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ABSTRACT: 

 

Indoor scenes have the characteristics of abundant semantic categories, illumination changes, occlusions and overlaps among objects, 

which poses great challenges for indoor semantic segmentation. Therefore, we in this paper develop a method based on higher-order 

Markov random field model for indoor semantic segmentation from RGB-D images. Instead of directly using RGB-D images, we 

first train and perform RefineNet model only using RGB information for generating the high-level semantic information. Then, the 

spatial location relationship from depth channel and the spectral information from color channels are integrated as a prior for a 

marker-controlled watershed algorithm to obtain the robust and accurate visual homogenous regions. Finally, higher-order Markov 

random field model encodes the short-range context among the adjacent pixels and the long-range context within each visual 

homogenous region for refining the semantic segmentations. To evaluate the effectiveness and robustness of the proposed method, 

experiments were conducted on the public SUN RGB-D dataset. Experimental results indicate that compared with using RGB 

information alone, the proposed method remarkably improves the semantic segmentation results, especially at object boundaries. 

 

 

* Corresponding author. 

1. INTRODUCTION 

Semantic segmentation is a fundamental problem in computer 

vision, which decomposes a scene into meaningful parts and 

assigns semantic labels to them (Wolf et al., 2015). Compared 

with outdoor counterpart, indoor scene annotation is a relatively 

difficult issue since it usually contains illumination variations, 

occlusions and overlaps among objects, significant appearance 

variations and imbalanced representations of object categories 

(Chu et al., 2017). Therefore, semantic segmentation for indoor 

scene has seen an increased interest. 

 

In recent years, many methods about indoor semantic 

segmentation have been presented. Most pervious researches 

primarily rely on hand-crafted features from both color channels 

and depth channel, as input of the frequently-used classifier for 

automatic classification. Silberman and Fergus (2011) 

developed a CRF-based model, combining 3D location prior 

from depth channel with features captured from both depth 

channel and color channels, for indoor scene segmentation. Ren 

et al. (2012) adopted the kernel-based framework for 

transforming the pixel-level similarity within each super-pixel 

into the patch descriptor, which were then integrated with 

contextual information for labeling RGB-D images. Gupta et al. 

(2013) made effectively use of depth information for optimizing 

image segmentation and defined the features of super-pixels for 

automatic classification using random forest classifier and 

support vector machine. Müller and Behnke (2014) conducted 

conditional random filed, into which color, depth and 3D scene 

features were incorporated, for semantic annotation of RGB-D 

images. Unfortunately, these conventional methods usually 

consist of segmentation, feature extraction and classification 

and their final results depend on the results of each stage 

(Husain et al., 2016).  

 

With the success of convolutional neural network (CNN) in 

many applications, a large variety of CNN architectures, 

especially fully CNN, have been developed to extract the high-

level semantic features for semantic segmentation in recent 

years and worked in an end-to-end manner. He et al. (2017) 

developed a spatio-temporal pooling layer for combining 

contextual information derived from multi-view images for 

semantic image segmentation. Chu et al. (2017) integrated 

learnable constraint layers that encode contextual regularization 

between the neighboring pixels with a deep convolutional 

segmentation network for enhancing the semantic segmentation 

results of indoor scene images. More recently, inexpensive 

RGB-D sensors are proving to be a rich source of information 

for indoor scenes and can provide color and depth images in 

real-time (Khan et al., 2014). To effectively use the depth 

channel, Höft et al. (2014) presented the histogram of oriented 

depth descriptor as input of convolutional neural network. Lin 

et al. (2017a) proposed context-aware receptive field and 

performed a multiple branches-based network model for 

segmenting RGB-D images. To sufficiently exploit contextual 

information, Li et al. (2017) carried out a two-stream FCNs to 

learn the RGB and depth features respectively and gradually 

fused these features from high level to low level for indoor 

scene semantic segmentation. Jiang et al. (2018) developed an 

encoder-decoder architecture to extract RGB information and 

depth information separately and fuse the information over 

several layers for indoor semantic segmentation. By 

incorporating the depth information, the spatial geometric 

information, which is more invariant to illumination changes 
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and appearances, can be derived for the improvement of 

semantic segmentation. 

 

To address the issues raised from the state-of-the-art of the 

semantic segmentation for indoor scenes, we develop a method 

based on higher-order Markov random field model for indoor 

semantic segmentation from RGB-D images. Due to 

illumination changes, occlusions and overlaps among objects in 

indoor scenes, the spatial location relationship from depth 

channel and the spectral information from color channels are 

integrated as prior information for a marker-controlled 

watershed algorithm to derive the robust and accurate visual 

homogenous regions, which will encode the low-level visual 

features for complementarily reconstructing the detailed 

boundaries. Moreover, to alleviate the fact that the pooling 

operations result in the blurry object boundaries, higher-order 

Markov random field model is adopted to encode the short-

range context among the adjacent pixels and the long-range 

context within each visual homogenous region for refining the 

semantic segmentations, especially at object boundaries. 

 

The rest of this paper is organized as follows. Section 2 

describes the proposed method in detail. Section 3 presents the 

experimental results and analysis for evaluating the proposed 

method. This paper concludes with a discussion of future 

research considerations in Section 4. 

 

2. METHODOLOGY 

In this paper, we develop a method based on higher-order 

Markov random field (MRF) model, which combines the high-

level semantic information derived from RefineNet and the low-

level visual information captured from a marker-controlled 

watershed algorithm, for indoor semantic segmentation from 

RGB-D images. As shown in Fig. 1, the proposed method 

consists of the following steps: (1) initial semantic segmentation 

using RefineNet, (2) Visual homogenous regions generated by 

combining color information and depth information, (3) 

Region-level label consistency based on higher-order MRF 

model. As a result, the indoor scenes are interpreted into 38 

classes. Key algorithms of the proposed method are given in 

more detail below. 

 

2.1 Initial semantic segmentation using RefineNet 

To date, numerous FCNN architectures have been developed, 

such as U-Net (Ronneberger et al., 2015), SegNet 

(Badrinarayanan et al., 2017), PSPNet (Zhao et al., 2017) and 

DeepLab (Chen et al., 2017), for semantic segmentation. To 

efficiently exploit all the information available along the down-

sampling process for reconstructing the high-resolution 

prediction, these architectures presented a large variety of 

strategies, such as atrous convolutions (Chen et al., 2017) and 

skip connections (Ronneberger et al., 2015; Badrinarayanan et 

al., 2017). Since RefineNet (Lin et al., 2017b) effectively 

integrated low-resolution semantic features with fine-grained 

low-level visual features for generating high-resolution 

semantic feature maps and adopt residual connections with 

identify mappings for addressing the problems of vanishing the 

gradients during the training stage (He et al., 2016), which 

achieved new state-of-the-art performance on seven public 

datasets. Thus, we in this paper use the trained RefineNet model 

to predict the initial semantic segmentation on RGB images 

alone. An illustration of RefineNet architecture is presented in 
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Fig. 2 An illustration of RefineNet 
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Fig. 1 Workflow of the proposed method 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-717-2018 | © Authors 2018. CC BY 4.0 License.

 
718



Fig. 2. For more details about RefineNet architecture, please 

refer to (Lin et al., 2017b). 

 

2.2 Visual homogenous regions generated by combining 

color information and depth information 

As aforementioned, incorporating depth information for 

enhancing the performance of semantic segmentation achieved 

great successes (Höft et al., 2014; Husain et al., 2016; Lin et al., 

2017a; Li et al., 2017; Jiang et al., 2018) since depth data can 

provide the 3D spatial location relationships among objects (Lin 

et al., 2017a) and be insensitive to illumination changes from 

which the color channels suffer. As a matter of fact, the data 

quality of depth sensors, which is a measure of point precision, 

is limited (Khoshelham, 2012). For example, random error of 

depth measurement increases drastically with increasing 

distance from sensors, which inevitably causes the semantic 

segmentation errors if depth data directly serves as the input of 

CNN architectures. In our implementation, the depth data is just 

used for assisting the generation of visual homogenous regions. 

Furthermore, abundant semantic categories, occlusions and 

overlaps among objects are common in indoor scenes, which 

easily results in over-segmentation during the procedure of 

producing the visual homogenous regions. Since a marker-

controlled watershed segmentation algorithm is simple and 

intuitive and can be parallelized (Xu et al., 2011), effectively 

avoiding over-segmentation with the marker constraints. 

Therefore, we use a marker-controlled watershed segmentation 

algorithm by combining color information with depth 

information to efficiently and robustly derive a set of visual 

homogenous regions from RGBD images. 

 

Marker-controlled watershed segmentation is a variant of the 

conventional watershed segmentation (Vincent and Soille, 1991) 

for solving the over-segmentation issues from numerous 

potential but trivial regional minima. Watershed segmentation 

considers a gray-level image as topographic surface, where the 

gray value of each pixel is interpreted as its altitude. Suppose a 

water source is placed in each regional minimum and the entire 

topography structure is flooded from below. When water from 

two sources (i.e., regional minima) are about to meet, a dam is 

constructed to prevent the merging. The flooding and dam 

construction process continues until only the dams are visible 

from above. These dames effectively segment the image into 

regions. Due to noises and quantization error (Parvati et al., 

2008), the over-segmentation is an intrinsic problem of 

watersheds. In our implementation, we constrain the watershed 

segmentation with marker image that is generated through 

multiple morphological operations. As a result, each marker is 

associated with a region in the segmented image. Fig. 3 shows a 

simple example of the marker-controlled watershed algorithm 

based on the morphological operations, which consists of the 

following steps. 

(1) Generation of gray gradient image, depth gradient image and 

normal vector gradient image. The original RGB image and 

depth image are transformed into the associated gradient images 

based on Sobel filter (Sobel et al., 1968), respectively. The 

original depth image is used for producing the 3D point cloud 

based on the corresponding camera intrinsics and the normal 

vector of each pixel is estimated for deriving the normal vector 

gradient image. In such cases, high gradient magnitudes are at 

object boundaries while low gradient magnitude occurs inside 

objects. At the subsequent procedures, we perform the 

watershed segmentation on the derived gradient images instead 

of the original image; These gradient images associated with 

both RGB image and depth image are fused for providing 

redundant and complementary object boundaries from different 

perspectives. 

(2) Because compared with the traditional opening and closing 

operator, opening by reconstruction and closing by 

reconstruction are less destructive and can maintain the object 

shape better (Lewis and Dong, 2012). Thus, the marker image is 

derived based on the morphological operations, including 

opening by reconstruction and closing by reconstruction, from 

the original RGB images.  

(3) The combined gradient image is modified based on minima 

imposition technique (Vincent, 1993), which makes regional 
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Fig. 3 An example of the marker-controlled watershed algorithm. Different visual homogeneous regions in output results are 

randomly rendered in different colors. 
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minima occur at marker pixels, using the marker image derived 

in Step (2); 

(4) Marker-controlled watershed segmentation is performed on 

the modified gradient image. 

 

2.3 Region-level label consistency based on higher-order 

MRF model 

It is noted that the down-sampling operation in CNN 

architectures, such as pooling layer, causes the burry boundaries 

in the semantic segmentation results. Recently, higher order 

potentials were incorporated into MRF model for modeling 

higher-level contextual information and achieved successes in 

many applications (Woodford et al, 2009; Ren et al., 2015; 

Yang et al., 2018). For these models, visual homogenous 

regions can help to model long-range contextual information, 

which is particularly useful for obtaining object segmentations 

with fine boundaries (Kohli and Torr, 2009). Hence, we in this 

section use higher-order MRF model (Kohli and Torr, 2009) for 

optimizing the semantic segmentation through encoding the 

short-range contextual information among the adjacent pixels 

and the long-range contextual information within each visual 

homogenous region. 

 

MRF model (Geman and Geman, 1987) is a weighted 

undirected graph EVG ,= , where V  denotes a set of vertices, 

and E  represents a set of undirected edges between the 

neighboring vertices. For the image semantic segmentation, an 

observed image with V  pixels is denoted by a discrete random 

filed, where each random variable is associated with a pixel. 

The goal is to infer the labeling of the image  
VyyyY ,...,, 21= , 

where each variable 
i

y  is the label of pixel i  and takes a value 

from the set  LC ,...,2,1= , L  is the number of classes. In the 

field of computer vision, finding the optimal label configuration 
*Y  can be naturally formulated into the energy function 

minimization as the following Eq. (5). 

 

)(En)(En)(En)(En region2pairwise1unary YYYY ++=   (5) 

  

where first order (or unary) energy term )(Enunary Y  measures 

the disagreement between Y  and the observed data, second 

order (or pairwise) energy term )(Enpairwise Y  measures the 

extent to which Y  is not piecewise smooth, higher order energy 

term )(Enregion Y  measures the label consistency over visual 

homogenous regions, 
1  and 

2  are the weighted parameters. 

 

The form of unary term )(Enunary L  is typically 

 

 ∑
∈Vi

ii yY )(D)(Enunary = , (6) 

   

where )(D ii y  quantitatively measures the degree of “fit” 

between the label 
iy  and the observed data. In this paper, the 

output of the softmax layer in the learned RefineNet 

architecture quantitatively measures the disagreement between 

the label iy  and the observed data. As defined in Eq. (6), the 

class posterior probability, the smaller the unary term. 

 

To generate locally continuous and globally optimal label 

configuration, the pairwise energy term )(Enpairwise Y  is 

generally defined as the following Eq. (8). 

 

 ),()(
},{

, ji
Eji

jismooth yySLEn =


, (8) 

   

where ),(),(),(, jijiji yyjigyyS = , 

ji
ji yy

yy
=


=

 if   ,
otherwise   ,

0
1

),( , )exp(),( ji xxjig −−= , 
ix  and 

jx  

denote the semantic feature vectors of the pixel i  and j  

respectively derived from the learned RefineNet architectures. 

As defined in Eq. (8), the smoothness penalty term is zero for 

the neighboring pixels with the same label. With regards to the 

adjacent pixels with different labels, the smaller the distance 

between them is, the larger the smoothness penalty term is. 

Consequently, the pairwise energy term )(Enpairwise Y  encodes 

the extent to which the adjacent pixels belong to the same label. 

To reconstruct the semantic segmentation objects with refine 

boundaries, the higher order energy term )(Enregion Y  is 

incorporated into the energy function Eq. (5) for capturing the 

long-range contextual information within each visual 

homogenous region derived from Section 2.2. Although the 

combination of color and geometric information can improve 

the performance of generating the visual homogeneous regions, 

some inaccurate segmentations might still exist due to the 

complexity of the indoor scene. Thus, we use a Robust Pn 

model (Kohli and Torr, 2009; Yang et al., 2018) (as defined in 

Eq. (9)) to capture the long-range contextual information, which 

allows some pixels inside the same segmented object to take 

different labels and effectively avoids the over-smoothness 

caused by a rigid consistency. 

 





















 −

−=

+=

=  =−=










=

=



 



)

)(

exp()(

))((

,...,21),)((min)(

otherwise        ,

 )(  ,
1

)(
),(

),()(En

2

max

max

max

region

c

x

cH

cHc

L,kkywwyW

QyW
Q

yW
xy

xyY

cj
j

vp

cj cj
jjjkci

cici

ccc

cc
Sc

c




















 (9) 

where S  denotes the number of visual homogeneous regions, 

),( ccc xy  denotes the higher order potentials on region c , jw  

denotes the class probability for pixel j , )(  is the zero-one 

indicator function, )( ci yW  measures the inconsistency cost by 

accumulating the class probability of pixels,  Q  represents the 

threshold controlling the rigidity of the higher order potentials, 

max  is the homogeneity of each segmented objects, •  

denotes the 
2l  norm, cx

cj
j /=



  denotes the mean semantic 

feature vector,  ,  ,   and   are parameters. 

 

3. EXPERIMENTATION AND ANALYSIS 

To evaluate the effectiveness and robustness of the proposed 

method, in this section, we performed both qualitative and 

quantitative analysis on the public SUN RGB-D dataset (Song 

et al., 2015).  
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3.1 Experimental data and evaluation criteria 

SUN RGB-D dataset is a scene understanding dataset with 

indoor scene images, which contains 10355 RGB and depth 

image pairs captured from different cameras. There are 37 

semantic classes and about 0.25% unannotated pixels that do 

not belong to any of the 37 classes. Like (Song et al., 2015), the 

whole dataset was divided into 5285 image pairs for training 

and 5050 image pairs for test.  

 

In this paper, we use 5 common evaluation criteria, including 

the global accuracy, the class accuracy, the mean class accuracy, 

the intersection-over-union (IoU) score (Everingham et al., 

2010) and the mean IoU, to measure the segmentation quality: 

the global accuracy represents the percentage of pixels correctly 

classified by the division of the total number of pixels of true 

positive and the total number of pixels of ground true, the class 

accuracy measures the percentage of pixels correctly classified 

in a class i , the mean class accuracy represents the mean of the 

accuracy over all classes by the division of the sum of class 

accuracy in all classes and the number of classes, IoU is a 

measure which imposes the penalty of false positive on the class 

accuracy in a class i , and the mean IoU is the mean of 

intersection over union in all classes. 

 

 
GT

TP
=accuracy Global  (10) 

 
i

i

i
GT

TP
=accuracy Class  (11) 

 
C

C

i
i

= =1

accuracy Class
accuracy classMean  (12) 

 
ii

i

i
FPGT

TP

+
=IoU  (13) 

 
C

C

i
i

= =1

IoU
IoUMean  (14) 

 

where TP  and GT denote the total number of pixels of true 

positive and ground true respectively, 
iTP , 

iGT  and 
iFP  

denote the number of pixels of true positive, ground true and 

false positive in a class i  respectively. 

 

3.2 Experimental analysis 

As aforementioned, the burry boundaries are common in the 

semantic segmentation results of the conventional fully 

convolutional network architectures because of the pooling 

operations. Furthermore, the depth information can be used for 

improving the performance of the semantic segmentation and 

how to use the depth information is still an open area. Thus, we 

propose a higher-order MRF framework for exploiting the depth 

data and further optimizing the semantic segmentation, 

particular over the boundaries among objects, deriving from the 

existing RefineNet architecture. First, to evaluate the 

effectiveness of the proposed method, we compared the 

proposed method with the conventional RefineNet architecture. 

Table I lists the performance comparisons in the class accuracy, 

the mean class accuracy, the IoU and the mean IoU between the 

conventional RefineNet architecture and the proposed method 

on SUN RGB-D dataset. Fig. 4 demonstrates some typical 

comparisons between the conventional RefineNet architecture 

and the proposed method. Experiments suggested that for most 

indoor objects, the proposed method could further optimize the 

semantic segmentation results, especially over the object 

boundaries (as shown in Fig.4), and provide the better 

performance compared with the conventional RefineNet, with 

the difference in class accuracy of 2.26% on average and in IoU 

of 2.33 on average.  

 

Second, to further evaluate the effectiveness of the proposed 

method, the other existing architectures were used to compare 

with the proposed method. Table II lists performance 

comparison between the proposed method and the other 

existing architectures. For the oexisting architectures in Table II, 

we copied the best performances in these papers (Chen et al., 

2014; Kendall et al., 2015; Badrinarayanan et al., 2017; He et 

al., 2017; Li et al., 2017). Among all the methods, the proposed 

method achieved the best performance in global accuracy, mean 

class accuracy and mean IoU, with difference of 7.69%, 12.17% 

and 12.89% on average. Experimental comparisons further 

Class 

Class accuracy 

(%) 
IoU (%) 

Refine 

Net  

Proposed 

method 

Refine 

Net 

Proposed 

method 

Wall 90.79 91.73 78.13 78.93 

Floor 93.93 94.20 83.54 86.26 

Cabinet 65.42 67.72 44.34 46.66 

Bed 75.94 77.19 63.04 63.84 

Chair 79.97 82.98 65.34 68.43 

Sofa 65.09 68.15 53.13 55.62 

Table 67.98 69.54 46.69 50.58 

Door 58.58 59.18 44.84 45.48 

Window 65.82 66.87 50.35 51.68 

Bookshelf 44.21 43.94 35.55 36.34 

Picture 70.36 73.60 54.04 57.99 

Counter 54.52 55.75 43.88 45.46 

Blinds 53.57 53.18 38.20 39.99 

Desk 22.08 22.68 16.15 16.70 

Shelves 15.97 16.89 9.68 10.43 

Curtain 64.37 69.00 55.22 59.38 

Dresser 33.05 39.93 29.71 33.83 

Pillow 51.63 54.21 37.38 40.47 

Mirror 47.79 51.29 38.75 42.51 

FloorMat 0 0 0 0 

Clothes 42.80 46.51 29.33 31.84 

Ceiling 79.77 81.43 68.12 69.47 

Books 56.42 61.53 35.95 39.92 

Fridge 52.02 56.31 46.69 51.14 

TV 74.44 78.64 57.76 59.03 

Paper 41.06 43.79 26.22 29.24 

Towel 33.45 38.85 24.34 29.00 

ShowerCuratain 0 0 0 0 

Box 40.15 43.95 26.00 30.62 

Whiteboard 68.30 69.70 61.32 62.84 

Person 76.15 78.28 63.77 67.88 

NightStand 5.46 4.07 5.00 3.41 

Toilet 81.61 87.17 74.85 80.71 

Sink 72.70 75.86 57.57 61.27 

Lamp 49.08 48.33 38.34 39.64 

Bathtub 60.23 60.99 54.71 54.51 

Bag 31.28 36.26 20.51 23.92 

Mean 53.68 55.94 42.67 45.00 

Table I Performance comparison between the conventional 

RefineNet architecture and the proposed method on SUN 

RGB-D dataset. The best performance is marked with BOLD 

fonts. 
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illustrate that the proposed method succeeded in the 

improvement of semantic segmentations. 

 

4. CONCLUSION 

We developed a method based on higher-order Markov random 

field model for indoor semantic segmentation from RGB-D 

images. In this paper, we used the depth information for 

enhancing the performance of the watershed algorithm and 

combined the high-level semantic information with the long-

range contextual information for improving the semantic 

segmentation results under the higher-order MRF framework. 

Although experimental results suggested the improvements in 

the semantic segmentation results to some extent, the final 

 

 

 

 

 

 

 

 

    

    

    

    

(a) RGB image (b) Ground true 
(c) The conventional 

RefineNet architecture 
(d) The proposed method 

Fig. 4 Typical comparisons between the conventional RefineNet architecture and the proposed method. 
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Curtain Dresser Pillow Mirror FloorMat Clothes Ceiling Books

Fridge TV Paper Towel

Shower
Curtain
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Methods Data Global accuracy Mean class accuracy Mean IoU 

DeepLab+DenseCRF (Chen et al., 2014) RGB 66.69 33.06 24.13 

SegNet (Badrinarayanan et al., 2017) RGB 72.63 44.76 31.84 

Bayesian SegNet (Kendall et al., 2015) RGB 71.20 45.90 30.70 

The superpixel-based multi-view method (He et al., 2017) RGBD 65.50 41.20 32.90 

The semantics-guided multi-level method (Li et al., 2017) RGBD 78.07 53.93 40.98 

The proposed method RGBD 78.51 55.94 45.00 

Table II Performance comparison between the proposed method and the other existing architectures. The best performances in all 

methods are marked with BOLD fonts. 
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results primarily depend on the initial semantic segmentation 

derived from the fully convolutional network architecture and 

the robust visual homogeneous region generations. Our future 

work will focus on further improving the performance of the 

fully convolutional network architecture itself and enhancing 

the robustness of producing the visual homogeneous regions. 
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