algorithms for solving constraint satisfaction problems
have been designed considering that the network created after the mod-
elling phase is in its final form, that is assuming that it is static during
the solving process. In a series of papers dedicated to the field of artificial
intelligence, E. Lamma [15], M. Gavanelli [11] and others proposed an in-
teractive framework for modelling constraint satisfaction problems (ICSP)
in which the domains of the variables are populated dynamically while the
solving algorithm is executed.

In the timetable problem we have the following situation: there are
hard-constraints that must not be violated and there are also soft con-
straints representing the preferences of the participants. Suppose that after
gathering all these preferences we start the solver and wait to find the solu-
tion; unfortunately, depending of the size of the problem, this may require
some not so short period of time. In a real life situation, it is not uncommon
that in the middle of the solving process we receive additional information
about the preferences of some participant that must be added to the existing
ones. So, what do we do ? It would be very frustrating if we had to start
the whole process again, wasting all the computational effort performed so
far.

In the paper ”A query-the-user facility of logic programming” [23] M.
Sergot makes the following statement: ”It is unreasonable and unrealistic
to force the user to anticipate and supply all the information of the problem
in advance”. An efficient system should offer the possibility to change the
problem dynamically.

Thus, a CSP solver should offer the following possibilities:

• to stop the execution and resume it at a later moment;

• to save the current state of the solver in a persistent form with the
possibility to restore it later;

• to extend the current partial solution with external decisions, manu-
ally made by the user;

• to cancel decisions made by the solver;

• to eliminate (inactivate) some variables;

• to dynamically add new variables;

107

• to dynamically add, modify or remove constraints.

In solving the timetable problem, these feature proved to be very valu-
able.

We call the state or simple state of a CSP solver a structure S =
(α, δ, π, ω) where:

• α represents the candidate variables (not instantiated yet);

• δ(x) is the domain of x, ∀x ∈ X;

• π is the stack of forward decisions, that is all the variables instantiated
already and, at the top, the current variable;

• ω is the tuple representing the current partial solution.

The state of the initial network that has to be solved is:

(S0) : α0 = X, δ0(xi) = Di ∀i = 1..n, π0 = ∅, ω0 = ∅.

A state (αf , δf , πf , ωf) is final if and only if:

(Sf) : αf = ∅, |δf (xi)| = 1 ∀i = 1..n, πf = X, var(ωf) = X.

A solver S assigned to a network R is correct if and only if for any
sequence of states S0 → · · · → Sf such that Sf is final then ωf is consistent.

A solver S assigned to a network R is complete if and only if for any
solution ω of R there is a sequence of states S0 → · · · → Sf such that
ωf = ω.

The default implementation of a CSP solver should be correct and
complete. However, if we allow the user to make external decisions we may
loose these properties - so additional mechanism are required in order to
prevent that.

Let S be a solver assigned to a network R and S0 → · · · → Si the simple
states corresponding to the partial problems generated by the decisions
taken until the current moment. The set S∗

i = {S0, ..., Si} is called the
extended state of the solver S.

In order to implement a stop-resume mechanism we have to start the
solving algorithm in its own thread, as a daemon (worker) that will depend
by another thread called controller [9].

108

Thread worker = new Thread(new Runnable() {

public void run() {

// start the solver

solver.solve();

}

});

worker.setDaemon(true);

worker.start();

We must also implement a method that notifies the algorithm’s thread
that it must stop or resume execution. OmniCS offer the method setPause

that is an accessor of a shared variable that controls this aspect. Also, the
main method of the solver must check the control variable in order to stop
its execution:

while (running) {

synchronized(this) {

while (paused) {

wait();

}

if (!running) break;

}

...

}

Once we have implemented a mechanism that allows the user to stop
and resume the solving process, it is not very difficult to offer methods that
can alter the current simple or extended state of the solver and manually
control different aspects of the solving process. All we have to do is carefully
update the data structures S = (α, δ, π, ω) maintained by the algorithm in
order to take into consideration the changes made by the user.

Another aspect we have to analyze is the situation when solving a
problem takes a very long time (hours, even days). There is a risk that at
some moment, because of a hardware failure our computational effort would
be lost. OmniCS uses the standard serialization mechanism in order to save
the extended state of the solving process on some external device. Using
the save-restore facility is straightforward:

// Create an initial solver for the problem

solver = problem.createSolver();

109

...

// Save the extended state into a file

solver.save(filename);

...

// Create a new solver that resumes the execution of the previous

// using the extended state saved in the file

solver = problem.createSolver(filename);

6 Conclusions and future work

This paper presents an original approach in developing a framework that
allows a user to model and solve constraint satisfaction problems, both
classical and soft instances. The solver we have created is called OmniCS
and was developed on the Java platform using state of the art programming
techniques and software design patterns. The algorithmic layer of the solver
is very effective ”out of the box” using a simple but effective solution for
maintaing arc-consistency of the constraint network being solved, but it is
also highly configurable and allows the users to ”plug-in” filtering algorithms
designed for a particular problem or to control the exploration strategies of
the search space using custom heuristics.

Compared to other similar open-source solvers (like Choco or Minion),
the main advantages of OmniCS are its simple but efficient architecture that
brings together in an unified framework standard constraint programming
techniques and algorithms, a very easy to use application programming
interface that allows the users to model CSP problems in a natural way
and also to extend or override the default behavior of the solver, if that is
necessary.

As future research direction we are interested in creating a mechanism
for solving constraint satisfaction problems in a distributed manner, that
will allow us to deploy our solver in a grid architecture. From this per-
spective, we are also working on developing an XML-based protocol for
specifying CSP instances in a declarative, standard way.

Each aspect of improving a CSP solver rises difficult challenges, both
from theoretical and practical point of views, but this will only motivate us
in our attempt to continue and refine the results obtained so far.

110

References

[1] K. Apt. Principles of constraint programming. Cambridge University
Press, 2003.

[2] R. Bartak. On-line guide to constraint programming.
http://kti.ms.mff.cuni.cz/ bartak/constraints/index.html.

[3] S. Bistarelli. Semirings for Soft Constraint Solving and Programming.
Springer, 2004.

[4] Y. Caseau and F. Laburthe. Palm. http://www.e-constraints.net/palm.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[6] E. C. Freuder. Synthesizing constraint expressions. Communications
of the ACM, 21(11):958–966, 1978.

[7] E. C. Freuder. Partial constraint satisfaction. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence,
IJCAI-89, Detroit, Michigan, USA, pages 278–283, 1989.

[8] C. Frăsinaru. Omnics. http://omnics.sourceforge.net.

[9] C. Frăsinaru. Curs practic de Java. Matrix Rom Bucuresti, 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1995.

[11] M. Gavanelli, E. Lamma, P. Mello, and M. Milano. Performance mea-
surement of interactive CSP search algorithms. In Giornata di Lavoro
RCRA su “Analisi sperimentale di algoritmi per l’Intelligenza Artifi-
ciale”, Rome, Italy, Dec 16 1999.

[12] Ilog. Ilog solver. http://www.ilog.com.

[13] Koalog. Koalog constraint solver tutorial. http://www.koalog.com.

[14] F. Laburthe and N. Jussien. Choco. http://choco.sourceforge.net.

[15] E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M.
Piccardi. Constraint propagation and value acquisition: Why we should
do it interactively. In IJCAI, pages 468–477, 1999.

111

[16] J.-L. Lauriere. A language and a program for stating and solving com-
binatorial problems. Artificial Intelligence. An International Journal,
10(1):29–127, 1978.

[17] A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8(1):99–118, 1977.

[18] U. Monatanari. Networks of constraints: Fundamental properties and
application to picture processing. Information Science, 7(2):95–132,
1974.

[19] P. Boizumault N. Jussien, R.Debruyne. Mantaining arc-consistency
within dynamic backtracking. In Sixth international conference on
principles and practice of constraint programming (CP’2000), 2000.

[20] J.-C. Regin. Global constraints. First International Summer School on
Constraint Programming Acquafredda di Maratea – Italy, September
11-15 2005.

[21] F. Rossi, P. van Beek, and T. Walsh (editors). Handbook of Constraint
Programming. Elsevier, 2006.

[22] T. Schiex. Soft constraint processing. First International Summer
School on Constraint Programming, July 2005.

[23] M. Sergot. A query-the-user facility of logic programming. In In
Degano, P., Sandwell, E., eds.: Integrated Interactive Computer Sys-
tems, North Holland, pages 27–41, 1983.

[24] G. Verfaille, T. Schiex, H. Fargier. Valued constrained satisfaction
problems: hard and easy problems. Proc. of the 14th IJCAI, pages
631–637, 1995.

[25] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[26] J. W.Cooper. The Design Patterns Java Companion. Addison-Wesley,
1998.

112

